您的位置: 首页 > 2021年4月 第36卷 第4期 > 文字全文
2023年7月 第38卷 第7期11
目录

间充质干细胞在眼表疾病治疗中的应用

Application of mesenchymal stem cells in the treatment of ocular diseases

来源期刊: 眼科学报 | 2021年4月 第36卷 第4期 299-305 发布时间: 收稿时间:2023/5/12 9:49:26 阅读量:4741
作者:
关键词:
间充质干细胞眼表疾病作用机制临床试验
mesenchymal stem cell ocular disease mechanism clinical trial
DOI:
10.3978/j.issn.1000-4432.2020.07.11
收稿时间:
 
修订日期:
 
接收日期:
 
间充质干细胞由于其独特的自我更新和多向分化能力,成为了一种替代无效的常规治疗的新兴治疗方法。间充质干细胞通过免疫调节、促修复、抗新生血管机制和细胞替代作用在眼表疾病中发挥作用,而不同来源的间充质干细胞其作用机制也不完全相同。迄今为止,已有8项注册的间充质干细胞治疗的临床试验应用于干眼、角膜烧伤、圆锥角膜等眼表疾病。
Due to its unique self-renewal and multi-directional differentiation capabilities, mesenchymal stem cells (MSCs) have become an emerging therapy that replaces of ineffective conventional options in treating multiple diseases. It plays an important role in ocular surface illnesses through a variety of functions, including immunoregulation, promoting repairing, anti-angiogenesis mechanisms, and cell replacement. MSCs from different sources have different mechanisms.So far, 8 registered clinical trials of MSCs therapy have been applied to treat dry eye, ocular burn, keratoconus and other ocular surface diseases.
间充质干细胞(mesenchy mal stem/stromal cells,MSCs)是一类源于多种组织的,包括骨髓(bone marrow derived-,BM-),脂肪(adipose tissue derived-,AT-),脐带血来源(umbilical cord derived-,UC-)、牙龈(gingival derived-)、脐带胶质(Wharton’s jelly mesenchymal derived-)等的、非造血的、形似成纤维细胞纺锤状的、具有强大自我更新能力及在不显著改变性能的情况下保持多次传代的细胞[2-3]。近年来,其免疫调节、组织修复、抗新生血管、定向损伤组织迁移的特性受到广泛关注。

1 间充质干细胞的作用机制

1.1 作用机制

迄今为止,MSCs治疗疾病的确切机制仍不清楚,以下是目前提出的几种可能的治疗机制。
1.1.1 免疫调节机制
MSCs具有免疫调节功能抑制和改善多种免疫性疾病的异常炎症的作用[4]。MSCs可调控多种免疫细胞的成熟和功能,例如树突状细胞[5]、自然杀伤细胞[6]、巨噬细胞、T淋巴细胞[7-8]和B淋巴细胞[9],调节机体的先天性和获得性免疫反应。MSCs对免疫细胞的调节主要与之分泌的一系列细胞因子有关,包括转化生长因子-β(transforming growth factor β1,TGF-β1 )、前列腺素E 2、吲哚胺-2,3-双加氧酶、白细胞介素-1(interleukin-1,IL-1)、白细胞介素-6(interleukin-6,IL-6)、金属基质蛋白酶、血红素氧合酶-1和一氧化氮等[10-11]。MSCs还高表达一系列黏附分子和趋化因子,包括细胞间黏附分子-1、血管细胞黏附分子-1和趋化因子受体3等,诱导免疫细胞与MSCs紧密靠近,形成具有局部免疫抑制作用的微环境[12]。此外,MSCs的免疫调节功能被认为是可调节的,在高浓度的特异性炎症因子,如干扰素γ(interferon-γ,IFN-γ)、肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)的环境中免疫调节反应被放大,但在炎症因子缺乏的情况下功能被抑制[13-15]
1.1.2 促修复机制
MSCs可释放多种生长因子,包括血管内皮生长因子(vascular endothelial growth factor,VEGF)、肝细胞生长因子、胰岛素样生长因子-1、TGF-β、成纤维细胞生长因子和基质细胞衍生因子-1[16]。这些营养因子促进内皮细胞、成纤维细胞、巨噬细胞和其他组织祖细胞的增殖,进而参与组织修复和再生[17]。细胞实验[18]结果显示:将真皮成纤维细胞与骨髓间充质干细胞共培养,在没有直接接触的情况下,真皮成纤维细胞在划痕试验中出现增殖加快和迁移加速。此外,静脉注射异体MSCs归巢到角膜损伤部位,可明显促进角膜热烧伤小鼠模型角膜上皮的修复[19]
1.1.3 抗新生血管机制
不同的微环境可调节MSC的不同行为和功能。在缺血性组织,如心肌梗死的模型[20]中,MSCs通过上调VEGF刺激梗塞组织产生新生血管改善心脏功能。但是在炎症性疾病,如角膜化学伤中,MSCs则下调VEGF的表达,减少角膜新生血管的面积[21]。角膜化学伤的炎症环境可能刺激MSCs产生高水平的血小板反应蛋白-1从而抑制VEGF的表达[22]
1.1.4 细胞替代
作为多能细胞,MSCs可以分化为不同的细胞类型[23],但MSCs能否产生功能性角膜细胞仍然存在争议。在特定条件下,间充质干能分化为角膜上皮样细胞[24]、角膜基质样细胞[25]和内皮样细胞[26]来修复受损的角膜。有研究[27]将UC-MSCs移植到小鼠角膜基质1个月后,这些细胞呈现出角膜基质样细胞的形态,并表达角膜基质细胞标志物。但也有证据[28]表明:从MSCs衍生出来的被替换细胞并不是真正的组织细胞,MSCs可以产生多种调节蛋白,这些蛋白有助于MSCs治疗疾病,但同时也可能影响了对MSCs分化潜能的评估。

