1、Wormstone IM, Wormstone YM, Smith AJO, et al. Posterior capsule opacification: What’s in the bag?[J]. Prog Retin Eye Res, 2021, 82: 100905.Wormstone IM, Wormstone YM, Smith AJO, et al. Posterior capsule opacification: What’s in the bag?[J]. Prog Retin Eye Res, 2021, 82: 100905.
2、Shiels A , Hejtmancik JF. Biolog y of inherited cataracts and opportunities for treatment[ J]. Annu Rev Vis Sci, 2019, 5: 123-149.Shiels A , Hejtmancik JF. Biolog y of inherited cataracts and opportunities for treatment[ J]. Annu Rev Vis Sci, 2019, 5: 123-149.
3、Donaldson PJ, Grey AC, Maceo Heilman B, et al. The physiological optics of the lens[ J]. Prog Retin Eye Res, 2017, 56: e1-e24.Donaldson PJ, Grey AC, Maceo Heilman B, et al. The physiological optics of the lens[ J]. Prog Retin Eye Res, 2017, 56: e1-e24.
4、Ruan X, Liu Z, Luo L, et al. The Structure of the Lens and Its Associations with the Visual Quality[ J]. BMJ Open Ophthalmol, 2020, 5(1): e000459.Ruan X, Liu Z, Luo L, et al. The Structure of the Lens and Its Associations with the Visual Quality[ J]. BMJ Open Ophthalmol, 2020, 5(1): e000459.
5、Bassnett S. On the mechanism of organelle degradation in the vertebrate lens[ J]. Exp Eye Res, 2009, 88(2): 133-139.Bassnett S. On the mechanism of organelle degradation in the vertebrate lens[ J]. Exp Eye Res, 2009, 88(2): 133-139.
6、Kumar B, Reilly MA. The development, growth, and regeneration of the crystalline lens: a review[ J]. Curr Eye Res, 2020, 45(3): 313-326.Kumar B, Reilly MA. The development, growth, and regeneration of the crystalline lens: a review[ J]. Curr Eye Res, 2020, 45(3): 313-326.
7、Miesfeld JB, Brown NL. Eye organogenesis: A hierarchical view of ocular development[ J]. Curr Top Dev Biol, 2019, 132: 351-393.Miesfeld JB, Brown NL. Eye organogenesis: A hierarchical view of ocular development[ J]. Curr Top Dev Biol, 2019, 132: 351-393.
8、Cvekl A, Zhang X. Signaling and gene regulatory networks in mammalian lens development[ J]. Trends Genet, 2017, 33(10): 677-702.Cvekl A, Zhang X. Signaling and gene regulatory networks in mammalian lens development[ J]. Trends Genet, 2017, 33(10): 677-702.
9、Bassnett S, Costello MJ. The cause and consequence of fiber cell compaction in the vertebrate lens[ J]. Exp Eye Res, 2017, 156: 50-57.Bassnett S, Costello MJ. The cause and consequence of fiber cell compaction in the vertebrate lens[ J]. Exp Eye Res, 2017, 156: 50-57.
10、Vrensen GF, Graw J, De Wolf A, et al. Nuclear breakdown during terminal differentiation of primary lens fibres in mice: a transmission electron microscopic study[ J]. Exp Eye Res, 1991, 52(6): 647-659.Vrensen GF, Graw J, De Wolf A, et al. Nuclear breakdown during terminal differentiation of primary lens fibres in mice: a transmission electron microscopic study[ J]. Exp Eye Res, 1991, 52(6): 647-659.
11、Cvekl A, McGreal R, Liu W, et al. Lens development and crystallin gene expression[ J]. Prog Mol Biol Transl Sci, 2015, 134: 129-167.Cvekl A, McGreal R, Liu W, et al. Lens development and crystallin gene expression[ J]. Prog Mol Biol Transl Sci, 2015, 134: 129-167.
