Abstract: Uveitis can cause significant visual morbidity and often affects younger adults of working age. Anterior uveitis, or inflammation limited to the anterior chamber (AC), iris, and/or ciliary body comprises the majority of uveitis cases. Current clinical biomarkers and conventional grading scales for intraocular inflammation are mostly subjective and have only a moderate degree of interobserver reliability, and as such they have significant limitations when used in either clinical practice or research related to uveitis. In recent years, novel imaging techniques and applications have emerged that can supplement exam findings to detect subclinical disease, monitor quantitative biomarkers of disease progression or treatment effect, and provide overall a more nuanced understanding of disease entities. The first part of this review discusses automated algorithms for optical coherence tomography (OCT) image processing and analysis as a means to assess and describe intraocular inflammation with higher resolution than that afforded by conventional AC and vitreous cell ordinal grading scales. The second half of the review focuses on anterior segment OCT and OCT angiography (OCTA) in scleritis and iritis, especially with regards to their ability to directly image and characterize the pathologic structures and vasculature underlying these diseases. Finally, we briefly review experimental animal research with promising but more distant human clinical applications, including in vivo molecular microscopy of inflammatory markers and investigation of gold nanoparticles as a potential contrast agent in OCT imaging. Imaging modalities are discussed in the broader context of trends within the field of uveitis towards greater objectivity and quantifiable outcome measures and biomarkers.
Abstract: Artificial intelligence (AI) methods have become a focus of intense interest within the eye care community. This parallels a wider interest in AI, which has started impacting many facets of society. However, understanding across the community has not kept pace with technical developments. What is AI, and how does it relate to other terms like machine learning or deep learning? How is AI currently used within eye care, and how might it be used in the future? This review paper provides an overview of these concepts for eye care specialists. We explain core concepts in AI, describe how these methods have been applied in ophthalmology, and consider future directions and challenges. We walk through the steps needed to develop an AI system for eye disease, and discuss the challenges in validating and deploying such technology. We argue that among medical fields, ophthalmology may be uniquely positioned to benefit from the thoughtful deployment of AI to improve patient care.
Abstract: Idiopathic intracranial hypertension (IIH) is a condition in which elevated pressure in the cerebrospinal fluid can lead to optic nerve head (ONH) dysfunction and subsequent visual impairment. Physicians are currently limited in their ability to monitor and manage this condition, as clinical symptoms and exam findings are often delayed in response to changes in intracranial pressure. In order to find other biomarkers of disease, researchers are using imaging modalities such as optical coherence tomography (OCT) to observe microscopic changes in the eye in this condition. OCT can create 2-dimensional and 3-dimensional high definition images of the retina of the ONH and has been used to study various conditions such as glaucoma and multiple sclerosis. Numerous studies have used OCT in IIH as well, and they have shown that certain retinal layers and the ONH change in thickness and shape in both the short and long term with intracranial pressure changes. OCT is a promising modality for clinical and scientific evaluation of IIH as it is a noninvasive and practical tool to obtain in depth images. This review will discuss how OCT can be used to assess a patient with IIH, both before and after treatment, along with its limitations and future applications.
Abstract: Age-related macular degeneration (AMD) remains a leading cause of severe visual impairment in developing countries. Although dry-type AMD and geographic atrophy (GA) are progressive conditions with the associated decrease of visual functions, no well-established treatment regimen was proposed for the disease. Wet-type AMD is effectively treated with intravitreal anti-angiogenic agents, but frequent injections are a major issue for the affected patients. Recent advances in AMD genetics have provided new insights into the pathogenesis and novel therapeutic targets of AMD, but the benefits of using genetic testing and genotype-based risk models for AMD development and progression still lacks evidence. Novel AMD treatments aim to increase the interval among intravitreal injections through new therapeutic agents and modern delivery devices. Simultaneously, gene therapy for dry and wet AMD is widely studied. Although gene therapy possesses a major superiority over other novel treatments regarding a persistent cure of disease, many challenges exist in the way of its broad impact on the ocular health of AMD patients.
Abstract: Macular neovascularization (MNV) is the hallmark of neovascular age-related macular degeneration (nAMD), one of the leading causes of vision loss in the developed world. The current MNV standard of care including frequent intravitreal anti-vascular endothelial growth factor (VEGF) injections, although has revolutionized favorably the treatment, places a substantial burden on patients, caregivers, and physicians. Brolucizumab is a newly developed single-chain antibody fragment that inhibits activation of VEGF receptor 2 with in vitro affinity and potency comparable to commercially-available anti-VEGF agents. Its small molecular weight and its design allow for high solubility and retinal tissue penetration, and improve bynding affinity to the target. Also a high clearance rate leading to minimal systemic exposure was observed. Brolucizumab has shown similar gains in visual acuity compared with other anti-VEGF molecules but a higher and earlier resolution of nAMD related fluid, achieving sustained macular dryness with longer mantainance injection interval ranging from 8 to 12 weeks after monthly loading doses. Rare cases of ocular inflammation also including retinal vasculitis and retinal vascular occlusions referred to an immune-mediated reaction posed safety concerns on selected patients and mantainance treatment interval shorter than 8 weeks.The present review summarizes several key points including the molecular structure and pharmacokinetics, the preclinical and clinical evidence of brolucizumab administration evaluating its efficacy, tolerability, and safety, extended dosing regimens and other indications still under clinical investigation.
Abstract: In developed countries, age-related macular degeneration (AMD) is the main cause of visual impairment in the elderly. Though the etiology of AMD is still unclear, it has been well understood that vascular endothelial growth factor (VEGF) is involved in the development of aberrant vasculature that represents the neovascular AMD (nAMD). Hence, VEGF inhibition is a more effective way to control nAMD. Pegaptanib, ranibizumab, and aflibercept are three drugs approved by the US Food and Drug Administration (FDA) to treat nAMD. Bevacizumab (an anti-VEGF medication comparable to ranibizumab) is already widely used off label. Existing anti-VEGF medicines are made up of antibodies or pieces of antibodies. Synthetic designed ankyrin repeat proteins (DARPins) imitate antibodies introduced recently by evolutions in bioengineering technology. These agents are designed to have high specificity and affinity to a specific target, smaller molecular size, and better tissue penetration, making them more stable and longer-acting at less concentration. Abicipar pegol (Allergan, Dublin, Ireland) is a DARPin that interlocks all VEGF-A isoforms. It has a greater affinity for VEGF and a longer intraocular half-life than ranibizumab, making it a feasible anti-VEGF agent. This review describes the properties and efficacy of abicipar, the new anti-VEGF agent, in clinical practice, which aims to improve outcomes, safety, and treatment burden of nAMD.