1.2 不同来源的间充质干细胞的区别

MSCs的运用应结合MSCs的来源。虽然骨髓、脐带血和脂肪组织来源的MSCs在形态学和表型方面无明显差异[29],但是彼此之间的增殖和分化能力存在差异。在增殖能力方面,UC-MSCs最强,而BM-MSCs最弱;在成骨分化能力方面,UC-MSCs最强,AT-MSCs最弱[30-31]。在成脂分化能力方面,BM-MSCs强于UC-MSCs[30]。在成软骨分化能力方面,AT-MSCs强于脐带基质来源的[32]。此外,不同的MSCs具有不同的免疫调节功能。与BM-MSCs相比,AT-MSC能更有效的抑制树突状细胞的形成,并且能分泌更高浓度的IL-6,IL-8,IL-12等细胞因子[33]。但是,BM-MSCs,UC-MSCs,WJ-MSCs,AT-MSCs在抑制植物血凝素诱导的T细胞增殖方面没有差异[34]

2 间充质干细胞在眼表疾病中的临床前和临床运用

截至2020年4月,在Clinical Trial上登记的干细胞研究有994项(以“mesenchymal stem cells”“mesenchymal stromal cells”“MSCs”为关键词),其中与眼表相关的的仅有8项,3项与干眼相关(NCT03878628,NCT04213248,NCT00953485)、3项与角膜化学伤(NCT03237442,NCT03967275,NCT02325843)、1项与角膜缘干细胞缺乏(NCT01562002)、1项与圆锥角膜(NCT02932852)相关。而在PubMed上搜索所得的临床相关文章亦很少,由此可见,虽然MSCs的研究如火如荼,但大多停留在基础领域,特别是眼表方向,离临床转化运用依旧有一条漫长的道路。

2.1 间充质干细胞在眼移植物抗宿主病相关性干眼及干眼中的运用

眼移植物抗宿主病(ocular graft versus host disease,oGVHD)是造血干细胞移植术后的一种常见的慢性并发症,发病率为40%~80%[35]。T淋巴细胞通过攻击宿主的泪腺、睑板腺、结膜、角膜等眼表组织,产生与干眼、干燥综合征、睑板腺功能障碍相关的临床病症,主要表现为泪液分泌减少、泪膜不稳定、结膜纤维化、睑板腺丢失、角膜损伤等[36-37],其中干眼相关症状是影响oGVHD患者生活质量的主要原因[38]。免疫细胞和细胞因子的失衡可能是oGVHD发生的原因之一[39]。MSCs在T细胞、B细胞的活化和增殖、抗炎因子和囊泡分泌等表现出的免疫调节特性[40-41],使之成为治疗oGVHD相关干眼的潜在选择。Weng等[35]报道22例难治性oGVHD相关干眼患者,在经历了至少1个月的眼部人工泪液联合标准的免疫抑制治疗后症状均无明显改善,但在给予1.0×106/kg MSCs静脉输注3个月后,54.55%(12/22)患者的临床症状、眼表疾病指数评分和Schirmer试验结果明显改善,且无注射相关的不良反应。此外,患者血液中的CD8+ CD28 T细胞数量增加,IL-2及IFN-γ等细胞因子的水平升高,而炎性因子IL-10和IL-4较治疗前降低。另一项研究[42]也发现18例难治性慢性GVDH患者中的14例干眼患者,在接受1.0×106/kg MSCs静脉输注后的第1次评估时,有2例患者得到了眼部症状的缓解,在随访的2年时间内,有5例(35.7%)患者表现出临床症状的改善。虽然MSCs在治疗oGVHD相关性干眼方面显示出一定的效果,但是在预防oGVHD方面效果并不理想[43]
关于MSCs治疗oGVHD相关性干眼的更多研究还处于动物实验阶段。Martínez-Carrasco等[44]在造血干细胞移植术后第10天对发生oGVHD的小鼠进行结膜下注射人MSCs(2×105/20 μL),18 d后处死小鼠。实验组的小鼠眼部外观正常,没有发生眼睑痉挛、眼睑红斑和眼周皮毛脱落;泪液渗透压稳定无升高;角膜中未发现免疫细胞CD3+的侵袭,且角膜上皮的角质化程度低,此外,角膜中炎性因子的表达受到明显抑制。这些结果表明结膜下注射MSCs能有效抑制oGVHD中的免疫反应和相关的角膜改变。另一项研究[45]通过同样结膜下注射的方式,在移植术后15 d给予患有oGVHD的小鼠的右眼注射同样剂量的BM-MSCs,10 d后发现未注射MSCs的左眼出现眼部外观的改变、病理组织学见角膜萎缩、空泡化和凋亡,而注射过MSCs的右眼没有出现相关改变。此外还发现结膜下注射的MSCs可大量迁移至角膜组织修复受损角膜,但是这一点在其他的研究中受到争议[46]。除了结膜下注射,不同的施用途径同样对干眼起到良好的缓解作用。已有研究[47]对苯扎氯铵诱导的干眼模型进行BM-MSCs混悬液(1×105/25 μL)点眼,治疗1周后,MSCs组的平均眼泪水量和泪膜破裂时间得分显著增加,角膜中炎症细胞减少,同时杯状细胞增加。Villatoro等[48]对常规治疗(皮质类固醇、他克莫司、环孢素和人工泪液)无效的12犬只进行了眶内腺注射脂肪来源的间充质基质细胞,随访3个月即可观察到眼表症状的改善,并且这种改善可持续发展至随访的第9个月,此外,无论是Schirmer试验亦或是其他临床体征,均出现显著好转。Lee等[46]使用眶内注射伴刀豆球蛋白A诱导小鼠干眼模型,并向眶周注射人源和鼠源的MSCs,结果显示:无论是哪种来源的MSCs,均可增加泪液产生并抑制炎症;此外,用MSCs治疗的小鼠角膜表现出CD4+T细胞浸润和促炎因子表达的抑制。虽然动物实验表明MSCs对oGVHD相关性干眼以及其他类型的干眼的治疗效果良好,但是其相关发病机制和治病机理仍不明确,限制了MSCs在临床治疗运用的转化,因此需要进一步开展更为深入的研究。

