Abstract: Navigation technology in ophthalmology, colloquially called “eye-tracking”, has been applied to various areas of eye care. This approach encompasses motion-based navigation technology in both ophthalmic imaging and treatment. For instance, modern imaging instruments use a real-time eye-tracking system, which helps to reduce motion artefacts and increase signal-to-noise ratio in imaging acquisition such as optical coherence tomography (OCT), microperimetry, and fluorescence and color imaging. Navigation in ophthalmic surgery has been firstly applied in laser vision corrective surgery and spread to involve navigated retinal photocoagulation, and positioning guidance of intraocular lenses (IOL) during cataract surgery. It has emerged as one of the most reliable representatives of technology as it continues to transform surgical interventions into safer, more standardized, and more predictable procedures with better outcomes. Eye-tracking is essential in refractive surgery with excimer laser ablation. Using this technology for cataract surgery in patients with high preoperative astigmatism has produced better therapeutic outcomes. Navigated retinal laser has proven to be safer and more accurate compared to the use of conventional slit lamp lasers. Eye-tracking has also been used in imaging diagnostics, where it is essential for proper alignment of captured zones of interest and accurate follow-up imaging. This technology is not routinely discussed in the ophthalmic literature even though it has been truly impactful in our clinical practice and represents a small revolution in ophthalmology.
Background: In this investigation, we explore the literature regarding neuroregeneration from the 1700s to the present. The regeneration of central nervous system neurons or the regeneration of axons from cell bodies and their reconnection with other neurons remains a major hurdle. Injuries relating to war and accidents attracted medical professionals throughout early history to regenerate and reconnect nerves. Early literature till 1990 lacked specific molecular details and is likely provide some clues to conditions that promoted neuron and/or axon regeneration. This is an avenue for the application of natural language processing (NLP) to gain actionable intelligence. Post 1990 period saw an explosion of all molecular details. With the advent of genomic, transcriptomics, proteomics, and other omics—there is an emergence of big data sets and is another rich area for application of NLP. How the neuron and/or axon regeneration related keywords have changed over the years is a first step towards this endeavor.
Methods: Specifically, this article curates over 600 published works in the field of neuroregeneration. We then apply a dynamic topic modeling algorithm based on the Latent Dirichlet allocation (LDA) algorithm to assess how topics cluster based on topics.
Results: Based on how documents are assigned to topics, we then build a recommendation engine to assist researchers to access domain-specific literature based on how their search text matches to recommended document topics. The interface further includes interactive topic visualizations for researchers to understand how topics grow closer and further apart, and how intra-topic composition changes over time.
Conclusions: We present a recommendation engine and interactive interface that enables dynamic topic modeling for neuronal regeneration.
Background: This study aims to investigate the current status and influencing factors of evidence-based practice (EBP) with knowledge, attitude and practice (KAP) of ophthalmic nursing staffs in south China.
Methods: Using a convenient sampling method, we selected 429 ophthalmic nursing staffs from 28 ophthalmology specialist hospitals or general hospitals in south China, and investigated their general information and implemented the evidence-based practice questionnaire (EBPQ).
Results: The scores of EBP and KAP of ophthalmic nursing staffs in south China from high to low were as follows: practical attitude (4.85±1.07 points), practical behavior (4.42±1.14 points), practical knowledge and skills (4.30±0.65 points). The single factor analysis results showed that the first graduation degree, technical title, scientific research achievements, whether or not participate in EBP training, the frequency of reading literature at ordinary time, and whether or not participate in EBP project were the influencing factors of EBP level; the multi-factor analysis results showed that EBP attitude, EBP knowledge and skills, whether or not participate in EBP training were independent influencing factors of EBP.
Conclusions: The ophthalmic nursing staffs in south China have a positive attitude towards EBP, however, their EBP knowledge, skills and behavioral capabilities need to be focused and improved. The ophthalmic nursing administrators should fully master the factors affecting the implementation of EBP, and take effective intervention measurement to improve the EBP abilities of ophthalmic nursing staffs, and promote the development of EBP in ophthalmology specialty.
Background and Objective: Vitreoretinal surgery requires fine micro-surgical training and handling of delicate tissue. To aid in the training of residents and fellows, unique educational modalities exist to help facilitate the development of these microsurgical skills. From virtual simulators to artificial eye models, simulation of the posterior segment has gained an increased focus in vitreoretinal surgical training programs. Development of surgical curricula for vitreoretinal training and attainment of surgical milestones has been a key component in integrating these educational training modalities. We will explore various simulators, eye models, and potential rubrics and discuss unique ways each may help and complement one another to train future vitreoretinal surgeons.
Methods: We conducted a systematic PubMed search of various review studies (from publications in English ranging from January 1978 to December 2020) discussing surgical simulators, eye models, and surgical rubrics for vitreoretinal surgery and their potential impacts upon training.
Key Contents and Findings: Our review assesses the benefits and applicability of various simulators, eye models, and surgical rubrics upon training.
Conclusions: Utilization of vitreoretinal surgical training tools may aid in complementing the hands-on surgical training experience for vitreoretinal surgical fellows. By using simulators and rubrics, we may better be able to standardize training for reaching vitreoretinal surgical milestones and providing adequate feedback to improve surgical competency and ultimately patient outcomes.
Background and Objective: Subthreshold laser technologies and their applications in ophthalmology have greatly expanded in the past few decades. Initially used for retinal diseases such as central serous chorioretinopathy and diabetic macular edema, subthreshold lasers have recently shown efficacy in the treatment of various types of glaucoma. Our primary objectives are to review the clinical applications of subthreshold laser in the context of glaucoma treatment and discuss the mechanisms of different subthreshold laser techniques, including subthreshold selective laser trabeculoplasty (SSLT), micropulse laser trabeculoplasty (MLT), pattern-scanning laser trabeculoplasty (PSLT), titanium laser trabeculoplasty (TLT), and micropulse transscleral cyclophotocoagulation (MP-TSCPC).
Methods: This was a narrative review compiled from literature of PubMed and Google Scholar. The review was performed from March 2021 to October 2021 and included publications in English. We also included information from web pages to cover details of relevant laser systems. We discuss the history of subthreshold laser, recent advancements in subthreshold techniques, and commercially available systems that provide subthreshold capabilities for glaucoma. We highlight basic science and clinical studies that deepen the understanding of treatment mechanisms and treatment effectiveness in the clinical setting respectively. We review commonly used parameters for each technique and provide comparisons to conventional treatments.
Key Content and Findings: We found five distinct types of subthreshold laser used in the management of glaucoma. Numerous subthreshold laser systems are commercially available and can provide this treatment. Therefore, understanding the differences between subthreshold techniques and laser systems will be critical in utilizing subthreshold laser in the clinical setting.
Conclusions: Traditional laser trabeculoplasty (LT) and cyclophotocoagulation (CPC) have shown effectiveness in the treatment of various types of glaucoma but are associated with visible damage to the underlying tissue and adverse effects. Subthreshold laser systems aim to provide the therapeutic effect found in traditional lasers, while minimizing unwanted treatment related effects. Further clinical studies are needed to evaluate the role of subthreshold lasers in the management of glaucoma.