12、Bassnett S, Beebe DC. Coincident loss of mitochondria and nuclei during lens fiber cell differentiation[ J]. Dev Dyn, 1992, 194(2): 85-93.Bassnett S, Beebe DC. Coincident loss of mitochondria and nuclei during lens fiber cell differentiation[ J]. Dev Dyn, 1992, 194(2): 85-93.
13、Bassnett S. The fate of the Golgi apparatus and the endoplasmic reticulum during lens fiber cell differentiation[ J]. Invest Ophthalmol Vis Sci, 1995, 36(9): 1793-1803.Bassnett S. The fate of the Golgi apparatus and the endoplasmic reticulum during lens fiber cell differentiation[ J]. Invest Ophthalmol Vis Sci, 1995, 36(9): 1793-1803.
14、Disatham J, Brennan L, Chauss D, et al. A functional map of genomic HIF1α-DNA complexes in the eye lens revealed through multiomics analysis[ J]. BMC Genomics, 2021, 22(1): 497.Disatham J, Brennan L, Chauss D, et al. A functional map of genomic HIF1α-DNA complexes in the eye lens revealed through multiomics analysis[ J]. BMC Genomics, 2021, 22(1): 497.
15、Brennan L, Disatham J, Kantorow M, et al. Hypoxia regulates the degradation of non-nuclear organelles during lens differentiation through activation of HIF1a[ J]. Exp Eye Res, 2020, 198: 108129.Brennan L, Disatham J, Kantorow M, et al. Hypoxia regulates the degradation of non-nuclear organelles during lens differentiation through activation of HIF1a[ J]. Exp Eye Res, 2020, 198: 108129.
16、Yang J, Zhou S, Gu J, et al. UPR activation and the down-regulation of α-crystallin in human high myopia-related cataract lens epithelium[ J]. PLoS One, 2015, 10(9): e0137582.Yang J, Zhou S, Gu J, et al. UPR activation and the down-regulation of α-crystallin in human high myopia-related cataract lens epithelium[ J]. PLoS One, 2015, 10(9): e0137582.
17、Yang J, Zhou S, Gu J, et al. Differences in unfolded protein response pathway activation in the lenses of three types of cataracts[ J]. PLoS One, 2015, 10(6): e0130705.Yang J, Zhou S, Gu J, et al. Differences in unfolded protein response pathway activation in the lenses of three types of cataracts[ J]. PLoS One, 2015, 10(6): e0130705.
18、Varadaraj K, Kumari S, et al. Deletion of seventeen amino acids at the C-terminal end of aquaporin 0 causes distortion aberration and cataract in the lenses of AQP0ΔC/ΔC Mice[ J]. Invest Ophthalmol Vis Sci, 2019, 60(4): 858-867.Varadaraj K, Kumari S, et al. Deletion of seventeen amino acids at the C-terminal end of aquaporin 0 causes distortion aberration and cataract in the lenses of AQP0ΔC/ΔC Mice[ J]. Invest Ophthalmol Vis Sci, 2019, 60(4): 858-867.
19、Bassnett S, Croghan PC, Duncan G, et al. Diffusion of lactate and its role in determining intracellular pH in the lens of the eye[ J]. Exp Eye Res, 1987, 44(1): 143-147.Bassnett S, Croghan PC, Duncan G, et al. Diffusion of lactate and its role in determining intracellular pH in the lens of the eye[ J]. Exp Eye Res, 1987, 44(1): 143-147.
20、Limi S, Senecal A, Coleman R, et al. Transcriptional burst fraction and size dynamics during lens fiber cell differentiation and detailed insights into the denucleation process[ J]. J Biol Chem, 2018, 293(34): 13176-13190.Limi S, Senecal A, Coleman R, et al. Transcriptional burst fraction and size dynamics during lens fiber cell differentiation and detailed insights into the denucleation process[ J]. J Biol Chem, 2018, 293(34): 13176-13190.