2.2 间充质干细胞在角膜损伤修复中的运用

多种原因会造成角膜损伤,包括化学伤、持续性角膜溃疡、感染性角膜炎等[49],严重的角膜损伤常伴随角膜缘干细胞缺乏(limbal stem cell deficiency,LSCD)、角膜混浊、角膜新生血管等影响视力的改变[50-52]。其中炎症因子和细胞因子的持续侵入起关键作用,临床上常用类固醇、免疫抑制剂、促修复等药物治疗,然而对于严重的病例效果并不理想[53]。间充质干细胞的免疫调节、促修复和抗新生血管的特性,使得它成为治疗此类疾病的潜在可能。Calonge等[54]对17例角膜缘干细胞缺乏的患者实施了羊膜搭载的MSCs移植,在施行羊膜移植的过程中,没有出现术中或术后并发症,随访12个月,也未发现相关的免疫排斥反应。在6个月时,细胞移植的成功率为76.5%,1 2个月时为85.7%。与羊膜搭载角膜缘上皮细胞移植相比,羊膜搭载的MSCs移植能显著恢复角膜的透明性,此外,随着随访时间的增加,症状评分、结膜充血、角膜上皮点状染色、角膜溃疡均显著好转,最佳矫正视力也从最初的0.06±0.08恢复到0.14±0.15。激光共聚焦显微镜检查显示:62.5%的病例在6个月的时候改善了角膜中央的上皮表型,第12个月时达71.4%。这首次证明MSCs可以与角膜缘干细胞一样,安全且有效地恢复因LSCD受损的角膜。在此研究[54]中,失败病例的原发病主要为角膜化学伤。虽然有3项注册在案的关于MSCs在角膜化学伤中的运用的临床研究,但是目前尚没有明确的临床数据。

2.3 间充质干细胞在过敏性结膜炎中的运用

过敏性结膜炎是眼科门诊最常见的疾病之一,典型症状包括眼痒、异物感、分泌物增加等,因其常反复发作,过敏性结膜炎可显著影响患者的健康和生活质量[55-58]。近年来,越来越多的研究关注了MSCs与过敏性疾病的关系。研究发现:使用MSCs能够减弱过敏性疾病的症状[59],包括哮喘[60]、变应性鼻炎[57]、过敏性皮肤病[61]等。然而,MSCs治疗过敏性结膜炎的研究鲜少报道,PubMed上仅有一项关于动物实验的研究[62]。Su等[62]发现局部滴用TNF-α刺激的MSCs的培养液可较大程度地减轻豚草花粉诱导的小鼠过敏性结膜炎的临床症状,该培养液可能通过降低炎症细胞的数量和相关的分子水平、抑制IgE和组胺分泌,起到良好的抗过敏效果。虽然现在临床常用的肥大细胞膜稳定剂、抗组胺药物和皮质类固醇对过敏性结膜炎具有良好的控制效果,但是并不能控制过敏性结膜炎的反复发作,且存在长期滴用眼部不适,而MSCs可与免疫细胞相互作用,从而诱发免疫耐受,这可能可以发挥更长时间的抗过敏疗效。因此更多关于MSCs和过敏性结膜炎的长期疗效值得被关注。

2.4 间充质干细胞在角膜移植中的运用

角膜移植是拯救角膜疾患导致的失明最有效的方法,在全球范围内,每年进行的角膜移植超过18万次[63]。然而,多种因素,如原发病导致的新生淋巴管、血管、炎症等,会导致角膜移植排斥[64-66]。与其他器官排斥类似,角膜移植排斥亦是一个免疫异常的过程[67]。因此,间充质干细胞的免疫调节特性使其有望成为治疗此类疾病的方式。虽然暂时还没有注册和发表的临床研究,但是已有多项临床前研究对其治疗效果进行了探讨。与其他眼表疾病不同,角膜移植术前使用MSCs治疗效果更好。在其他器官移植的实验中,术前输注可延长移植器官的存活时间,这可能由于预输注的同种异体来源的MSCs激活了宿主的免疫反应,进而产生了免疫耐受使得后续移植物被接受[68-69]。Oh等[70]发现:术前1 d增加MSCs静脉注射比仅在术后进行MSCs静脉注射拥有更高的移植物存活率,并进一步降低了角膜中树突状细胞、巨噬细胞和CD3+T细胞的数量,表现出更好的抗炎效果。Ko等[71]的研究结果也显示:术前静脉注射MSCs可以显著延长角膜移植物的存活时间,显著降低促炎因子IFN-γ和IL-2的表达水平显著。然而Jia等[72]通过对比移植前连续3 d和移植后连续3 d给予大鼠静脉输注BM-MSCs后发现:术前输注的效果与不使用MSCs的效果相似,而术后输注的效果可以明显延长移植物的存活时间。在角膜移植排斥的实验中,MSCs注射的时机存在争议。尽管如此,大部分研究[73-74]仍显示出MSCs在角膜移植排斥中延长移植物存活的作用。

