Background: Femtosecond laser astigmatic keratotomy (FSAK) and toric intraocular lens (IOL) implantation have been studied individually for comparison to treat astigmatism at cataract surgery. We report a case of surgically induced high corneal astigmatism by laser thermal keratoplasty (LTK) in a patient with cataract who was successfully treated with simultaneous combination of FSAK and toric IOL implantation with femtosecond laser-assisted cataract surgery (FLACS). This is the first report of both procedures combined simultaneously, with or without history of LTK.
Case Description: A 68-year-old male presented with a history of LTK with two enhancements each eye in 2004, with subsequent surgically induced high corneal astigmatism, and with age-related nuclear cataract of both eyes. IOL master demonstrated +7.71 diopters of astigmatism at 163 degree right eye and +3.29 diopters of astigmatism at 4 degree left eye. After extensive discussion of the risks and benefits, the patient agreed to undergo FLACS with FSAK with two 61 degrees of relaxation incisions (RIs) and toric IOL (Alcon SN6AT9) right eye; FLACS with toric IOL (Alcon SN6AT7) alone left eye. At 2-year follow-up, uncorrected visual acuity was 20/30 right eye, 20/25 left eye. His best corrected visual acuity was 20/25 (+0.25 +1.00 axis 21) right eye and 20/20 (plano +0.25 axis 90) left eye; his best corrected near visual acuity was J1+ with add +2.50 diopters right eye and left eye.
Conclusions: Patients with age-related cataract and LTK induced high corneal astigmatism can hardly be sufficiently treated with FSAK or toric IOL alone at the time of cataract surgery. An effective way is to combine large FSAK and toric IOL of the highest cylindrical power of T9, in our case, simultaneously, which can achieve an excellent long term visual outcome.
Background: To report a new simplified surgical technique to manage small iris coloboma or traumatic iris defect.
Methods: A new surgical technique in which simplified pupilloplasty technique through only a clear corneal paracentesis to manage the iris coloboma or traumatic iris defect within the 120° range was designed. A retrospective revision of the medical records of patients treated with this technique between the years 2013 and 2016 was made. Six eyes of six patients with iris coloboma or traumatic iris defect treated with this new technique were included.
Results: All the operated eyes quickly recovered with central round pupil, negligible complications, inessential symptoms of photophobia and glare, and mild inflammation after a median follow-up time of 22 months (range: 6–34 months).
Conclusions: The simplified pupilloplasty technique presented here could be a good alternative for the management of small iris coloboma or traumatic iris defect.
Background: To evaluate efficacy and safety of combined pars plana vitrectomy (PPV) and scleral fixated intraocular lens (SFIOL) surgery as a single procedure.
Methods: Retrospective interventional case series done at a tertiary eye care center in Northern India. Eleven patients who underwent combined PPV and SFIOL surgery were included and analyzed retrospectively.
Results: Mean age of the patients was 43.36±15.12 years (range, 22–64 years). Eight were male. Mean baseline best corrected visual acuity (BCVA) was 0.78±0.63 logMAR units while the mean post-operative BCVA at 6 months follow-up was 0.37±0.29 logMAR units, the visual gain being statistically significant (P=0.021). None of the patients had a drop in BCVA with nine patients having final BCVA better than 0.48 logMAR units. Choroidal detachment (CD) was the only notable complication, seen in three patients. Other complications included two cases of intraoperative retinal breaks, a case each of reversible corneal edema, ocular hypertension and cystoid macular edema.
Conclusions: Combined PPV and SFIOL is an efficacious procedure for managing IOL/lens dislocation and aphakia in a single surgery. There may be short-term reversible complications with no impact on final visual gain.
Background: In recent years posterior corneal astigmatism and its effect on total corneal astigmatism has been studied, with research showing that this can impact total astigmatism. This study aims to ascertain if there is significant change in the posterior corneal astigmatism after cataract surgery and its impact on the total astigmatism.
Methods: Analysis of 76 eyes that underwent cataract surgery with monofocal intraocular lens implantation. Corneal topography was performed with Pentacam (OCULUS?) pre- and post-operatively. Total corneal astigmatism was calculated with the algorithm of vergence tracing. We compared preoperative and postoperative changes in the magnitude and axis differences of anterior corneal curvature astigmatism, posterior corneal curvature astigmatism and the calculated total corneal astigmatism. We calculated the correlation between the total preoperative astigmatism and the difference between total corneal astigmatism and anterior corneal astigmatism.
Results: The mean preoperative and postoperative posterior astigmatism was 0.31±0.02 D, showing no significant differences before and after surgery (P=0.989). Statistically significant differences between the calculated total corneal astigmatism and anterior corneal astigmatism were registered preoperatively and postoperatively in the with-the-rule anterior (WTR) corneal astigmatism (P=0.004, P<0.0001); against-the-rule (ATR) anterior corneal astigmatism (P<0.0001, P<0.0001) and in the oblique (P=0.026, P=0.019) subgroups. The posterior corneal astigmatism and the total corneal astigmatism correlated positively with the differences between the total corneal and anterior corneal astigmatism (R=0.378, P=0.001).
Conclusions: There were statistically significant differences between the magnitude of the total astigmatism and anterior corneal astigmatism, underlining the impact of posterior corneal astigmatism. A positive correlation between the preoperative posterior astigmatism and the difference between the total corneal and the anterior corneal astigmatism suggests a specially relevant role of posterior corneal astigmatism when evaluating patients with higher degrees of astigmatism.
Abstract: Advances in intraocular lens (IOL) design have rendered cataract surgery a refractive procedure. Newer IOL types include bifocal, trifocal and extended depth of focus (EDOF) IOLs. Their basic difference nestles in the number of focal points that each lens provides, which in turn leads to different visual outcomes. Familiarity of surgeons with the various characteristics of each lens is of utmost importance for accurate IOL selection to match each patient’s needs. In this review, we aim to compare the clinical outcomes after implantation of multifocal and EDOF IOLs in terms of distance, intermediate and near vision, contrast sensitivity, and reading performance. Finally, we discuss the defocus curve and the optical and photic phenomena associated with each type of IOL.
Abstract: Intraocular foreign body residue following ophthalmic surgery is rare but may cause severe postoperative occult inflammation. In some cases, small foreign bodies located in the anterior chamber angle may be missed by follow-up ultrasound biomicroscopy (UBM). We report the case of an elderly female whose right eye was injured by a nail and received corneal repair surgery in our hospital. Eleven days post-surgery, we found a mobile, short, translucent, rod-shaped foreign body in the upper corner of the right eye and another in the iris root at 7 o’clock. Two months post-surgery, the patient consulted a doctor due to right eye redness, pain, and vision loss, which was ultimately shown to be associated with foreign body residue resulting in a delayed postoperative inflammatory response. The patient was cured by surgeries and active anti-inflammatory and anti-infection treatments, but the final diagnosis of the patient was infectious endophthalmitis misdiagnosed as uveitis, which worths our consideration. We also review relevant literature on the differentiation of postoperative infectious endophthalmitis from noninfectious uveitis. It’s a reminder that patients with delayed endophthalmitis after open ocular trauma should not exclude the possibility of intraocular foreign bodies. As well clinicians can distinguish infectious endophthalmitis from uveitis by needle aspiration biopsy or vitrectomy for microbial culture in order to determine the need for antibiotic treatment.