Background: Zellweger spectrum disorder (ZSD) is an autosomal recessive disease caused by mutations in any one of 13 PEX genes whose protein products are required for peroxisome assembly. Retinopathy leading to blindness is one of the major handicaps faced by affected individuals, but treatment for this is supportive only. To test whether we could improve visual function in ZSD, we performed a proof-of-concept trial for PEX1 gene augmentation therapy using the Pex1-G844D mouse model, which bears the equivalent to a common human mutation. This model exhibits a gradual decline in scotopic ffERG response, an always residual photopic ffERG response, diminished visual acuity, and cone and bipolar cell anomalies.
Methods: We administered subretinal injections of a PEX1-containing viral vector (AAV8.CMV.hPEX1.HA) to 2 mouse cohorts of 5 or 9 weeks of age. A GFP-containing vector was used as a control in the contralateral eye of each animal. Efficient expression of the virus was confirmed by retinal histology/immunohistochemistry, and its ability to recover peroxisome import was confirmed in vitro. Preliminary ffERG and optokinetic (OKN) analyses were performed on a subset of animals at 8, 16, and 20 weeks after gene delivery. Final ffERG and OKN measures were performed when each cohort reached 32 weeks of age (23 or 27 weeks post injection).
Results: Preliminary ffERG and OKN analyses at 8 weeks post injection showed mildly better retinal response and visual acuity, respectively, in the PEX1-injected eyes, as did ffERG analysis when each cohort reached 25 weeks of age (16 or 20 weeks after gene delivery). This effect was more pronounced in the cohort treated at 5 weeks of age, when ffERG response is highest in Pex1-G844D mice. At 32 weeks of age, the ffERG response in the PEX1-injected eyes was double that of GFP-injected eyes, on average, though there was no change in OKN. Furthermore, in PEX1-injected eyes the photopic ffERG response improved over time, and the decline in scotopic b-wave amplitude was ameliorated compared to un-injected eyes.
Conclusions: AAV8.CMV.hPEX1.HA was subretinally delivered into the left eye of 5- and 9-week-old Pex1-G844D retina. Successful expression of the protein with no gross histologic side effect was observed. Neither the injection, nor exposure to the AAV8 capsid or the transgenic protein negatively altered the ERG or OKN response. At 5–6 months after gene delivery, therapeutic vector-treated eyes showed improved ERG compared to control eyes, on average, in both the “prevention” and “recovery” cohorts. This implies clinical potential of gene delivery to improve vision in patients with ZSD. Retinal immunohistochemistry (to visualize retinal cell types) and biochemical analyses will be performed on treated and untreated retinas, and may inform the mechanism of ERG improvement.
Background: Diabetic macular edema (DME) is a leading cause of severe visual impairments in older and the working-age population. An important target of current therapy is vascular endothelial growth factor (VEGF), which plays a role in the pathogenesis of DME by inducing angiogenesis and increasing vascular permeability. Currently available anti-VEGF agents include off-label use of Bevacizumab, which has been shown to be effective in the treatment of DME. However, many patients with DME do not respond or demonstrate only a partial response to this agent. As of November 2016, the Canadian Health authorities approved Aflibercept as an anti-VEGF agent for treatment of DME, and the patients who are non-responders to Bevacizumab are switched to this non-off label medication. We aimed to investigate the anatomical and functional visual changes associated with response to Aflibercept in a real-life Canadian population of Bevacizumab non-responders.
Methods: A retrospective review of chronic DME patients refractory to bevacizumab treatment who were switched to Aflibercept was done. Best-corrected visual acuity (BCVA), Intraocular pressure (IOP), central subfield thickness (CST), average macular thickness, and total macular volume were extracted at the visit prior to switching to Aflibercept (baseline) as well as the first, second and third follow-up visits after switching. Anatomical and functional visual changes were compared using Generalized Estimating Equations and the association between variables was tested using Pearson correlation test with significance set at P<0.05.
Results: Twenty-six eyes with mean age of 63 were included. Average CST at baseline was 421.5±116.1 μm and the number of Bevacizumab injections received prior to switching was 15.3±8.0. No significant changes were observed in terms of BCVA and IOP, from baseline to any of the follow-ups. Switching to Aflibercept significantly improved CST, average macular thickness, and total macular volume. From baseline to the first follow-up visit, CST decreased from 421.5±116.1 to 333.0±91.2 μm (P=0.001) and average macular thickness reduced from 344.6±74.9 to 322.2±60.5 μm (P=0.008). Similarly, total macular volume decreased from 12.4±2.7 to 11.6±2.2 μm3, measured at baseline and the first follow-up (P=0.007). No further improvements were observed from the first follow-up to the subsequent ones. The median CST value at baseline (378 μm) was used to classify the patients into low and high CST groups. We observed that those with higher CST at baseline (>378 μm) showed a trend for improvements in visual acuity (P=0.058). Pearson correlation test confirmed the association between higher CST at baseline and better visual outcomes in response to switching to Aflibercept (P=0.018).