3 间充质干细胞在眼表运用的困难、局限及未来方向

间充质干细胞由于其免疫调节、组织修复、抗新生血管等特性,在各种难治性疾病的治疗中一直被寄予很大的期待。大部分现有的临床前研究证明了其积极的治疗效果,但是运用MSCs治疗仍然存在挑战。首先,MSCs从临床前研究到临床试验的转化能力有待认证。目前MSCs治疗的安全性和有效性大多基于动物的临床前研究和体外的细胞分子实验,然而人与动物MSCs的免疫相容性、剂量、适应性和效力可能有所不同[75],在眼表所进行的临床研究也表现出不及动物研究的有效性,MSCs从临床前动物研究的有效结果到临床试验的等效性尚有争议。其次,由于MSCs来源不同且各研究间分离、分选、离体扩增、纯化的方法各异,这可能造成实验结果重复性不足,引起MSCs的疗效评估困难,MSCs临床转化与运用更加复杂。此外,虽然MSCs在某些疾病的治疗研究中已取得良好的效果,但是其作用机制尚未完全明朗,在不同的疾病中,细胞间接触与分泌的可溶性因子有所不同,而且MSCs易受到周围微环境的影响而分泌不同的细胞因子,因此贸然进行人体试验可能会带来潜在的风险。但不可否认的是,现有的结果依旧表明MSCs是治疗眼表疾病非常有前途的工具。因此,更多涉及标准化MSCs以便于临床使用以及不同研究者进行疗效比较的研究值得期待。
1、Thoft RA. Conjunctival transplantation[ J]. Arch Ophthalmol, 1977, 95(8): 1425-1427.Thoft RA. Conjunctival transplantation[ J]. Arch Ophthalmol, 1977, 95(8): 1425-1427.
2、Sahu A, Foulsham W, Amouzegar A, et al. The therapeutic application of mesenchymal stem cells at the ocular surface[ J]. Ocul Surf, 2019, 17(2): 198-207.Sahu A, Foulsham W, Amouzegar A, et al. The therapeutic application of mesenchymal stem cells at the ocular surface[ J]. Ocul Surf, 2019, 17(2): 198-207.
3、Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues[ J]. Science, 1997, 276(5309): 71-74.Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues[ J]. Science, 1997, 276(5309): 71-74.
4、Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/ stromal cell function[ J]. Stem Cell Res Ther, 2016, 7(1): 125.Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/ stromal cell function[ J]. Stem Cell Res Ther, 2016, 7(1): 125.
5、Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells[ J]. Blood, 2005, 105(10): 4120-4126.Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells[ J]. Blood, 2005, 105(10): 4120-4126.
6、Spaggiari GM, Capobianco A, Becchetti S, et al. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NKcell proliferation[ J]. Blood, 2006, 107(4): 1484-1490.Spaggiari GM, Capobianco A, Becchetti S, et al. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NKcell proliferation[ J]. Blood, 2006, 107(4): 1484-1490.
7、Duffy MM, Ritter T, Ceredig R, et al. Mesenchymal stem cell effects on T-cell effector pathways[ J]. Stem Cell Res Ther, 2011, 2(4): 34.Duffy MM, Ritter T, Ceredig R, et al. Mesenchymal stem cell effects on T-cell effector pathways[ J]. Stem Cell Res Ther, 2011, 2(4): 34.
8、Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide[ J]. Blood, 2003, 101(9): 3722-3729.Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide[ J]. Blood, 2003, 101(9): 3722-3729.
9、Traggiai E, Volpi S, Schena F, et al. Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients[ J]. Stem Cells, 2008, 26(2): 562-569.Traggiai E, Volpi S, Schena F, et al. Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients[ J]. Stem Cells, 2008, 26(2): 562-569.
10、Bassi êJ, de Almeida DC, Moraes-Vieira PM, et al. Exploring the role of soluble factors associated with immune regulatory properties of mesenchymal stem cells[ J]. Stem Cell Rev Rep, 2012, 8(2): 329-342.Bassi êJ, de Almeida DC, Moraes-Vieira PM, et al. Exploring the role of soluble factors associated with immune regulatory properties of mesenchymal stem cells[ J]. Stem Cell Rev Rep, 2012, 8(2): 329-342.
11、Soleymaninejadian E, Pramanik K, Samadian E. Immunomodulatory properties of mesenchymal stem cells: cytokines and factors[ J]. Am J Reprod Immunol, 2012, 67(1): 1-8.Soleymaninejadian E, Pramanik K, Samadian E. Immunomodulatory properties of mesenchymal stem cells: cytokines and factors[ J]. Am J Reprod Immunol, 2012, 67(1): 1-8.
12、Ren G, Zhang L, Zhao X, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide[ J]. Cell Stem Cell, 2008, 2(2): 141-150.Ren G, Zhang L, Zhao X, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide[ J]. Cell Stem Cell, 2008, 2(2): 141-150.
13、English K , Barry FP, Field-Corbett CP, et al. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells[ J]. Immunol Lett, 2007, 110(2): 91-100.English K , Barry FP, Field-Corbett CP, et al. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells[ J]. Immunol Lett, 2007, 110(2): 91-100.
14、Krampera M, Cosmi L, Angeli R, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells[ J]. Stem Cells, 2006, 24(2): 386-398.Krampera M, Cosmi L, Angeli R, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells[ J]. Stem Cells, 2006, 24(2): 386-398.
15、Javorkova E, Trosan P, Zajicova A, et al. Modulation of the early inflammator y microenvironment in the alkali-burned eye by systemically administered interferon-gamma-treated mesenchymal stromal cells[ J]. Stem Cells Dev, 2014, 23(20): 2490-2500.Javorkova E, Trosan P, Zajicova A, et al. Modulation of the early inflammator y microenvironment in the alkali-burned eye by systemically administered interferon-gamma-treated mesenchymal stromal cells[ J]. Stem Cells Dev, 2014, 23(20): 2490-2500.
