Objective: To establish and validate a universal artificial intelligence (AI) platform for collaborative management of cataracts involving multilevel clinical scenarios and explored an AI-based medical referral pattern to improve collaborative efficiency and resource coverage. Methods: The training and validation datasets were derived from the Chinese Medical Alliance for Artificial Intelligence, covering multilevel healthcare facilities and capture modes. The datasets were labelled using a three step strategy: (1)capture mode recognition; (2) cataract diagnosis as a normal lens, cataract or a postoperative eye and (3) detection of referable cataracts with respect to aetiology and severity. Moreover, we integrated the cataract AI agent with a real-world multilevel referral pattern involving self-monitoring at home, primary healthcare and specialised hospital services. Results: The universal AI platform and multilevel collaborative pattern showed robust diagnostic performance in three-step tasks: (1) capture mode recognition (area under the curve (AUC) 99.28%–99.71%), (2) cataract diagnosis (normal lens, cataract or postoperative eye with AUCs of 99.82%, 99.96% and 99.93% for mydriatic-slit lamp mode and AUCs >99% for other capture modes) and (3)detection of referable cataracts (AUCs >91% in all tests). In the real-world tertiary referral pattern, the agent suggested 30.3% of people be ’referred’, substantially increasing the ophthalmologist-to-population service ratio by 10.2-fold compared with the traditional pattern. Conclusions: The universal AI platform and multilevel collaborative pattern showed robust diagnostic performance and effective service for cataracts. The context of our AI-based medical referral pattern will be extended to other common disease conditions and resource-intensive situations.
Aims: To assess the real-world distribution of uncorrected near visual acuity (UCNVA) in highly myopic cataract patients and associated refraction outcomes after cataract surgery. Methods: A cross-sectional study was conducted with patients with an axial length (AL) ≥26 mm in at least one eye and who underwent phacoemulsification and monofocal intraocular lens implantation included. UCNVA was measured using a LogMAR ETDRS near visual acuity tumbling E chart at 40 cm three months or later after surgery. Other examinations included non-cycloplegic autorefraction and best-corrected distance visual acuity (BCDVA). Multiple logistic regression was performed to assess the risk factors for near visual impairment (UCNVA < 20/40). Results: A total of 664 patients (664 eyes) with a mean AL of 29.05±2.31 mm and a postoperative spherical equivalent of -2.51±1.12D were included. Among them, 319 eyes (48.04%) and 518 eyes (78.01%) had UCNVA and BCDVA ≥ 20/40, respectively. Risk factors for UCNVA less than 20/40 included postoperative astigmatism greater than 1D (-2 to -1D, odds ratio [OR]: 2.00, 95% confidence interval [CI]: 1.24 to 3.22; < -2D, OR: 4.27, 95% CI: 1.88 to 9.66), postoperative spherical equivalent outside the range of -3.5 to -1.5D (OR: 4.17 to 19.73), and BCDVA less than 20/40 (OR: 5.44, 95% CI: 3.14 to 9.42). Conclusion: A residual astigmatism of less than 1D and a target refraction between -3.5 and -1.5 D, should be considered to provide unimpaired UCNVA at 40 cm in highly myopic cataract patients.
Aims: To establish and evaluate predictive models for glaucoma-related adverse events (GRAEs) following secondary intraocular lens (IOL) implantation in paediatric eyes. Methods: 205 children (356 aphakic eyes) receiving secondary IOL implantation at Zhongshan Ophthalmic Center with a 3-year follow-up were enrolled. Cox proportional hazard model was used to identify predictors of GRAEs and developed nomograms. Model performance was evaluated with time-dependent receiver operating characteristic (ROC) curves, decision curve analysis, Kaplan-Meier curves and validated internally through C-statistics and calibration plot of the bootstrap samples. Results: Older age at secondary IOL implantation (HR=1.5, 95% CI: 1.03 to 2.19), transient intraocular hypertension (HR=9.06, 95% CI: 2.97 to 27.67) and ciliary sulcus implantation (HR=14.55, 95% CI: 2.11 to 100.57) were identified as risk factors for GRAEs (all p<0.05). Two nomograms were established. At postoperatively 1, 2 and 3 years, model 1 achieved area under the ROC curves (AUCs) of 0.747 (95% CI: 0.776 to 0.935), 0.765 (95% CI: 0.804 to 0.936) and 0.748 (95% CI: 0.736 to 0.918), and the AUCs of model 2 were 0.881 (95% CI: 0.836 to 0.926), 0.895 (95% CI: 0.852 to 0.938) and 0.848 (95% CI: 0.752 to 0.945). Both models demonstrated fine clinical net benefit and performance in the interval validation. The Kaplan-Meier curves showing two distinct risk groups were well discriminated and robust in both models. An online risk calculator was constructed. Conclusions: Two nomograms could sensitively and accurately identify children at high risk of GRAEs after secondary IOL implantation to help early identification and timely intervention.