Conclusions: Our data evidenced significant anatomical improvements in macula, which did not translate to immediate functional vision improvements. Bevacizumab non-responders with higher CST might also gain visual acuity and benefit functionally from switching to Aflibercept.
Background: Overexpression of inducible nitric oxide synthase (iNOS) has been reported in diabetic retinopathy (DR). The kinin B1 receptor (B1R) is also overexpressed in DR, and can stimulate iNOS via Gαi/ERK/MAPK pathway. We previously showed that the topical administration of a B1R antagonist, LF22-0542, significantly reduces leukocyte infiltration, increased vascular permeability and overexpression of several inflammatory mediators, including iNOS in DR. Thus, the aim of this study was to determine whether the pro-inflammatory effects of B1R are attributed to oxidative stress caused by the activation of iNOS pathway in order to identify new therapeutic targets for the treatment of DR. iNOS and B1R being absent in the normal retina, their inhibition is unlikely to result in undesirable side effects. The approach will be no invasive by eye application of drops.
Methods: Diabetes was induced in male Wistar rats (200–230 g) by a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg b.w). One week later, rats were randomly divided into four groups (N=5) and treated for one week as follows: Gr 1: control rats treated with the selective iNOS inhibitor (1,400 W, 0.06 μM twice a day by eye-drops ×7 days), Gr 2, STZ-diabetic rats treated with 1,400 W, Gr 3: control rats received a selective B1R agonist [Sar (D-Phe8)-des-Arg9-BK, 100 μg twice a week] by intravitreal injections (itrv) and treated with 1,400 W, Gr 4: STZ-diabetic rats + B1R agonist +1,400 W. At the end of treatment and two weeks post-STZ, three series of experiments were carried out to measure vascular permeability (by Evans blue dye method) and the expression of vasoactive and inflammatory mediators, including iNOS, VEGF-A, VEGF-R2, IL-1β, Cox-2, TNF-α, bradykinin 1 and 2 receptors and carboxypeptidase M/kininase 1 (by Western Blotting and qRT-PCR). The nitrosative stress (nitrosylation of proteins) was also assessed by Western Blotting. One-way Anova test with Bonferroni post hoc was used for statistical analysis.
Results: STZ-diabetic rats showed a significant increase in retinal vascular permeability (22.8 μg/g Evans blue dye per g of fresh retinas, P=0.016) compared with control rats and control treated rats (17.2 and 16.8 μg/g respectively). The injections of B1R agonist amplified the increase of vascular permeability which was normalized by the 1,400 W. The overexpression of inflammatory markers was also normalized by the 1,400 W in STZ-diabetic rats received or not the B1R agonist.
Conclusions: These results support a contribution of iNOS in the deleterious effects of B1R in this model of diabetic retinopathy. Hence, iNOS inhibition by ocular application of 1,400 W may represent a promising and non-invasive therapeutic approach in the treatment of diabetic retinopathy.
Background: Retinol dehydrogenase 8 (RDH8) is a 312-amino acid (aa) protein involved in the visual cycle. Bound to the outer segment disk membranes of photoreceptors, it reduces all-trans-retinal to all-trans-retinol1 as one of the rate-limiting steps of the visual cycle2. RDH8 is a member of the short-chain dehydrogenase/reductase family. Its C-terminal segment allows its membrane-anchoring through the postulated presence of an amphipathic α-helix and of 1 to 3 acyl groups at positions 299, 302 and 3043. The secondary structure and membrane binding characteristics of RDH8 and its C-terminal segment have not yet been described.
Methods: To evaluate the membrane binding of RDH8, the full-length protein (aa 1–312), a truncated form (aa 1–296), its C-terminal segment (aa 281–312 and 297–312) as well as different additional variants of this segment were used. The truncated protein binds membranes less efficiently than the full-length form. Thus, the C-terminal segment of RDH8 is essential for the binding and has thus been further examined. The intrinsic fluorescence of tryptophan residues at positions 289 and 310 of the wild-type C-terminal segment of RDH8 and the mutants W289F, W310F and W310R have thus been used to determine their extent of binding to lipid vesicles and to monitor their local environment. Unilamellar lipid vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or a mixture of POPC and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) were used to mimic the phospholipid content of the outer segment disk membranes of photoreceptors.
Results: An increase in fluorescence intensity and in fluorescence lifetime is observed upon increasing the concentration of lipid vesicles. These data allowed calculating values of partition coefficient of the C-terminal segment of RDH8 varying between Kp =1.1 E6 to 1.7 E6. It is noteworthy that the observation of a more intense shift to lower wavelengths upon membrane binding of the mutant W310R and W310F indicates a deeper incorporation of the remaining tryptophan residue at position 289 into the lipid bilayer. The secondary structure of the C-terminal segment of RDH8 observed by circular dichroism and infrared spectroscopy shows a superposition of α-helical, β-turn and unordered structures.
