Background: Pericytes are contractile cells that wrap along the walls of capillaries. In the brain, pericytes play a crucial role in the regulation of capillary diameter and vascular blood flow in response to metabolic demand. During ischemia, it has been suggested that pericytes may constrict capillaries, and that pericytes remain constricted after reperfusion thus resulting in impaired blood flow.
Methods: Here, we used a mouse model of retinal ischemia based on ligation of the central retinal artery to characterize the role of pericytes on capillary constriction. Ischemia was induced in transgenic mice carrying the NG2 promoter driving red fluorescent protein expression to selectively visualize pericytes (line NG2:DsRed).Changes in retinal capillary diameter at 1 hr after ischemia were measured ex vivo in whole-mounted retinas from ischemic and control eyes (n=4–6/group) using a stereological approach. Vessels and pericytes were three-dimensionally reconstructed using IMARIS (Bitplane). Furthermore, we used a novel and minimally invasive two-photon microscopy approach that allowed live imaging of microvasculature changes in the retina.
Results: Our data show a generalized reduction in capillary diameter in ischemic retinas relative to sham-operated controls in all vascular plexus (ischemia: 4.7±0.2 μm, control: 5.2±0.2 μm, student’s t-test, P<0.001). Analysis of the number of capillary constrictions at pericyte locations, visualized in NG2:DsRed mice, demonstrated a substantial increase in ischemic retinas relative to the physiological capillary diameter reductions observed in controls (ischemia: 1,038±277 constrictions at pericyte locations, control: 60±36 constrictions at pericyte locations, student’s t-test, P<0.01). Live imaging using two-photon microscopy confirmed robust capillary constriction at the level of pericytes on retinal capillaries during ischemia (n=6–8/group).
Conclusions: Collectively, our data demonstrate that ischemia promotes rapid pericyte constriction on retinal capillaries causing major microvascular dysfunction in this tissue. To identify the molecular mechanisms underlying the pathological response of pericytes during ischemia, we are currently carrying out experiments in mice and zebrafish to modulate signaling pathways involved in calcium dynamics leading to contractility in these cells.
Background: Zellweger spectrum disorder (ZSD) is an autosomal recessive disease caused by mutations in any one of 13 PEX genes whose protein products are required for peroxisome assembly. Retinopathy leading to blindness is one of the major handicaps faced by affected individuals, but treatment for this is supportive only. To test whether we could improve visual function in ZSD, we performed a proof-of-concept trial for PEX1 gene augmentation therapy using the Pex1-G844D mouse model, which bears the equivalent to a common human mutation. This model exhibits a gradual decline in scotopic ffERG response, an always residual photopic ffERG response, diminished visual acuity, and cone and bipolar cell anomalies.
Methods: We administered subretinal injections of a PEX1-containing viral vector (AAV8.CMV.hPEX1.HA) to 2 mouse cohorts of 5 or 9 weeks of age. A GFP-containing vector was used as a control in the contralateral eye of each animal. Efficient expression of the virus was confirmed by retinal histology/immunohistochemistry, and its ability to recover peroxisome import was confirmed in vitro. Preliminary ffERG and optokinetic (OKN) analyses were performed on a subset of animals at 8, 16, and 20 weeks after gene delivery. Final ffERG and OKN measures were performed when each cohort reached 32 weeks of age (23 or 27 weeks post injection).
Results: Preliminary ffERG and OKN analyses at 8 weeks post injection showed mildly better retinal response and visual acuity, respectively, in the PEX1-injected eyes, as did ffERG analysis when each cohort reached 25 weeks of age (16 or 20 weeks after gene delivery). This effect was more pronounced in the cohort treated at 5 weeks of age, when ffERG response is highest in Pex1-G844D mice. At 32 weeks of age, the ffERG response in the PEX1-injected eyes was double that of GFP-injected eyes, on average, though there was no change in OKN. Furthermore, in PEX1-injected eyes the photopic ffERG response improved over time, and the decline in scotopic b-wave amplitude was ameliorated compared to un-injected eyes.
