1、Negro Silva LF, Li C, de Seadi Pereira PJB, et al.
Biochemical and Electroretinographic Characterization
of the Minipig Eye in the Context of Drug Safety
Investigations. Int J Toxicol 2019;38:415-22.Negro Silva LF, Li C, de Seadi Pereira PJB, et al.
Biochemical and Electroretinographic Characterization
of the Minipig Eye in the Context of Drug Safety
Investigations. Int J Toxicol 2019;38:415-22.
2、Kaplan HJ. Anatomy and function of the eye. Chem
Immunol Allergy 2007;92:4-10.Kaplan HJ. Anatomy and function of the eye. Chem
Immunol Allergy 2007;92:4-10.
3、Kumar S, Quach J, Cook N, et al. Characterization and
validation of a chronic retinal neovascularization rabbit
model by evaluating the efficacy of anti-angiogenic and
anti-inflammatory drugs. Int J Ophthalmol 2022;15:15-22.Kumar S, Quach J, Cook N, et al. Characterization and
validation of a chronic retinal neovascularization rabbit
model by evaluating the efficacy of anti-angiogenic and
anti-inflammatory drugs. Int J Ophthalmol 2022;15:15-22.
4、Kumar S, Nakashizuka H, Jones A, et al. Proteolytic
Degradation and Inflammation Play Critical Roles
in Polypoidal Choroidal Vasculopathy. Am J Pathol
2017;187:2841-57.Kumar S, Nakashizuka H, Jones A, et al. Proteolytic
Degradation and Inflammation Play Critical Roles
in Polypoidal Choroidal Vasculopathy. Am J Pathol
2017;187:2841-57.
5、Kumar S, Berriochoa Z, Ambati BK, et al. Angiographic
features of transgenic mice with increased expression
of human serine protease HTRA1 in retinal pigment
epithelium. Invest Ophthalmol Vis Sci 2014;55:3842-50.Kumar S, Berriochoa Z, Ambati BK, et al. Angiographic
features of transgenic mice with increased expression
of human serine protease HTRA1 in retinal pigment
epithelium. Invest Ophthalmol Vis Sci 2014;55:3842-50.
6、Edelman JL, Lutz D, Castro MR. Corticosteroids inhibit
VEGF-induced vascular leakage in a rabbit model of
blood-retinal and blood-aqueous barrier breakdown. Exp
Eye Res 2005;80:249-58.Edelman JL, Lutz D, Castro MR. Corticosteroids inhibit
VEGF-induced vascular leakage in a rabbit model of
blood-retinal and blood-aqueous barrier breakdown. Exp
Eye Res 2005;80:249-58.
7、Annear MJ, Mowat FM, Occelli LM, et al. A
Comprehensive Study of the Retinal Phenotype of Rpe65-
Deficient Dogs. Cells 2021;10:115.Annear MJ, Mowat FM, Occelli LM, et al. A
Comprehensive Study of the Retinal Phenotype of Rpe65-
Deficient Dogs. Cells 2021;10:115.
8、Olvera-Monta%C3%B1o%20O%2C%20Baiza-Duran%20L%2C%20Quintana-Hau%20JD%2C%20et%20%0Aal.%20Comparing%20The%20Efficacy%20Of%20An%20Anti-Human%20VEGF-A%20%0ANeutralizing%20Antibody%20Versus%20Bevacizumab%20On%20A%20Laser-Induced%20Choroidal%20Neovascularization%20(CNV)%20Rhesus%20%0AMonkey%20Model.%20Drug%20Des%20Devel%20Ther%202019%3B13%3A3813-21.Olvera-Monta%C3%B1o%20O%2C%20Baiza-Duran%20L%2C%20Quintana-Hau%20JD%2C%20et%20%0Aal.%20Comparing%20The%20Efficacy%20Of%20An%20Anti-Human%20VEGF-A%20%0ANeutralizing%20Antibody%20Versus%20Bevacizumab%20On%20A%20Laser-Induced%20Choroidal%20Neovascularization%20(CNV)%20Rhesus%20%0AMonkey%20Model.%20Drug%20Des%20Devel%20Ther%202019%3B13%3A3813-21.