Conclusions: The peptides derived from the C-terminal segment of RDH8 show a strong binding to lipid vesicles. These strength of binding is independent of the type of lipid and the presence of a mutation.
Background: The neovascular aged-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly. It is presently treated by anti-VEGF intravitreal injection in order to stop the neovascularization. In seeking of more efficient treatments to prevent retinal damage, it has been proposed that the kinin-kallikrein system (KKS), a key player in inflammation, could be involved in AMD etiology. However, the role of kinin receptors and their interaction with VEGF in AMD is poorly understood.
Methods: In order to address this question, choroidal neovascularization (CNV) was induced in the left eye of Long-Evans rat. After laser induction, anti-VEGF or IgG control were injected into the vitreal cavity. Gene expression was measured by qRT-PCR, retinal adherent leukocytes were labelled with FITC-Concanavalin A lectin, vascular leakage by the method of Evans blue and cellular localisation by immunohistochemistry.
Results: The number of labelled adherent leucocytes was significantly increased in laser-induced CNV compared to the control eye. This was significantly reversed by one single injection of anti-VEGF. Extravasation of Evans blue dye was significantly increased in laser-induced CNV eyes compared to control eyes and partially reversed by one single injection of anti-VEGF or by R954 treatment. The mRNA expression of inflammatory mediators was significantly increased in the retina of CNV rats. Immunodetection of B1R was significantly increased in CNV eyes. B1R immunolabeling was detected on endothelial and ganglion cells.
Conclusions: This study is the first to highlight an effect of the kinin/kallikrein system in a model of CNV that could be reduced by both anti-VEGF therapy and topically administered B1R antagonist R-954.
Background: Retinal endothelial cells are very active and contribute to the integrity of the neurovascular unit. Vascular dysfunction has been proposed to contribute to the pathogenesis of glaucoma. Here, we evaluated the hypothesis that ocular hypertension triggers mitochondrial alterations in endothelial cells impairing the integrity of the blood retinal barrier (BRB).
Methods: Ocular hypertension was induced by injection of magnetic microbeads into the anterior chamber of EndoMito-EGFP mice, a strain expressing green fluorescent protein selectively in the mitochondria of endothelial cells. Capillary density, mitochondrial volume, and the number of mitochondrial components were quantified in 3D-reconstructed images from whole-mounted retinas using Imaris software. Dynamin-related protein (DRP-1), mitofusin-2 (MFN-2) and optic atrophy-1 (OPA-1) expression were assessed by western blot analysis of enriched endothelial cells. Mitochondrial structure was evaluated by transmission electron microscopy (TEM) and oxygen consumption rate was monitored by Seahorse analysis. The integrity of the BRB was evaluated by quantifying Evans blue leakage.
Results: Our data demonstrate that two and three weeks after ocular hypertension induction, the total mitochondria volume in endothelial cells decreased from 0.140±0.002 μm3 from non-injured retinas to 0.108±0.005 and 0.093±0.007 μm3, respectively in glaucomatous eyes (mean ± S.E.M, ANOVA, P<0.001; N=6/group). Frequency distribution showed a substantial increase of smaller mitochondria complexes (<0.5 μm3) in endothelial cells from glaucomatous retinas. Significant upregulation of DRP-1 was found in vessels isolated from glaucomatous retinas compared to the intact retinas, while MFN-2 and OPA-1 expression was not affected. Structural alteration in endothelial cell mitochondria was confirmed by TEM, which were accompanied by a 1.93-fold reduction in the oxygen consumption rate as well as 2.6-fold increase in vasculature leakage in glaucomatous retinas (n=3–6/group). In addition, this model did not trigger changes in the density of the vascular network, suggesting that mitochondrial fragmentation was not due to endothelial cell loss.
Conclusions: This study shows that ocular hypertension leads to early alterations in the dynamic of endothelial cell mitochondria, contributing to vascular dysfunction in glaucoma.
Background: Pericytes are contractile cells that wrap along the walls of capillaries. In the brain, pericytes play a crucial role in the regulation of capillary diameter and vascular blood flow in response to metabolic demand. The contribution of pericytes to microvascular deficits in glaucoma is currently unknown. To address this, we used two-photon excitation microscopy for longitudinal monitoring of retinal pericytes and capillaries in a mouse glaucoma model.
Methods: Ocular hypertension was induced by injection of magnetic microbeads into the anterior chamber of albino mice expressing red fluorescent protein selectively in pericytes (NG2-DsRed). Minimally invasive, multiphoton imaging through the sclera of live NG2-DsRed mice was used to visualize pericytes and capillary diameter at one, two and three weeks after glaucoma induction. In vivo fluctuations in pericyte intracellular calcium were monitored with the calcium indicator Fluo-4. Ex vivo stereological analysis of retinal tissue prior to and after injection of microbeads was used to confirm our in vivo findings.
