Abstract: Myasthenia gravis (MG) is an autoimmune antibody-mediated disorder which causes fluctuating weakness in ocular, bulbar and limb skeletal muscles. There are two major clinical types of MG. Ocular MG (OMG) affects extra ocular muscles associated with eye movement and eyelid function and generalized MG results in muscle weakness throughout the body. Patients with OMG have painless fluctuating extra ocular muscles weakness, diplopia and ptosis accompanied by normal visual acuity and pupillary function. Frequently, patients with OMG develop generalized MG over 24 months. Pure OMG is more often earlier in onset (<45 years) than generalized MG. It can also occur as part of an immune-genetic disorder or paraneoplastic syndrome related to thymus tumors. Diagnosis is based on clinical manifestations, laboratory findings, electrophysiological evaluation and pharmacologic tests. Therapeutic strategies for MG consist of symptom relieving medications (e.g., acetylcholine esterase inhibitors), immunosuppressive agents, and surgical intervention (e.g., thymectomy).
Background: Cognitive control is defined as the ability to act flexibly in the environment by either behaving automatically or inhibiting said automatic behaviour and it can be measured using an interleaved pro/anti-saccade task. Decline in cognitive control has been attributed to normal aging and neurological illnesses such as Parkinson’s disease (PD) as well as decline in other cognitive abilities. This parallel might highlight the role played by cognitive control in information processing and working memory. However, little is known about the relationship between cognitive control and other cognitive processes such as visual memory, decision making, and visual search. We thus propose to correlate the incidence of impaired cognitive control with deficits in visual memory, decision making and visual search in three groups: younger adults, older adults and patients with idiopathic PD.
Methods: Seventy-one participants, namely 34 adults (M =22.75, SD =3.8), 22 older adults (M =67.4, SD =8.3), and 20 PD patients (M =65.59, SD =8.2) performed four tasks: interleaved pro/anti-saccade, visual memory, decision making, and serial and pop-out visual search.
Results: Results show that within each group, anti-saccade error rate (ER) were significantly and negatively correlated with visual memory ER (ryounger =?0.378, P=0.036; rolder =?0.440, Polder =0.046; rPD =?0.609, P=0.016). On the other hand, correct decision-making reaction times (RT) were significantly correlated with anti-saccade ER, and RTs only in older adults (rER =0.529, P=0.014; rRT =0.512, P=0.018) and PD patients (rER =0.727, P=0.012; rRT =0.769, P=0.001). For visual search, PD patients showed a significant relationship between RTs for correct pro-saccades and pop-out (r=0.665, P=0.007), and serial (r=0.641, P=0.010) search RTs. Furthermore, there was a significant correlation between MoCA scores and anti-saccade RTs (r=?0.559, P=0.030) and ER (r=?0.562, P=0.029) in PD patients. Taken together, these results support the hypothesis of PD patients’ reliance on bottom-up processes as top-down processes decline. For younger adults, there was a significant correlation between serial search performance and both anti-saccade ER (r=0.488, P=0.005), and correct pro-saccade ER (r=0.413, P=0.021). In older adults, this relationship was absent, but anti-saccade ER significantly correlated with pop-out search times (r=0.473, P=0.030).
Conclusions: We found significant relationships between cognitive tasks and cognitive control as measured through the interleaved pro/anti-saccade task across and within participant groups, providing evidence of the appropriateness of the use of the interleaved pro/anti-saccade task as a measure of overall cognitive control.
Background: The goal of the present study was to determine whether exogenous attentional mechanisms involved in motor planning for saccades and reaches are the same for both effectors or are independent for each effector. We compared how eye and arm movement parameters, notably reaction time and amplitude, are affected by modulating exogenous attentional visual cues at different locations relative to a target.
Methods: Thirteen participants (M =22.8, SD =1.5) were asked to perform a task involving exogenous attentional allocation and movement planning. The participants were asked to fixate and maintain their hand at an initial position on a screen in front of them (left or right of screen centre) and then, at the disappearance of the fixation cross, perform an eye or arm movement, or both, to a target square (mirror location of fixation cross). A distractor appeared momentarily just before the appearance of the target at one of seven equidistant locations on the horizontal meridian. Saccade reaction times (SRTs), reach reaction times (RRTs) and amplitudes were calculated.
Results: Compared to the neutral condition (where no distractor was presented), distractors overall did not result in a facilitation of SRTs at any location (shorter SRTs), rather only a strong inhibition (longer SRTs) as a function of distractor target distance. In contrast, RRTs showed strong facilitation at the target location and less inhibition at further distances. However, both SRTs and RRTs followed a similar pattern in that RTs were shortest closer to the target position and were increasingly longer as a function of distractor target distance. In terms of amplitude, there was no effect of the distractor on reach endpoints, whereas, for saccades, there was an averaging effect of distractor position on saccade endpoints, but only for saccades with short SRTs. These effects were similar when either effector movement was performed alone or together.
Conclusions: These findings suggest that attentional selection mechanisms have both similar and differential effects on motor planning depending on the effectors used, providing evidence for both effector independent and effector dependent attentional selection mechanisms. This study furthers understanding of the operating mechanisms of exogenous attention on eye and arm movements and the interaction between sensory and motor systems.
Background: Saccades are rapid and abrupt eye movements that allow us to change the point of fixation very quickly. Saccades are generally made to visual points of interest, but we can also saccade to non-visual objects that attract our attention. While there is a plethora of studies investigating saccadic eye movements to visual targets, there is very little evidence of how eye movement planning occurs when individuals are performing eye movements to non-visual targets across different sensory modalities.
Methods: Fifteen adults with normal, or corrected to normal, vision made saccades to either visual, auditory, tactile or proprioceptive targets. In the auditory condition a speaker was positioned at one of eight locations along a circle surrounding a central fixation point. In the proprioceptive condition the participant’s finger was placed at one of the eight locations. In the tactile condition participants were touched on their right forearm in one of four eccentric location, left and right of a central point. Eye movements were made in complete darkness.
Results: We compared the precision and accuracy of the eye movements to tactile, proprioceptive, and auditory targets in the dark. Overall, both precision and accuracy of movements to non-visual targets were significantly lower compared to visual targets.
Conclusions: These differences emphasize the central role of the visual system in saccade planning.