16、Vizoso FJ, Eiro N, Cid S, et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine[ J]. Int J Mol Sci, 2017, 18(9): 1852.Vizoso FJ, Eiro N, Cid S, et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine[ J]. Int J Mol Sci, 2017, 18(9): 1852.
17、Chen L, Tredget EE, Wu PY, et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing[ J]. PLoS One, 2008, 3(4): e1886.Chen L, Tredget EE, Wu PY, et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing[ J]. PLoS One, 2008, 3(4): e1886.
18、Smith AN, Willis E, Chan VT, et al. Mesenchymal stem cells induce dermal fibroblast responses to injury[ J]. Exp Cell Res, 2010, 316(1): 48-54.Smith AN, Willis E, Chan VT, et al. Mesenchymal stem cells induce dermal fibroblast responses to injury[ J]. Exp Cell Res, 2010, 316(1): 48-54.
19、Lan Y, Kodati S, Lee HS, et al. Kinetics and function of mesenchymal stem cells in corneal injury[ J]. Invest Ophthalmol Vis Sci, 2012, 53(7): 3638-3644.Lan Y, Kodati S, Lee HS, et al. Kinetics and function of mesenchymal stem cells in corneal injury[ J]. Invest Ophthalmol Vis Sci, 2012, 53(7): 3638-3644.
20、Cashman TJ, Gouon-Evans V, Costa KD. Mesenchymal stem cells for cardiac therapy: practical challenges and potential mechanisms[ J]. Stem Cell Rev Rep, 2013, 9(3): 254-265.Cashman TJ, Gouon-Evans V, Costa KD. Mesenchymal stem cells for cardiac therapy: practical challenges and potential mechanisms[ J]. Stem Cell Rev Rep, 2013, 9(3): 254-265.
21、Yao L, Li ZR, Su WR, et al. Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn[ J]. PLoS One, 2012, 7(2): e30842.Yao L, Li ZR, Su WR, et al. Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn[ J]. PLoS One, 2012, 7(2): e30842.
22、Oh JY, Kim MK, Shin MS, et al. The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury[ J]. Stem Cells, 2008, 26(4): 1047-1055.Oh JY, Kim MK, Shin MS, et al. The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury[ J]. Stem Cells, 2008, 26(4): 1047-1055.
23、Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays[ J]. Cell Stem Cell, 2008, 2(4): 313-319.Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays[ J]. Cell Stem Cell, 2008, 2(4): 313-319.
24、Gu S, Xing C, Han J, et al. Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo[ J]. Mol Vis, 2009, 15: 99-107.Gu S, Xing C, Han J, et al. Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo[ J]. Mol Vis, 2009, 15: 99-107.
25、Liu H, Zhang J, Liu CY, et al. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice[ J]. PLoS One, 2010, 5(5): e10707.Liu H, Zhang J, Liu CY, et al. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice[ J]. PLoS One, 2010, 5(5): e10707.
26、Nakahara M, Okumura N, Kay EP, et al. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium[ J]. PLoS One, 2013, 8(7): e69009.Nakahara M, Okumura N, Kay EP, et al. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium[ J]. PLoS One, 2013, 8(7): e69009.
27、Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, et al. Extrinsic and intrinsic mechanisms by which mesenchymal stem cells suppress the immune system[ J]. Ocul Surf, 2016, 14(2): 121-134.Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, et al. Extrinsic and intrinsic mechanisms by which mesenchymal stem cells suppress the immune system[ J]. Ocul Surf, 2016, 14(2): 121-134.
28、Phinney DG, Prockop DJ. Concise review: mesenchymal stem/ multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views[ J]. Stem Cells, 2007, 25(11): 2896-2902.Phinney DG, Prockop DJ. Concise review: mesenchymal stem/ multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views[ J]. Stem Cells, 2007, 25(11): 2896-2902.
29、Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue[ J]. Stem Cells, 2006, 24(5): 1294-1301Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue[ J]. Stem Cells, 2006, 24(5): 1294-1301
30、Chang YJ, Shih DT, Tseng CP, et al. Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood[ J]. Stem Cells, 2006, 24(3): 679-685.Chang YJ, Shih DT, Tseng CP, et al. Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood[ J]. Stem Cells, 2006, 24(3): 679-685.
31、Niemeyer P, Fechner K, Milz S, et al. Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of plateletrich plasma[ J]. Biomaterials, 2010, 31(13): 3572-3579.Niemeyer P, Fechner K, Milz S, et al. Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of plateletrich plasma[ J]. Biomaterials, 2010, 31(13): 3572-3579.
32、Hildner F, Wolbank S, Redl H, et al. How chondrogenic are human umbilical cord matrix cells? A comparison to adipose-derived stem cells[ J]. J Tissue Eng Regen Med, 2010, 4(3): 242-245.Hildner F, Wolbank S, Redl H, et al. How chondrogenic are human umbilical cord matrix cells? A comparison to adipose-derived stem cells[ J]. J Tissue Eng Regen Med, 2010, 4(3): 242-245.