9、Wang T, Li W, Zhong L, et al. Evaluation of the Effects of
Biohcly in an In Vivo Model of Mechanical Wounds in the
Rabbit Cornea. J Ocul Pharmacol Ther 2019;35:189-99.Wang T, Li W, Zhong L, et al. Evaluation of the Effects of
Biohcly in an In Vivo Model of Mechanical Wounds in the
Rabbit Cornea. J Ocul Pharmacol Ther 2019;35:189-99.
10、R%C3%B6sch%20S%2C%20Aretzweiler%20C%2C%20M%C3%BCller%20F%2C%20et%20al.%20Evaluation%20of%20%0ARetinal%20Function%20and%20Morphology%20of%20the%20Pink-Eyed%20%0ARoyal%20College%20of%20Surgeons%20(RCS)%20Rat%3A%20A%20Comparative%20%0AStudy%20of%20in%20Vivo%20and%20in%20Vitro%20Methods.%20Curr%20Eye%20Res%20%0A2017%3B42%3A273-81.R%C3%B6sch%20S%2C%20Aretzweiler%20C%2C%20M%C3%BCller%20F%2C%20et%20al.%20Evaluation%20of%20%0ARetinal%20Function%20and%20Morphology%20of%20the%20Pink-Eyed%20%0ARoyal%20College%20of%20Surgeons%20(RCS)%20Rat%3A%20A%20Comparative%20%0AStudy%20of%20in%20Vivo%20and%20in%20Vitro%20Methods.%20Curr%20Eye%20Res%20%0A2017%3B42%3A273-81.
11、Wang M, Zhang F, Liu K, et al. Safety evaluation of rabbit
eyes on scleral collagen cross-linking by riboflavin and
ultraviolet A. Clin Exp Ophthalmol 2015;43:156-63.Wang M, Zhang F, Liu K, et al. Safety evaluation of rabbit
eyes on scleral collagen cross-linking by riboflavin and
ultraviolet A. Clin Exp Ophthalmol 2015;43:156-63.
12、Tabata H, Shimizu N, Wada Y, et al. Initiation of the
optokinetic response (OKR) in mice. J Vis 2010;10:13.1-17.Tabata H, Shimizu N, Wada Y, et al. Initiation of the
optokinetic response (OKR) in mice. J Vis 2010;10:13.1-17.
13、Lu B, Lin Y, Tsai Y, et al. A Subsequent Human Neural
Progenitor Transplant into the Degenerate Retina Does
Not Compromise Initial Graft Survival or Therapeutic
Efficacy. Transl Vis Sci Technol 2015;4:7.Lu B, Lin Y, Tsai Y, et al. A Subsequent Human Neural
Progenitor Transplant into the Degenerate Retina Does
Not Compromise Initial Graft Survival or Therapeutic
Efficacy. Transl Vis Sci Technol 2015;4:7.
14、Xian B, Zhao M, Peng Y, et al. Fundus photography,
fundus fluorescein angiography, and optical coherence
tomography of healthy cynomolgus monkey, New Zealand
rabbit, Sprague Dawley rat, and BALB/c mouse retinas.
Ann Eye Sci 2023;8:10.Xian B, Zhao M, Peng Y, et al. Fundus photography,
fundus fluorescein angiography, and optical coherence
tomography of healthy cynomolgus monkey, New Zealand
rabbit, Sprague Dawley rat, and BALB/c mouse retinas.
Ann Eye Sci 2023;8:10.
15、Ameri H, Chader GJ, Kim JG, et al. The effects of
intravitreous bevacizumab on retinal neovascular
membrane and normal capillaries in rabbits. Invest
Ophthalmol Vis Sci 2007;48:5708-15.Ameri H, Chader GJ, Kim JG, et al. The effects of
intravitreous bevacizumab on retinal neovascular
membrane and normal capillaries in rabbits. Invest
Ophthalmol Vis Sci 2007;48:5708-15.
16、LoPinto AJ, Pirie CG, Ayres SL, et al. Comparison of
indocyanine green and sodium fluorescein for anterior segment angiography of ophthalmically normal eyes of
goats, sheep, and alpacas performed with a digital single-lens reflex camera adaptor. Am J Vet Res 2017;78:311-20.LoPinto AJ, Pirie CG, Ayres SL, et al. Comparison of
indocyanine green and sodium fluorescein for anterior segment angiography of ophthalmically normal eyes of
goats, sheep, and alpacas performed with a digital single-lens reflex camera adaptor. Am J Vet Res 2017;78:311-20.