21、Bassnett S. Lens organelle degradation[ J]. Exp Eye Res, 2002, 74(1): 1-6.Bassnett S. Lens organelle degradation[ J]. Exp Eye Res, 2002, 74(1): 1-6.
22、Costello MJ, Brennan LA, Mohamed A, et al. Identification and Ultrastructural Characterization of a Novel Nuclear Degradation Complex in Differentiating Lens Fiber Cells[ J]. PLoS One, 2016, 11(8): e0160785.Costello MJ, Brennan LA, Mohamed A, et al. Identification and Ultrastructural Characterization of a Novel Nuclear Degradation Complex in Differentiating Lens Fiber Cells[ J]. PLoS One, 2016, 11(8): e0160785.
23、Shao M, Lu T, Zhang C, et al. Rbm24 controls poly(A) tail length and translation efficiency of crystallin mRNAs in the lens via
cytoplasmic polyadenylation[ J]. Proc Natl Acad Sci U S A, 2020, 117(13): 7245-7254.Shao M, Lu T, Zhang C, et al. Rbm24 controls poly(A) tail length and translation efficiency of crystallin mRNAs in the lens via
cytoplasmic polyadenylation[ J]. Proc Natl Acad Sci U S A, 2020, 117(13): 7245-7254.
24、Faulkner-Jones B, Zandy AJ, Bassnett S, et al. RNA stability in terminally differentiating fibre cells of the ocular lens[ J]. Exp Eye Res, 2003, 77(4): 463-476.Faulkner-Jones B, Zandy AJ, Bassnett S, et al. RNA stability in terminally differentiating fibre cells of the ocular lens[ J]. Exp Eye Res, 2003, 77(4): 463-476.
25、Morishita H, Mizushima N, et al. Autophagy in the lens[ J]. Exp Eye Res, 2016, 144: 22-28.Morishita H, Mizushima N, et al. Autophagy in the lens[ J]. Exp Eye Res, 2016, 144: 22-28.
26、Li W, He P, Huang Y, et al. Selective autophagy of intracellular organelles: recent research advances[ J]. Theranostics, 2021, 11(1): 222-256.Li W, He P, Huang Y, et al. Selective autophagy of intracellular organelles: recent research advances[ J]. Theranostics, 2021, 11(1): 222-256.
27、Molino D, Zemirli N, Codogno P, et al. The journey of the autophagosome through mammalian cell organelles and membranes[ J]. J Mol Biol, 2017, 429(4): 497-514.Molino D, Zemirli N, Codogno P, et al. The journey of the autophagosome through mammalian cell organelles and membranes[ J]. J Mol Biol, 2017, 429(4): 497-514.
28、Mizushima N. The ATG conjugation systems in autophagy[ J]. Curr Opin Cell Biol, 2020, 63: 1-10.Mizushima N. The ATG conjugation systems in autophagy[ J]. Curr Opin Cell Biol, 2020, 63: 1-10.
29、Matsui M, Yamamoto A, Kuma A, et al. Organelle degradation during the lens and erythroid differentiation is independent of autophagy[ J]. Biochem Biophys Res Commun, 2006, 339(2): 485-489.Matsui M, Yamamoto A, Kuma A, et al. Organelle degradation during the lens and erythroid differentiation is independent of autophagy[ J]. Biochem Biophys Res Commun, 2006, 339(2): 485-489.
30、Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period[ J]. Nature, 2004, 432(7020): 1032-1036.Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period[ J]. Nature, 2004, 432(7020): 1032-1036.
31、Morishita H, Eguchi S, Kimura H, et al. Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation[ J]. J Biol Chem, 2013, 288(16): 11436-11447.Morishita H, Eguchi S, Kimura H, et al. Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation[ J]. J Biol Chem, 2013, 288(16): 11436-11447.