33、Melief SM, Zwaginga JJ, Fibbe WE, et al. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts[ J]. Stem Cells Transl Med, 2013, 2(6): 455-463.Melief SM, Zwaginga JJ, Fibbe WE, et al. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts[ J]. Stem Cells Transl Med, 2013, 2(6): 455-463.
34、Yoo KH, Jang IK, Lee MW, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues[ J]. Cell Immunol, 2009, 259(2): 150-156.Yoo KH, Jang IK, Lee MW, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues[ J]. Cell Immunol, 2009, 259(2): 150-156.
35、Weng J, He C, Lai P, et al. Mesenchymal stromal cells treatment attenuates dry eye in patients with chronic graft-versus-host disease[ J]. Mol Ther, 2012, 20(12): 2347-2354.Weng J, He C, Lai P, et al. Mesenchymal stromal cells treatment attenuates dry eye in patients with chronic graft-versus-host disease[ J]. Mol Ther, 2012, 20(12): 2347-2354.
36、Kusne Y, Temkit M, Khera N, et al. Conjunctival subepithelial fibrosis and meibomian gland atrophy in ocular graft-versus-host disease[ J]. Ocul Surf, 2017, 15(4): 784-788.Kusne Y, Temkit M, Khera N, et al. Conjunctival subepithelial fibrosis and meibomian gland atrophy in ocular graft-versus-host disease[ J]. Ocul Surf, 2017, 15(4): 784-788.
37、Wang JC, Teichman JC, Mustafa M, et al. Risk factors for the development of ocular graft-versus-host disease (GVHD) dry eye syndrome in patients with chronic GVHD[ J]. Br J Ophthalmol, 2015, 99(11): 1514-1518.Wang JC, Teichman JC, Mustafa M, et al. Risk factors for the development of ocular graft-versus-host disease (GVHD) dry eye syndrome in patients with chronic GVHD[ J]. Br J Ophthalmol, 2015, 99(11): 1514-1518.
38、Pezzotta S, Rossi GC, Scudeller L, et al. A cross-sectional study on vision-related quality of life in patients with ocular GvHD[ J]. Bone Marrow Transplant, 2015, 50(9): 1224-1226.Pezzotta S, Rossi GC, Scudeller L, et al. A cross-sectional study on vision-related quality of life in patients with ocular GvHD[ J]. Bone Marrow Transplant, 2015, 50(9): 1224-1226.
39、Arafat SN, Robert MC, Abud T, et al. Elevated neutrophil elastase in tears of ocular graft-versus-host disease patients[ J]. Am J Ophthalmol, 2017, 176: 46-52.Arafat SN, Robert MC, Abud T, et al. Elevated neutrophil elastase in tears of ocular graft-versus-host disease patients[ J]. Am J Ophthalmol, 2017, 176: 46-52.
40、Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study[ J]. Lancet, 2008, 371(9624): 1579-1586.Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study[ J]. Lancet, 2008, 371(9624): 1579-1586.
41、Choi SW, Reddy P. Current and emerging strategies for the prevention of graft-versus-host disease[ J]. Nat Rev Clin Oncol, 2014, 11(9): 536-547.Choi SW, Reddy P. Current and emerging strategies for the prevention of graft-versus-host disease[ J]. Nat Rev Clin Oncol, 2014, 11(9): 536-547.
42、Weng JY, Du X, Geng SX, et al. Mesenchymal stem cell as salvage treatment for refractory chronic GVHD[ J]. Bone Marrow Transplant, 2010, 45(12): 1732-1740.Weng JY, Du X, Geng SX, et al. Mesenchymal stem cell as salvage treatment for refractory chronic GVHD[ J]. Bone Marrow Transplant, 2010, 45(12): 1732-1740.
43、Gao L, Zhang Y, Hu B, et al. Phase II multicenter, randomized, doubleblind controlled study of efficacy and safety of umbilical cord-derived mesenchymal stromal cells in the prophylaxis of chronic graft-versushost disease after hla-haploidentical stem-cell transplantation[ J]. J Clin Oncol, 2016, 34(24): 2843-2850.Gao L, Zhang Y, Hu B, et al. Phase II multicenter, randomized, doubleblind controlled study of efficacy and safety of umbilical cord-derived mesenchymal stromal cells in the prophylaxis of chronic graft-versushost disease after hla-haploidentical stem-cell transplantation[ J]. J Clin Oncol, 2016, 34(24): 2843-2850.
44、Martínez-Carrasco R , Sánchez-Abarca LI, Nieto-Gómez C, et al. Subconjunctival injection of mesenchymal stromal cells protects the cornea in an experimental model of GVHD[ J]. Ocul Surf, 2019, 17(2): 285-294.Martínez-Carrasco R , Sánchez-Abarca LI, Nieto-Gómez C, et al. Subconjunctival injection of mesenchymal stromal cells protects the cornea in an experimental model of GVHD[ J]. Ocul Surf, 2019, 17(2): 285-294.
45、Sánchez-Abarca LI, Hernández-Galilea E, Lorenzo R, et al. Human bone marrow stromal cells differentiate into corneal tissue and prevent ocular graft-versus-host disease in mice[ J]. Cell Transplant, 2015, 24(12): 2423-2433.Sánchez-Abarca LI, Hernández-Galilea E, Lorenzo R, et al. Human bone marrow stromal cells differentiate into corneal tissue and prevent ocular graft-versus-host disease in mice[ J]. Cell Transplant, 2015, 24(12): 2423-2433.
46、Lee MJ, Ko AY, Ko JH, et al. Mesenchymal stem/stromal cells protect the ocular surface by suppressing inflammation in an experimental dry eye[ J]. Mol Ther, 2015, 23(1): 139-146.Lee MJ, Ko AY, Ko JH, et al. Mesenchymal stem/stromal cells protect the ocular surface by suppressing inflammation in an experimental dry eye[ J]. Mol Ther, 2015, 23(1): 139-146.