Results: Live two-photon imaging of NG2-DsRed retinas demonstrated that ocular hypertension induced progressive accumulation of intracellular calcium in pericytes. Calcium uptake correlated directly with the narrowing of capillaries in the superficial, inner, and outer vascular plexuses (capillary diameter: na?ve control =4.7±0.1 μm, glaucoma =4.0±0.1 μm, n=5–6 mice/group, Student’s t-test P<0.05). Frequency distribution analysis showed a substantial increase in the number of small-diameter capillaries (≤3 μm) and a decrease in larger-diameter microvessels (≥5–9 μm) at three weeks after induction of ocular hypertension (n=5–6 mice/group, Student’s t-test P<0.05).
Conclusions: Our data support two main conclusions. First, two-photon excitation microscopy is an effective strategy to monitor longitudinal changes in retinal pericytes and capillaries in live animals at glaucoma onset and progression. Second, ocular hypertension triggers rapid intracellular calcium increase in retinal pericytes leading to substantial capillary constriction. This study identifies retinal pericytes as important mediators of early microvascular dysfunction in glaucoma.
Background: Sight-threatening diabetic macular edema (DME) is caused by increased microvascular permeability. While few direct vascular targeting strategies are available, VEGF pathway inhibition has shown to be effective in reducing retinal vascular leakage but is associated with non-negligible side effects. Thus, more options are needed. Vascular specific Activin-like kinase receptor type I (ALK1) pathway and its circulating ligand Bone morphogenetic protein-9 (BMP9) is known for its potent quiescent and stabilizing effect on the vasculature. However, little is known about this pathway in the context of microvascular permeability associated with diabetes. We hypothesize that BMP9/ALK1 pathway is inhibited in diabetic (DB) retinas leading to vascular destabilization and leakage and that its activation could re-establish proper vascular endothelial barrier functions (EBF).
Methods: The effect of hyperglycemia (i.e., HG >10 mM of D-glucose) on Alk1 signaling was evaluated in vitro by subjecting endothelial cells (EC) to increasing concentrations of D-glucose (5, 11, 25 mM) and in vivo using DB mice (Streptozotocin-induced diabetes). The contribution of Alk1 signaling on EBF was evaluated using Evans Blue permeation in inducible endothelial specific Alk1 KO mice. To evaluate the potential protective effects of BMP9/Alk1 signaling on EBF, BMP9 overexpression was achieved using adenoviral delivery in DB mice. Statistical-One-Way ANOVA or Student’s t-test was used.
Results: Endothelial tissue from DB mice showed a significant inhibition of BMP9/ALK1-canonical Smad1,5,8 quiescence signaling (DB n=5; CTL n=4; P<0.01), which was associated with reduced expression of target genes (JAG1, Id1,3, Hey1,2 & HES). Moreover, we showed that retinal hyperpermeability associated with diabetes was exacerbated in Alk1 heterozygote mice (n=4–9/group; P<0.0001). Finally, we demonstrated that activation of Alk1 signaling in ECs prevented vascular permeability induced by HG, both in vitro (n=3; P=0.009) and in vivo (n=4–9/group; P<0.0001).
Conclusions: Consistent with our hypothesis, vascular stability and quiescence induced by BMP9-ALK1 signaling is inhibited in the DB/HG endothelium which could be an important factor in vascular leakage leading to DME. Our results show that activation of this pathway could offer a therapeutically interesting future option to slow down the onset of DME.
Abstract: Mononuclear phagocytes (MP) comprise a family of cells that include microglial cells (MC), monocytes, and macrophages. The subretinal space, located between the RPE and the photoreceptor outer segments, is physiologically devoid of MPs and a zone of immune privilege mediated, among others, by immunosuppressive RPE signals. Age-related macular degeneration (AMD) is a highly heritable major cause of blindness, characterized by a breakdown of the subretinal immunosuppressive environment and an accumulation of pathogenic inflammatory MPs. Studies in mice and humans suggest that the AMD-associated APOE2 isoform promotes the breakdown of subretinal immunosuppression and increased MP survival. Of all genetic factors, variants of complement factor H (CFH) are associated with greatest linkage to AMD. Using loss of function genetics and orthologous models of AMD, we provide mechanistic evidence that CFH inhibits the elimination of subretinal MPs. Importantly, the AMD-associated CFH402H isoform markedly increased this inhibitory effect on microglial cells, indicating a causal link to disease etiology. Pharmacological acceleration of resolution of subretinal inflammation might be a powerful tool for controlling inflammation and neurodegeneration in late AMD.