Theme 3: Emerging Technologies

AB011. A collagen-alginate-based cell-encapsulation intraocular implant for retinal disease therapy

:-
 

Abstract: Encapsulated-cell therapy (ECT) is an attractive approach for continuously delivering freshly synthesized therapeutics to treat sight-threatening posterior eye diseases, circumventing repeated invasive intravitreal injections and improving local drug availability clinically. Composite collagen-alginate (CAC) scaffold in ECT contains an interpenetrating network that integrates the physical and biological merits of its constituents, including biocompatibility, mild gelling properties and availability. An injectable CAC system that supported the growth of HEK293 cells with sustainable glial-derived neurotrophic factor (GDNF) delivery has been developed. Continuous GDNF delivery was detected in culture and in healthy rat eyes for at least 14 days. The gels were well tolerated with no host tissue attachment and contained living cell colonies. Most importantly, gel implantation in dystrophic Royal College of Surgeons rat eyes for 28 days retained photoreceptors while those gels containing higher initial cell number yielded better photoreceptor rescue effect. This rescue effect is clinically relevant as photoreceptor death is a common pathology in many retinal diseases. Moreover, since cells including autologous cells can be genetically engineered to secrete various therapeutic agents, CAC gel offers a flexible system design and is a potential treatment option for other chronic neurodegenerative diseases.

Perspective

Tweaking the immune system as an adjuvant for the treatment of retinal degenerations

:-
 

Abstract: Blinding diseases such as photoreceptor degenerations are debilitating conditions that severely impair daily lives of affected patients. This group of diseases are amenable to photoreceptor replacement therapies and recent transplantation studies provided proof-of-principle for functional recovery at the retinal and behavioral level, though the actual mechanism of repair still needs further investigations. The immune system responds in several ways upon photoreceptor engraftment, resulting in T-cell and macrophage infiltrations and, consequently, decrease in graft survival. Most studies on the role of the immune system suggest a detrimental effect in a therapeutic setting. Conversely, the opposite idea wherein the immune system can be activated towards a protective state was also explored in other experimental paradigms. Here, Neves and colleagues explored the potential of cross-species studies and, to a certain extent, the concept of a protective immune system in retinal degeneration and therapy. Mesencephalic astrocyte-derived neurotrophic factor (MANF) was identified in this study as a novel factor that, by modulating the immune system, can slow down photoreceptor degeneration and improve transplantation outcome.

Review Article

Narrative review of risuteganib for the treatment of dry age-related macular degeneration (AMD)

:-
 

Abstract: Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. AMD most commonly affects older individuals and is characterized by irreversible degeneration of the retinal pigment epithelium and neurosensory retina. Currently, there are limited treatment options for dry AMD outside of lifestyle modification and nutrient supplementation. Risuteganib [Luminate (ALG-1001), Allegro Ophthalmics, CA, USA] is an intravitreally administered inhibitor of integrin heterodimers αVβ3, αVβ5, α5β1, and αMβ2. It is currently undergoing clinical trials for the treatment of dry AMD and diabetic macular edema (DME). Preclinical studies have shown that risuteganib has an effect on the pathways for angiogenesis, inflammation, and vascular permeability. Ongoing clinical trials have had promising results showing improvements in patient best corrected visual acuity (BCVA) and reduced central macular thickness measured by optical coherence tomography (OCT). There is a pressing need for treatments for dry AMD and while risuteganib appears to have a potential benefit for patients, more data are needed before one can truly evaluate its efficacy. This narrative review provides a concise summary of the most up to date data regarding the proposed mechanism of action of risuteganib in the treatment of nonexudative AMD and DME as well as the results from recent phase 1 and phase 2 clinical trials.

Review Article
Editorial
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息