Background: Surgically induced astigmatism (SIA) and corneal high-order aberrations (HOAs) are the two main causes of poor visual quality after cataract surgery. Changes in the parameters of corneal HOAs after cataract surgery and their effects on and relationships with changes in corneal curvature have not yet been reported. This study aimed to explore changes in anterior, posterior and total corneal curvature, astigmatism and HOAs after microincision cataract surgery.
Methods: Sixty-one age-related cataract patients (61 eyes) were included in this prospective study. The total, anterior and posterior corneal astigmatism and corneal HOAs were analyzed by anterior segment optical coherence tomography (AS-OCT) and iTrace before, one day, one week and three months after 2.2 mm temporal microincision coaxial phacoemulsification to evaluate the changes in anterior, posterior and total corneal curvature, astigmatism and corneal HOAs.
Results: The mean J0 and J45 values of anterior, posterior and total corneal curvature obtained by AS-OCT showed no statistically significant difference between preoperatively and any postoperative follow-up. SIA occurred on the anterior, posterior and total corneal surfaces and showed no statistically significant difference at any postoperative follow-up. No significant changes in 3rd-order oblique trefoil, vertical coma or 4th-order spherical aberrations were observed after surgery except for a significant increase in horizontal coma at postoperative day 1 (POD1).
Conclusions: There were no significant changes in corneal curvature after 2.2 mm temporal microincision coaxial phacoemulsification, and the corneal HOAs were not changed significantly except for the increase in horizontal coma at POD1, which may be one of the main reasons of poor visual quality at POD1 in some cataract patients who have good uncorrected or corrected distance vision.
Background: Surgically induced astigmatism (SIA) and corneal high-order aberrations (HOAs) are the two main causes of poor visual quality after cataract surgery. Changes in the parameters of corneal HOAs after cataract surgery and their effects on and relationships with changes in corneal curvature have not yet been reported. This study aimed to explore changes in anterior, posterior and total corneal curvature, astigmatism and HOAs after microincision cataract surgery.
Methods: Sixty-one age-related cataract patients (61 eyes) were included in this prospective study. The total, anterior and posterior corneal astigmatism and corneal HOAs were analyzed by anterior segment optical coherence tomography (AS-OCT) and iTrace before, one day, one week and three months after 2.2 mm temporal microincision coaxial phacoemulsification to evaluate the changes in anterior, posterior and total corneal curvature, astigmatism and corneal HOAs.
Results: The mean J0 and J45 values of anterior, posterior and total corneal curvature obtained by AS-OCT showed no statistically significant difference between preoperatively and any postoperative follow-up. SIA occurred on the anterior, posterior and total corneal surfaces and showed no statistically significant difference at any postoperative follow-up. No significant changes in 3rd-order oblique trefoil, vertical coma or 4th-order spherical aberrations were observed after surgery except for a significant increase in horizontal coma at postoperative day 1 (POD1).
Conclusions: There were no significant changes in corneal curvature after 2.2 mm temporal microincision coaxial phacoemulsification, and the corneal HOAs were not changed significantly except for the increase in horizontal coma at POD1, which may be one of the main reasons of poor visual quality at POD1 in some cataract patients who have good uncorrected or corrected distance vision.