32、Nishida Y, Arakawa S, Fujitani K, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy[ J]. Nature, 2009, 461(7264): 654-658.Nishida Y, Arakawa S, Fujitani K, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy[ J]. Nature, 2009, 461(7264): 654-658.
33、Costello MJ, Brennan LA, Basu S, et al. Autophagy and mitophagy participate in ocular lens organelle degradation[ J]. Exp Eye Res, 2013, 116: 141-150.Costello MJ, Brennan LA, Basu S, et al. Autophagy and mitophagy participate in ocular lens organelle degradation[ J]. Exp Eye Res, 2013, 116: 141-150.
34、Nishimoto S, Kawane K, Watanabe-Fukunaga R, et al. Nuclear cataract caused by a lack of DNA degradation in the mouse eye lens[ J]. Nature, 2003, 424(6952): 1071-1074.Nishimoto S, Kawane K, Watanabe-Fukunaga R, et al. Nuclear cataract caused by a lack of DNA degradation in the mouse eye lens[ J]. Nature, 2003, 424(6952): 1071-1074.
35、Rowan S, Chang ML, Reznikov N, et al. Disassembly of the lens fiber cell nucleus to create a clear lens: The p27 descent[ J]. Exp Eye Res, 2017, 156: 72-78.Rowan S, Chang ML, Reznikov N, et al. Disassembly of the lens fiber cell nucleus to create a clear lens: The p27 descent[ J]. Exp Eye Res, 2017, 156: 72-78.
36、Bu L, Jin Y, Shi Y, et al. Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract[ J]. Nat Genet, 2002, 31(3): 276-278.Bu L, Jin Y, Shi Y, et al. Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract[ J]. Nat Genet, 2002, 31(3): 276-278.
37、Cui X, Wang L, Zhang J, et al. HSF4 regulates DLAD expression and promotes lens de-nucleation[ J]. Biochim Biophys Acta, 2013, 1832(8): 1167-1172.Cui X, Wang L, Zhang J, et al. HSF4 regulates DLAD expression and promotes lens de-nucleation[ J]. Biochim Biophys Acta, 2013, 1832(8): 1167-1172.
38、Nakahara M, Nagasaka A, Koike M, et al. Degradation of nuclear DNA by DNase II-like acid DNase in cortical fiber cells of mouse eye lens[ J]. FEBS J, 2007, 274(12): 3055-3064.Nakahara M, Nagasaka A, Koike M, et al. Degradation of nuclear DNA by DNase II-like acid DNase in cortical fiber cells of mouse eye lens[ J]. FEBS J, 2007, 274(12): 3055-3064.
39、Iqbal H, Khan SY, Zhou L, et al. Mutations in FYCO1 identified in families with congenital cataracts[ J]. Mol Vis, 2020, 26: 334-344.Iqbal H, Khan SY, Zhou L, et al. Mutations in FYCO1 identified in families with congenital cataracts[ J]. Mol Vis, 2020, 26: 334-344.
40、Pankiv S, Johansen T, et al. FYCO1: linking autophagosomes to microtubule plus end-directing molecular motors[ J]. Autophagy, 2010, 6(4): 550-552.Pankiv S, Johansen T, et al. FYCO1: linking autophagosomes to microtubule plus end-directing molecular motors[ J]. Autophagy, 2010, 6(4): 550-552.
41、Pankiv S, Alemu EA, Brech A, et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport[ J]. J Cell Biol, 2010, 188(2): 253-269.Pankiv S, Alemu EA, Brech A, et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport[ J]. J Cell Biol, 2010, 188(2): 253-269.
42、Xu X, Lai Y, Hua ZC, et al. Apoptosis and apoptotic body: disease message and therapeutic target potentials[ J]. Biosci Rep, 2019, 39(1): BSR20180992.Xu X, Lai Y, Hua ZC, et al. Apoptosis and apoptotic body: disease message and therapeutic target potentials[ J]. Biosci Rep, 2019, 39(1): BSR20180992.