Conclusions: AAV8.CMV.hPEX1.HA was subretinally delivered into the left eye of 5- and 9-week-old Pex1-G844D retina. Successful expression of the protein with no gross histologic side effect was observed. Neither the injection, nor exposure to the AAV8 capsid or the transgenic protein negatively altered the ERG or OKN response. At 5–6 months after gene delivery, therapeutic vector-treated eyes showed improved ERG compared to control eyes, on average, in both the “prevention” and “recovery” cohorts. This implies clinical potential of gene delivery to improve vision in patients with ZSD. Retinal immunohistochemistry (to visualize retinal cell types) and biochemical analyses will be performed on treated and untreated retinas, and may inform the mechanism of ERG improvement.
Background: Retinal endothelial cells are very active and contribute to the integrity of the neurovascular unit. Vascular dysfunction has been proposed to contribute to the pathogenesis of glaucoma. Here, we evaluated the hypothesis that ocular hypertension triggers mitochondrial alterations in endothelial cells impairing the integrity of the blood retinal barrier (BRB).
Methods: Ocular hypertension was induced by injection of magnetic microbeads into the anterior chamber of EndoMito-EGFP mice, a strain expressing green fluorescent protein selectively in the mitochondria of endothelial cells. Capillary density, mitochondrial volume, and the number of mitochondrial components were quantified in 3D-reconstructed images from whole-mounted retinas using Imaris software. Dynamin-related protein (DRP-1), mitofusin-2 (MFN-2) and optic atrophy-1 (OPA-1) expression were assessed by western blot analysis of enriched endothelial cells. Mitochondrial structure was evaluated by transmission electron microscopy (TEM) and oxygen consumption rate was monitored by Seahorse analysis. The integrity of the BRB was evaluated by quantifying Evans blue leakage.
Results: Our data demonstrate that two and three weeks after ocular hypertension induction, the total mitochondria volume in endothelial cells decreased from 0.140±0.002 μm3 from non-injured retinas to 0.108±0.005 and 0.093±0.007 μm3, respectively in glaucomatous eyes (mean ± S.E.M, ANOVA, P<0.001; N=6/group). Frequency distribution showed a substantial increase of smaller mitochondria complexes (<0.5 μm3) in endothelial cells from glaucomatous retinas. Significant upregulation of DRP-1 was found in vessels isolated from glaucomatous retinas compared to the intact retinas, while MFN-2 and OPA-1 expression was not affected. Structural alteration in endothelial cell mitochondria was confirmed by TEM, which were accompanied by a 1.93-fold reduction in the oxygen consumption rate as well as 2.6-fold increase in vasculature leakage in glaucomatous retinas (n=3–6/group). In addition, this model did not trigger changes in the density of the vascular network, suggesting that mitochondrial fragmentation was not due to endothelial cell loss.
Conclusions: This study shows that ocular hypertension leads to early alterations in the dynamic of endothelial cell mitochondria, contributing to vascular dysfunction in glaucoma.
Background: To investigate the effect of sirolimus (SRL) eye drops on acute alkali-burn-induced corneal neovascularization (CNV) and explore its possible mechanism.
Methods: A total of 57 male Sprague-Dawley rats weighing 160–180 g were randomly divided into four groups including a normal control group (NC group, n=12), an untreated alkali-burned model control group (MC group, n=15), a blank eye drop treatment group (BT group, n=15), and an SRL eye drop treatment group (ST group, n=15). Corneal inflammation and CNV were observed and scored under a slit-lamp microscope 3, 7, and 14 days after alkali exposure. Three rats were randomly sacrificed in each group before modeling and 3, 7, 14 days after modeling, and the corneas of right eyes were harvested for Western blotting to compare the expression levels of VEGFR2 and caspase-3.