47、Beyazy?ld?z E, P?narl? FA, Beyazy?ld?z O, et al. Efficacy of topical mesenchymal stem cell therapy in the treatment of experimental dry eye syndrome model[ J]. Stem Cells Int, 2014, 2014: 250230.Beyazy?ld?z E, P?narl? FA, Beyazy?ld?z O, et al. Efficacy of topical mesenchymal stem cell therapy in the treatment of experimental dry eye syndrome model[ J]. Stem Cells Int, 2014, 2014: 250230.
48、Villatoro AJ, Fernandez V, Claros S, et al. Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model[ J]. Biomed Res Int, 2015, 2015: 527926.Villatoro AJ, Fernandez V, Claros S, et al. Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model[ J]. Biomed Res Int, 2015, 2015: 527926.
49、Ljubimov AV, Saghizadeh M. Progress in corneal wound healing[ J]. Prog Retin Eye Res, 2015, 49: 17-45.Ljubimov AV, Saghizadeh M. Progress in corneal wound healing[ J]. Prog Retin Eye Res, 2015, 49: 17-45.
50、McKay TB, Seyed-Razavi Y, Ghezzi CE, et al. Corneal pain and experimental model development[ J]. Prog Retin Eye Res, 2019, 71: 88-113.McKay TB, Seyed-Razavi Y, Ghezzi CE, et al. Corneal pain and experimental model development[ J]. Prog Retin Eye Res, 2019, 71: 88-113.
51、Ziaei M, Greene C, Green CR. Wound healing in the eye: therapeutic prospects[ J]. Adv Drug Deliv Rev, 2018, 126: 162-176.Ziaei M, Greene C, Green CR. Wound healing in the eye: therapeutic prospects[ J]. Adv Drug Deliv Rev, 2018, 126: 162-176.
52、Khaw PT, Shah P, Elkington AR. Injury to the eye[ J]. BMJ, 2004, 328(7430): 36-38.Khaw PT, Shah P, Elkington AR. Injury to the eye[ J]. BMJ, 2004, 328(7430): 36-38.
53、Hong J, Qiu T, Wei A, et al. Clinical characteristics and visual outcome of severe ocular chemical injuries in Shanghai[ J]. Ophthalmology, 2010, 117(12): 2268-2272.Hong J, Qiu T, Wei A, et al. Clinical characteristics and visual outcome of severe ocular chemical injuries in Shanghai[ J]. Ophthalmology, 2010, 117(12): 2268-2272.
54、Calonge M, Perez I, Galindo S, et al. A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency[ J]. Transl Res, 2019, 206: 18-40.Calonge M, Perez I, Galindo S, et al. A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency[ J]. Transl Res, 2019, 206: 18-40.
55、Dupuis P, Prokopich CL, Hynes A, et al. A contemporary look at allergic conjunctivitis[ J]. Allergy Asthma Clin Immunol, 2020, 16: 5.Dupuis P, Prokopich CL, Hynes A, et al. A contemporary look at allergic conjunctivitis[ J]. Allergy Asthma Clin Immunol, 2020, 16: 5.
56、Palmares J, Delgado L, Cidade M, et al. Allergic conjunctivitis: a national cross-sectional study of clinical characteristics and quality of life[ J]. Eur J Ophthalmol, 2010, 20(2): 257-264.Palmares J, Delgado L, Cidade M, et al. Allergic conjunctivitis: a national cross-sectional study of clinical characteristics and quality of life[ J]. Eur J Ophthalmol, 2010, 20(2): 257-264.
57、Liedtke JP, Mandl A, Kother J, et al. RCAT reflects symptom control and quality of life in allergic rhinoconjunctivitis patients[ J]. Allergy, 2018, 73(5): 1101-1109.Liedtke JP, Mandl A, Kother J, et al. RCAT reflects symptom control and quality of life in allergic rhinoconjunctivitis patients[ J]. Allergy, 2018, 73(5): 1101-1109.
58、Rosario N, Bielory L. Epidemiology of allergic conjunctivitis[ J]. Curr Opin Allergy Clin Immunol, 2011, 11(5): 471-476.Rosario N, Bielory L. Epidemiology of allergic conjunctivitis[ J]. Curr Opin Allergy Clin Immunol, 2011, 11(5): 471-476.
59、Li H, Tian Y, Xie L, et al. Mesenchymal stem cells in allergic diseases: current status[ J]. Allergol Int, 2020, 69(1): 35-45.Li H, Tian Y, Xie L, et al. Mesenchymal stem cells in allergic diseases: current status[ J]. Allergol Int, 2020, 69(1): 35-45.
60、Kapoor S, Patel SA, Kartan S, et al. Tolerance-like mediated suppression by mesenchymal stem cells in patients with dust mite allergy-induced asthma[ J]. J Allergy Clin Immunol, 2012, 129(4): 1094-1101.Kapoor S, Patel SA, Kartan S, et al. Tolerance-like mediated suppression by mesenchymal stem cells in patients with dust mite allergy-induced asthma[ J]. J Allergy Clin Immunol, 2012, 129(4): 1094-1101.
61、Kim HS, Lee JH, Roh KH, et al. Clinical trial of human umbilical cord blood-derived stem cells for the treatment of moderate-to-severe atopic dermatitis: phase I/IIa studies[ J]. Stem Cells, 2017, 35(1): 248-255.Kim HS, Lee JH, Roh KH, et al. Clinical trial of human umbilical cord blood-derived stem cells for the treatment of moderate-to-severe atopic dermatitis: phase I/IIa studies[ J]. Stem Cells, 2017, 35(1): 248-255.