43、Grilo AL, Mantalaris A , et al. Apoptosis: A mammalian cell bioprocessing perspective[ J]. Biotechnol Adv, 2019, 37(3): 459-475Grilo AL, Mantalaris A , et al. Apoptosis: A mammalian cell bioprocessing perspective[ J]. Biotechnol Adv, 2019, 37(3): 459-475
44、Wride MA. Minireview: apoptosis as seen through a lens[ J]. Apoptosis, 2000, 5(3): 203-209.Wride MA. Minireview: apoptosis as seen through a lens[ J]. Apoptosis, 2000, 5(3): 203-209.
45、Gao M, Huang Y, Wang L, et al. HSF4 regulates lens fiber cell differentiation by activating p53 and its downstream regulators[ J]. Cell Death Dis, 2017, 8(10): e3082.Gao M, Huang Y, Wang L, et al. HSF4 regulates lens fiber cell differentiation by activating p53 and its downstream regulators[ J]. Cell Death Dis, 2017, 8(10): e3082.
46、Aubrey BJ, Kelly GL, Janic A, et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?[ J]. Cell Death Differ, 2018, 25(1): 104-113.Aubrey BJ, Kelly GL, Janic A, et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?[ J]. Cell Death Differ, 2018, 25(1): 104-113.
47、Deng M, Chen P, Liu F, et al. The p53-Bak apoptotic signaling axis plays an essential role in regulating differentiation of the ocular lens[ J]. Curr Mol Med, 2012, 12(8): 901-916.Deng M, Chen P, Liu F, et al. The p53-Bak apoptotic signaling axis plays an essential role in regulating differentiation of the ocular lens[ J]. Curr Mol Med, 2012, 12(8): 901-916.
48、Reichel MB, Ali RR, D'Esposito F, et al. High frequency of persistent hyperplastic primary vitreous and cataracts in p53-deficient mice[ J]. Cell Death Differ, 1998, 5(2): 156-162.Reichel MB, Ali RR, D'Esposito F, et al. High frequency of persistent hyperplastic primary vitreous and cataracts in p53-deficient mice[ J]. Cell Death Differ, 1998, 5(2): 156-162.
49、Singh R, Letai A, Sarosiek K, et al. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins[ J]. Nat Rev Mol Cell Biol, 2019, 20(3): 175-193.Singh R, Letai A, Sarosiek K, et al. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins[ J]. Nat Rev Mol Cell Biol, 2019, 20(3): 175-193.
50、Fromm L, Overbeek PA. Inhibition of cell death by lens-specific overexpression of bcl-2 in transgenic mice[ J]. Dev Genet, 1997, 20(3): 276-287.Fromm L, Overbeek PA. Inhibition of cell death by lens-specific overexpression of bcl-2 in transgenic mice[ J]. Dev Genet, 1997, 20(3): 276-287.
51、Brennan LA, McGreal-Estrada R, Logan CM, et al. BNIP3L/NIX is required for elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during eye lens organelle-free zone formation[ J]. Exp Eye Res, 2018, 174: 173-184.Brennan LA, McGreal-Estrada R, Logan CM, et al. BNIP3L/NIX is required for elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during eye lens organelle-free zone formation[ J]. Exp Eye Res, 2018, 174: 173-184.
52、Nagata S. Apoptosis and clearance of apoptotic cells[ J]. Annu Rev Immunol, 2018, 36: 489-517.Nagata S. Apoptosis and clearance of apoptotic cells[ J]. Annu Rev Immunol, 2018, 36: 489-517.
53、Wride MA, Parker E, Sanders EJ, et al. Members of the bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation[ J]. Dev Biol, 1999, 213(1): 142-156.Wride MA, Parker E, Sanders EJ, et al. Members of the bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation[ J]. Dev Biol, 1999, 213(1): 142-156.