Results: Corneal inflammation scoring showed that the corneal edema and conjunctival congestion were severe in the MC, BT, and ST groups 1 day after alkali exposure but were alleviated at day 3. The corneal transparency was significantly higher in the ST group than in the MC and BT groups at days 7 (F=9.77, P<0.05) and 14 (F=5.81, P<0.05). At day 1, the corneal limbal vascular network was markedly filled. SNV was obvious at days 3, 7, and 14. The new blood vessels were shorter and sparser in the ST group than in the MC and BT groups, and the CNV scores showed significant differences among these groups (day 3: F=8.60, P<0.05; day 7: F=11.40, P<0.05; and day 14: F=41.59, P<0.01). Western blotting showed that the expressions of VEGFR2 and caspase-3 were low before modeling and showed no significant difference among the different groups (F=0.52, P>0.05; F=0.98, P>0.05). The corneal expression of VEGFR2 became significantly higher in the MC and BT groups than in the ST group 3, 7, and 14 days after alkali exposure, and there were significant differences in relative gray-scale values among these groups (day 3: F=32.16, P<0.01; day 7: F=85.96, P<0.01; day 14: F=57.68, P<0.01). The increase in the corneal expression of caspase-3 was significantly larger in the ST group than in the MC and BT groups at days 3, 7, and 14, and there were significant differences in relative gray-scale values among groups (day 3: F=32.16, P<0.01; day 7: F=53.02, P<0.01; day 14: F=38.67, P<0.01).
Conclusions: SRL eye drops can alleviate acute alkali-burn-induced corneal inflammation and inhibit alkali-burn-induced CNV in rat models. It can reduce VEGFR2 expression and increase caspase-3 expression in the corneal tissue, which may contribute to the inhibition of alkali-burn-induced CNV.
Abstract: Acute retinal necrosis (ARN) is a devastating syndrome characterized by panuveitis, retinal necrosis, and a high rate of retinal detachment that may result in poor visual outcomes if not promptly diagnosed and treated. ARN is most commonly caused by viruses within the herpesvirus family. Etiologies include varicella-zoster virus, herpes simplex virus, and cytomegalovirus, and may be promptly diagnosed by polymerase chain reaction testing of aqueous or vitreous fluid. The true incidence of ARN is not known due to its rarity; as a result, clinical treatment is often guided by retrospective case series, case reports, and expert opinion. Standard of care has evolved over time but currently includes a combination of systemic and intravitreal antiviral in conjunction with topical or oral steroids and surgical therapy as needed. Combination therapy may reduce the rate of severe vision loss and increase the rate of visual acuity gain, although further studies are needed in this area. In particular for patients with mild to moderate disease, combination therapy may reduce the rate of retinal detachment. Adjunctive therapies including oral corticosteroid and prophylactic laser barricade are incompletely studied, but corticosteroid in particular, may reduce inflammation, which also is involved in the severe disease pathogenesis observed in ARN. This review discusses the advances in diagnosis and treatment of ARN, including management with combination antiviral medication and surgical interventions.
Abstract: An intestinal dysbiosis is connected to a number of inflammatory diseases through various mechanisms relating to its effect on immune cell function and differentiation. This is a review of the literature summarizing our current understanding of intestinal microbial contributions to non-infectious uveitis and strategies to target the intestinal microbiome to treat uveitis. Several groups have demonstrated an intestinal dysbiosis associated with certain types of non-infectious uveitis. Additionally, approaches to treat uveitis by modifying the intestinal microbiota, such as oral antibiotics or administration of oral short chain fatty acids (SCFAs), which are intestinal bacterial metabolites produced by fermentation of dietary fiber, can successfully treat uveitis in mouse models. This reduction in severity of ocular inflammation occurs via the following mechanisms: enhancement of regulatory T cells, decreasing intestinal permeability, and/or affecting T cell trafficking between the intestines and the spleen. Other strategies that are directed at the intestinal microbiota that might be effective to treat uveitis include dietary changes, probiotics, or fecal microbial transplantation. The commensal gut bacteria are influential in systemic and intestinal mucosal immunity and thus contribute to the development of extraintestinal inflammation like uveitis. Targeting the intestinal microbiome thus has the potential to be a successful strategy to treat non-infectious uveitis.