62、Su W, Wan Q, Huang J, et al. Culture medium from TNF-alphastimulated mesenchymal stem cells attenuates allergic conjunctivitis through multiple antiallergic mechanisms[ J]. J Allergy Clin Immunol, 2015, 136(2): 423-432 e428.Su W, Wan Q, Huang J, et al. Culture medium from TNF-alphastimulated mesenchymal stem cells attenuates allergic conjunctivitis through multiple antiallergic mechanisms[ J]. J Allergy Clin Immunol, 2015, 136(2): 423-432 e428.
63、Gain P, Jullienne R, He Z, et al. Global survey of corneal transplantation and eye banking[ J]. JAMA Ophthalmol, 2016, 134(2): 167-173.Gain P, Jullienne R, He Z, et al. Global survey of corneal transplantation and eye banking[ J]. JAMA Ophthalmol, 2016, 134(2): 167-173.
64、Hori J, Yamaguchi T, Keino H, et al. Immune privilege in corneal transplantation[ J]. Prog Retin Eye Res, 2019, 72: 100758.Hori J, Yamaguchi T, Keino H, et al. Immune privilege in corneal transplantation[ J]. Prog Retin Eye Res, 2019, 72: 100758.
65、Hos D, Matthaei M, Bock F, et al. Immune reactions after modern lamellar (DALK, DSAEK, DMEK) versus conventional penetrating corneal transplantation[ J]. Prog Retin Eye Res, 2019, 73: 100768.Hos D, Matthaei M, Bock F, et al. Immune reactions after modern lamellar (DALK, DSAEK, DMEK) versus conventional penetrating corneal transplantation[ J]. Prog Retin Eye Res, 2019, 73: 100768.
66、Jonas JB, Rank RM, Budde WM. Immunologic graft reactions after allogenic penetrating keratoplasty[ J]. Am J Ophthalmol, 2002, 133(4): 437-443.Jonas JB, Rank RM, Budde WM. Immunologic graft reactions after allogenic penetrating keratoplasty[ J]. Am J Ophthalmol, 2002, 133(4): 437-443.
67、Su W, Han L, Chen X, et al. Pharmacological inhibition of caspase-8 suppresses inflammation-induced lymphangiogenesis and allograft rejection in the cornea[ J]. J Allergy Clin Immunol, 2018, 142(1): 290-294.e9.Su W, Han L, Chen X, et al. Pharmacological inhibition of caspase-8 suppresses inflammation-induced lymphangiogenesis and allograft rejection in the cornea[ J]. J Allergy Clin Immunol, 2018, 142(1): 290-294.e9.
68、Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo[ J]. Exp Hematol, 2002, 30(1): 42-48.Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo[ J]. Exp Hematol, 2002, 30(1): 42-48.
69、Casiraghi F, Azzollini N, Cassis P, et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells[ J]. J Immunol, 2008, 181(6): 3933-3946.Casiraghi F, Azzollini N, Cassis P, et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells[ J]. J Immunol, 2008, 181(6): 3933-3946.
70、Oh JY, Lee RH, Yu JM, et al. Intravenous mesenchymal stem cells prevented rejection of allogeneic corneal transplants by aborting the early inflammatory response[ J]. Mol Ther, 2012, 20(11): 2143-2152.Oh JY, Lee RH, Yu JM, et al. Intravenous mesenchymal stem cells prevented rejection of allogeneic corneal transplants by aborting the early inflammatory response[ J]. Mol Ther, 2012, 20(11): 2143-2152.
71、Ko JH, Lee HJ, Jeong HJ, et al. Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye[ J]. Proc Natl Acad Sci U S A, 2016, 113(1): 158-163.Ko JH, Lee HJ, Jeong HJ, et al. Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye[ J]. Proc Natl Acad Sci U S A, 2016, 113(1): 158-163.
72、Jia Z, Jiao C, Zhao S, et al. Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model[ J]. Exp Eye Res, 2012, 102: 44-49.Jia Z, Jiao C, Zhao S, et al. Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model[ J]. Exp Eye Res, 2012, 102: 44-49.
73、Treacy O, O'Flynn L, Ryan AE, et al. Mesenchymal stem cell therapy promotes corneal allograft survival in rats by local and systemic immunomodulation[ J]. Am J Transplant, 2014, 14(9): 2023-2036.Treacy O, O'Flynn L, Ryan AE, et al. Mesenchymal stem cell therapy promotes corneal allograft survival in rats by local and systemic immunomodulation[ J]. Am J Transplant, 2014, 14(9): 2023-2036.
74、Omoto M, Katikireddy KR, Rezazadeh A, et al. Mesenchymal stem cells home to inflamed ocular surface and suppress allosensitization in corneal transplantation[ J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6631-6638.Omoto M, Katikireddy KR, Rezazadeh A, et al. Mesenchymal stem cells home to inflamed ocular surface and suppress allosensitization in corneal transplantation[ J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6631-6638.
75、Galipeau J, Sensebe L. Mesenchy mal stromal cells: clinical challenges and therapeutic opportunities[ J]. Cell Stem Cell, 2018, 22(6): 824-833.Galipeau J, Sensebe L. Mesenchy mal stromal cells: clinical challenges and therapeutic opportunities[ J]. Cell Stem Cell, 2018, 22(6): 824-833.
1、赵文心,梁凌毅.慢性眼移植物抗宿主病的临床特点及相关机制的新进展[J].器官移植,2022,13(2):187-194.
2、高莉,李惠玲.间充质干细胞治疗免疫性和退行性眼科疾病的研究进展[J].中国中医眼科杂志,2022,32(7):577-580.
1、广东省科技重大专项 (2014B020226003)。
This work was supported by the Technological Project Foundation of Guangdong Province, China (2014B020226003).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录