54、Christopher KL, Pedler MG, Shieh B, et al. Alpha-crystallin-mediated protection of lens cells against heat and oxidative stress-induced cell death[ J]. Biochim Biophys Acta, 2014, 1843(2): 309-315.Christopher KL, Pedler MG, Shieh B, et al. Alpha-crystallin-mediated protection of lens cells against heat and oxidative stress-induced cell death[ J]. Biochim Biophys Acta, 2014, 1843(2): 309-315.
55、Kamradt MC, Chen F, Sam S, et al. The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation[ J]. J Biol Chem, 2002, 277(41): 38731-38736.Kamradt MC, Chen F, Sam S, et al. The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation[ J]. J Biol Chem, 2002, 277(41): 38731-38736.
56、Wang L, Nie Q, Gao M, et al. The transcription factor CREB acts as an important regulator mediating oxidative stress-induced apoptosis by suppressing αB-crystallin expression[ J]. Aging (Albany NY), 2020, 12(13): 13594-13617.Wang L, Nie Q, Gao M, et al. The transcription factor CREB acts as an important regulator mediating oxidative stress-induced apoptosis by suppressing αB-crystallin expression[ J]. Aging (Albany NY), 2020, 12(13): 13594-13617.
57、Morozov V, Wawrousek EF, et al. Caspase-dependent secondary lens fiber cell disintegration in alphaA-/alphaB-crystallin double-knockout mice[ J]. Development, 2006, 133(5): 813-821.Morozov V, Wawrousek EF, et al. Caspase-dependent secondary lens fiber cell disintegration in alphaA-/alphaB-crystallin double-knockout mice[ J]. Development, 2006, 133(5): 813-821.
58、Wride MA. Lens fibre cell differentiation and organelle loss: many paths lead to clarity[ J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1568): 1219-1233.Wride MA. Lens fibre cell differentiation and organelle loss: many paths lead to clarity[ J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1568): 1219-1233.
59、Kocaturk NM, Gozuacik D, et al. Crosstalk between mammalian autophagy and the ubiquitin-proteasome system[ J]. Front Cell Dev Biol, 2018, 6: 128.Kocaturk NM, Gozuacik D, et al. Crosstalk between mammalian autophagy and the ubiquitin-proteasome system[ J]. Front Cell Dev Biol, 2018, 6: 128.
60、Guo W, Shang F, Liu Q, et al. Differential regulation of components of the ubiquitin-proteasome pathway during lens cell differentiation[ J]. Invest Ophthalmol Vis Sci, 2004, 45(4): 1194-1201.Guo W, Shang F, Liu Q, et al. Differential regulation of components of the ubiquitin-proteasome pathway during lens cell differentiation[ J]. Invest Ophthalmol Vis Sci, 2004, 45(4): 1194-1201.
61、Pereira P, Shang F, Hobbs M, et al. Lens fibers have a fully functional ubiquitin-proteasome pathway[ J]. Exp Eye Res, 2003, 76(5): 623-631.Pereira P, Shang F, Hobbs M, et al. Lens fibers have a fully functional ubiquitin-proteasome pathway[ J]. Exp Eye Res, 2003, 76(5): 623-631.
62、Shang F, Gong X, McAvoy JW, et al. Ubiquitin-dependent pathway is up-regulated in differentiating lens cells[ J]. Exp Eye Res, 1999, 68(2): 179-192.Shang F, Gong X, McAvoy JW, et al. Ubiquitin-dependent pathway is up-regulated in differentiating lens cells[ J]. Exp Eye Res, 1999, 68(2): 179-192.
63、Gir?o H, Pereira P, Taylor A, et al. Subcellular redistribution of components of the ubiquitin-proteasome pathway during lens
differentiation and maturation[ J]. Invest Ophthalmol Vis Sci, 2005, 46(4): 1386-1392.Gir?o H, Pereira P, Taylor A, et al. Subcellular redistribution of components of the ubiquitin-proteasome pathway during lens
differentiation and maturation[ J]. Invest Ophthalmol Vis Sci, 2005, 46(4): 1386-1392.