17、Duane TD, Tasman W, Jaeger EA. Chapter 4a,
Indocyanine Green Angiography. In: Duane’s clinical
ophthalmology on CD-ROM. Philadelphia, PA, USA:
Lippincott Williams & Wilkins; 2002.Duane TD, Tasman W, Jaeger EA. Chapter 4a,
Indocyanine Green Angiography. In: Duane’s clinical
ophthalmology on CD-ROM. Philadelphia, PA, USA:
Lippincott Williams & Wilkins; 2002.
18、Alfaro DV. Age-related macular degeneration: a
comprehensive textbook. Philadelphia, PA, USA:
Lippincott Williams & Wilkins; 2006.Alfaro DV. Age-related macular degeneration: a
comprehensive textbook. Philadelphia, PA, USA:
Lippincott Williams & Wilkins; 2006.
19、Kumar S, Berriochoa Z, Jones AD, et al. Detecting
abnormalities in choroidal vasculature in a mouse
model of age-related macular degeneration by time-course indocyanine green angiography. J Vis Exp
2014;(84):e51061.Kumar S, Berriochoa Z, Jones AD, et al. Detecting
abnormalities in choroidal vasculature in a mouse
model of age-related macular degeneration by time-course indocyanine green angiography. J Vis Exp
2014;(84):e51061.
20、Tugal-Tutkun I, Herbort CP, Khairallah M, et al. Scoring
of dual fluorescein and ICG inflammatory angiographic
signs for the grading of posterior segment inflammation
(dual fluorescein and ICG angiographic scoring system for
uveitis). Int Ophthalmol 2010;30:539-52.Tugal-Tutkun I, Herbort CP, Khairallah M, et al. Scoring
of dual fluorescein and ICG inflammatory angiographic
signs for the grading of posterior segment inflammation
(dual fluorescein and ICG angiographic scoring system for
uveitis). Int Ophthalmol 2010;30:539-52.
21、Tugal-Tutkun I, Herbort CP, Khairallah M, et al.
Interobserver agreement in scoring of dual fluorescein and
ICG inflammatory angiographic signs for the grading of
posterior segment inflammation. Ocul Immunol Inflamm
2010;18:385-9.Tugal-Tutkun I, Herbort CP, Khairallah M, et al.
Interobserver agreement in scoring of dual fluorescein and
ICG inflammatory angiographic signs for the grading of
posterior segment inflammation. Ocul Immunol Inflamm
2010;18:385-9.
22、Meyer JH, Larsen PP, Strack C, et al. Optical coherence
tomography angiography (OCT-A) in an animal model of
laser-induced choroidal neovascularization. Exp Eye Res
2019;184:162-71.Meyer JH, Larsen PP, Strack C, et al. Optical coherence
tomography angiography (OCT-A) in an animal model of
laser-induced choroidal neovascularization. Exp Eye Res
2019;184:162-71.
23、Beckmann L, Cai Z, Margolis M, et al. Recent advances
in optical coherence tomography for anterior segment
imaging in small animals and their clinical implications.
Ocul Surf 2022;26:222-33.Beckmann L, Cai Z, Margolis M, et al. Recent advances
in optical coherence tomography for anterior segment
imaging in small animals and their clinical implications.
Ocul Surf 2022;26:222-33.
24、Robson AG, Nilsson J, Li S, et al. ISCEV guide to
visual electrodiagnostic procedures. Doc Ophthalmol
2018;136:1-26.Robson AG, Nilsson J, Li S, et al. ISCEV guide to
visual electrodiagnostic procedures. Doc Ophthalmol
2018;136:1-26.
25、Pasmanter N, Petersen-Jones SM. A review of
electroretinography waveforms and models and their
application in the dog. Vet Ophthalmol 2020;23:418-35.Pasmanter N, Petersen-Jones SM. A review of
electroretinography waveforms and models and their
application in the dog. Vet Ophthalmol 2020;23:418-35.