64、Zandy A J, Bassnett S. Proteoly tic mechani sms underly ing mitochondrial degradation in the ocular lens[ J]. Invest Ophthalmol Vis Sci, 2007, 48(1): 293-302.Zandy A J, Bassnett S. Proteoly tic mechani sms underly ing mitochondrial degradation in the ocular lens[ J]. Invest Ophthalmol Vis Sci, 2007, 48(1): 293-302.
65、Caceres A, Shang F, Wawrousek E, et al. Perturbing the ubiquitin pathway reveals how mitosis is hijacked to denucleate and regulate cell proliferation and differentiation in vivo[ J]. PLoS One, 2010, 5(10): e13331.Caceres A, Shang F, Wawrousek E, et al. Perturbing the ubiquitin pathway reveals how mitosis is hijacked to denucleate and regulate cell proliferation and differentiation in vivo[ J]. PLoS One, 2010, 5(10): e13331.
66、Wride MA, Sanders EJ. Nuclear degeneration in the developing lens and its regulation by TNFalpha[ J]. Exp Eye Res, 1998, 66(3): 371-383.Wride MA, Sanders EJ. Nuclear degeneration in the developing lens and its regulation by TNFalpha[ J]. Exp Eye Res, 1998, 66(3): 371-383.
67、Cao L, Liu J, Pu J, et al. Endogenous bioelectric currents promote differentiation of the mammalian lens[ J]. J Cell Physiol, 2018, 233(3): 2202-2212Cao L, Liu J, Pu J, et al. Endogenous bioelectric currents promote differentiation of the mammalian lens[ J]. J Cell Physiol, 2018, 233(3): 2202-2212
68、Siddam AD, Gautier-Courteille C, Perez-Campos L, et al. The RNAbinding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development[ J]. PLoS Genet, 2018, 14(3): e1007278.Siddam AD, Gautier-Courteille C, Perez-Campos L, et al. The RNAbinding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development[ J]. PLoS Genet, 2018, 14(3): e1007278.
69、Basu S, Rajakaruna S, Reyes B, et al. Suppression of MAPK/JNKMTORC1 signaling leads to premature loss of organelles and nuclei by autophagy during terminal differentiation of lens fiber cells[ J]. Autophagy, 2014, 10(7): 1193-1211.Basu S, Rajakaruna S, Reyes B, et al. Suppression of MAPK/JNKMTORC1 signaling leads to premature loss of organelles and nuclei by autophagy during terminal differentiation of lens fiber cells[ J]. Autophagy, 2014, 10(7): 1193-1211.
70、Lyu L, Whitcomb EA, Jiang S, et al. Unfolded-protein responseassociated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract[ J]. FASEB J, 2016, 30(3): 1087-1095.Lyu L, Whitcomb EA, Jiang S, et al. Unfolded-protein responseassociated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract[ J]. FASEB J, 2016, 30(3): 1087-1095.
71、He Q, Gao Y, Wang T, et al. Deficiency of yes-associated protein induces cataract in mice[ J]. Aging Dis, 2019, 10(2): 293-306.He Q, Gao Y, Wang T, et al. Deficiency of yes-associated protein induces cataract in mice[ J]. Aging Dis, 2019, 10(2): 293-306.
72、Morishita H, Eguchi T, Tsukamoto S, et al. Organelle degradation in the lens by PLAAT phospholipases[ J]. Nature, 2021, 592(7855): 634-638.Morishita H, Eguchi T, Tsukamoto S, et al. Organelle degradation in the lens by PLAAT phospholipases[ J]. Nature, 2021, 592(7855): 634-638.
73、Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation[ J]. Nat Rev Genet, 2018, 19(2): 81-92.Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation[ J]. Nat Rev Genet, 2018, 19(2): 81-92.
74、Tittle RK, Sze R , Ng A, et al. Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens[ J]. Dev Biol, 2011, 350(1): 50-63.Tittle RK, Sze R , Ng A, et al. Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens[ J]. Dev Biol, 2011, 350(1): 50-63.
75、Hoang TV, Horowitz ER, Chaffee BR, et al. Lens development requires DNMT1 but takes place normally in the absence of both DNMT3A and DNMT3B activity[ J]. Epigenetics, 2017, 12(1): 27-40.Hoang TV, Horowitz ER, Chaffee BR, et al. Lens development requires DNMT1 but takes place normally in the absence of both DNMT3A and DNMT3B activity[ J]. Epigenetics, 2017, 12(1): 27-40.
76、Liu S, Hu C, Luo Y, et al. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract[ J]. Epigenomics, 2020, 12(9): 771-788.Liu S, Hu C, Luo Y, et al. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract[ J]. Epigenomics, 2020, 12(9): 771-788.
77、Thrimawithana TR, Rupenthal ID, R?sch SS, et al. Drug delivery to the lens for the management of cataracts[ J]. Adv Drug Deliv Rev, 2018, 126: 185-194.Thrimawithana TR, Rupenthal ID, R?sch SS, et al. Drug delivery to the lens for the management of cataracts[ J]. Adv Drug Deliv Rev, 2018, 126: 185-194.
78、Zhao L, Chen XJ, Zhu J, et al. Lanosterol reverses protein aggregation in cataracts[ J]. Nature, 2015, 523(7562): 607-611.Zhao L, Chen XJ, Zhu J, et al. Lanosterol reverses protein aggregation in cataracts[ J]. Nature, 2015, 523(7562): 607-611.
79、Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function[ J]. Nature, 2016, 531(7594): 323-328.Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function[ J]. Nature, 2016, 531(7594): 323-328.
80、Yang C, Yang Y, Brennan L, et al. Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions[ J]. FASEB J, 2010, 24(9): 3274-3283.Yang C, Yang Y, Brennan L, et al. Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions[ J]. FASEB J, 2010, 24(9): 3274-3283.
81、Fu Q, Qin Z, Jin X, et al. Generation of functional lentoid bodies from human induced pluripotent stem cells derived from urinary cells[ J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 517-527.Fu Q, Qin Z, Jin X, et al. Generation of functional lentoid bodies from human induced pluripotent stem cells derived from urinary cells[ J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 517-527.
82、Murphy P, Kabir MH, Srivastava T, et al. Light-focusing human microlenses generated from pluripotent stem cells model lens development and drug-induced cataract in vitro[ J]. Development, 2018, 145(1): dev155838.Murphy P, Kabir MH, Srivastava T, et al. Light-focusing human microlenses generated from pluripotent stem cells model lens development and drug-induced cataract in vitro[ J]. Development, 2018, 145(1): dev155838.
83、Zhu Y, Xu S, Eisenberg RS, et al. A bidomain model for lens microcirculation[ J]. Biophys J, 2019, 116(6): 1171-1184.Zhu Y, Xu S, Eisenberg RS, et al. A bidomain model for lens microcirculation[ J]. Biophys J, 2019, 116(6): 1171-1184.
84、Wang Z, Schey KL. Identification of a direct Aquaporin-0 binding site in the lens-specific cytoskeletal protein filensin[ J]. Exp Eye Res, 2017, 159: 23-29.Wang Z, Schey KL. Identification of a direct Aquaporin-0 binding site in the lens-specific cytoskeletal protein filensin[ J]. Exp Eye Res, 2017, 159: 23-29.
85、Bassnett S, Shi Y, Vrensen GF, et al. Biological glass: structural determinants of eye lens transparency[ J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1568): 1250-1264.Bassnett S, Shi Y, Vrensen GF, et al. Biological glass: structural determinants of eye lens transparency[ J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1568): 1250-1264.