您的位置: 首页 > 2021年5月 第36卷 第5期 > 文字全文
2023年7月 第38卷 第7期11
目录

角膜神经性疼痛研究新进展

New progress in the study of neuropathic corneal pain

来源期刊: 眼科学报 | 2021年5月 第36卷 第5期 356-363 发布时间: 收稿时间:2023/5/17 17:34:17 阅读量:6195
作者:
关键词:
角膜神经性疼痛全身慢性疼痛综合征角膜共聚焦显微镜综合治疗
neuropathic corneal pain systemic chronic pain syndrome corneal confocal microscopy comprehensive treatments
DOI:
10.3978/j.issn.1000-4432.2021.04.05
收稿时间:
 
修订日期:
 
接收日期:
 
角膜神经性疼痛(neuropathic corneal pain,NCP)的患者具有眼部及躯体症状,但临床体征不典型,治疗效果不理想。随着干眼诊治的规范化程度不断提升,NCP的患者日益增多。NCP与全身慢性疼痛综合征相互交织。角膜共聚焦显微镜及活体印迹细胞检测可以发现特征性神经形态及相关蛋白改变。NCP的治疗应基于个体化、多学科联合的原则。本文综述近年来,NCP的病因学、病理生理学、综合治疗等取得新的进展以指导临床及转化医学研究。
Patients with neuropathic corneal pain (NCP) have local and physical symptoms, but the clinical signs are atypical,and the treatment is not effect. With the improvement of standardization of diagnosis and treatment of dry eye, the number of patients with NCP has been increasing. The NCP is intertwined with systemic chronic pain syndrome.Corneal confocal microscope and in vivo blot cytology can find the signs of morphology and associated proteins variation. The treatments of NCP should be based on the principle of individualized, multidisciplinary treatment (MDT). This article reviews recent advances in the etiology, pathogenesis, and comprehensive treatment of NCP to guide clinical translational medicine research.
干眼是一种常见的疾病,发病率高。随着干眼的规范化诊疗不断推广,从事干眼诊疗的医生常产生诊治的“疑惑”。当患者的主观症状与眼部体征不符,且常规干眼治疗无效时,临床工作即面临挑战。沿角膜躯体感知传导通路的神经异常是出现角膜神经性疼痛(neuropathic corneal pain,NCP)的原因。角膜躯体传导通路的神经性疼痛感可由眼表伤害性刺激诱发,或仅因神经功能障碍产生自发性异常冲动。最终导致NCP,即“由躯体感觉神经系统异常引起的疼痛性感知”[1]。本文拟综述近年来在NCP诊疗方面的新进展,为进一步开展相关研究明晰方向。

1 定义

NCP是指在正常或无外界刺激情况下,由于反复性伤害导致角膜神经传导疼痛信号的疾病。异常神经纤维形成和反复炎症刺激导致伤害感受器上调,患者对疼痛过度反应,甚至在无明确诱因下出现“疼痛”的状况。畸变神经元兴奋性在组织愈合后持续存在,即便没有刺激或临床症状,这种慢性、持续性角膜疼痛导致“角膜无色斑疼痛”或“幻影角膜”[2-4]。该眼部情况与全身神经性疼痛、复杂区域性疼痛综合征或反射性交感神经营养不良(reflex sympathetic dystrophy,RSD)等有类似的表现。

2 临床影响

NCP会影响患者生活质量。造成眼部疼痛、畏光、刺激感等视功能损伤:患者无法进行阅读、驾驶及其他日常工作生活。这种对身体和社会功能的影响使人日渐衰弱。该“慢性干眼”患者对常规治疗无反应,且症状的严重程度与临床体征不符。对于接受过角膜屈光手术,出现慢性角膜疼痛的患者,其诊治更具挑战性。NCP或是全身复杂性疼痛综合征的一部分[5-7]。当并发焦虑和抑郁的情绪,将影响患者生活质量,在极端情况下甚至导致其产生自杀念头[8-12]。目前,对该问题的认识相对肤浅,对潜在的致病机制知之甚少,普通裂隙灯检查几乎没有任何异常,仅靠眼科医生无法有效治疗此类疾病。

3 NCP的原因

导致角膜神经病变的因素包括角膜屈光手术,浅表神经泪膜疾病(例如干眼),反复发作性角膜上皮糜烂,角膜感染性神经疾病(例如单纯疱疹和带状疱疹),全身系统性神经疾病(例如糖尿病、多发性硬化),暴露于局部和全身性药物,辐射性射线和化学药物对角膜神经损害等[8,13](表1)。

表1 NCP病因
Table 1 Causes of NCP

20230517173135_5401.png

4 NCP病理生理

4.1 角膜神经分布

角膜是人类神经纤维分布最为密集的组织。该处神经纤维分布的密度达7 000神经单元/mm2。神经末梢中伤害感受器在角膜的分布密度约为皮肤的300~600倍,牙髓的20~40倍。三叉神经的眼支属于外周感觉神经,分布在角膜各层结构中。这些神经末梢均为有髓鞘神经纤维,它们在角膜缘周边直径1 mm范围内,以垂直方式穿透角膜上皮和Bowman层,并蜕去髓鞘。穿透角巩膜缘后,大多数神经旋转9 0度并平行于角膜上皮平面,形成角膜上皮下基底层神经丛,并以顺时针、向心模式向角膜中心移行。少数神经以游离神经末梢的形式分布。

4.2 角膜神经生理

基底下神经丛包含-无髓鞘神经纤维(80%;C纤维)和有髓鞘神经纤维(20%;A-d纤维)[14]。无髓鞘C纤维中球根状神经末梢中含有多种伤害感受器。依据伤害感受器对不同类型刺激的反应进行分类。伤害感受器(70%是C型无髓鞘纤维)可对温敏刺激、机械刺激、内源性/外源性炎性等多种刺激做出反应。最常见的伤害感受器为钝性机械感受器和冷觉感受器。角膜的神经营养作用主要通过负反馈调节泪液分泌与眼球表面炎症。该神经突触免疫或神经源性炎症主要位于角膜神经和三叉神经通路复合体间[14]。活体小鼠模型的干眼症状常由寒冷刺激[15]、高渗性[16]和其他类似寒冷的刺激[17]诱导产生,并导致继发性角膜上皮损伤,上皮病变刺激血管活性神经肽的释放、激活免疫炎症细胞,进而导致局部血浆外渗和炎症反应[18]。位于角膜传入神经末梢的褪黑素瞬时受体动作电位8(transient receptor potential melastatin 8,TRPM8)被激活后[19]导致支配该区域的泪膜不稳定、眼表炎症互为因果,局部出现干眼症状。正常情况下,眼球表面健康状态受到伤害性刺激,起自角膜神经末梢的信号通过神经固有免疫途径投射到中枢神经系统,以负反馈的形式做出保护性反应[20-22]

4.3 角膜疼痛传导途径

4.3.1 急性伤害性疼痛途径
最初,在有害刺激下,泪膜稳定性破坏、泪液渗透压升高、眼球表面炎症及角膜上皮屏障破坏[14],伤害性感受器被启动。伤害性感受器受到外部刺激(通常是机械或寒冷刺激)后,应激反应被激活并转化为沿三叉神经传导的神经冲动。然后,这些冲动沿着角膜疼痛传导途径即三叉神经脑干复合体,三叉神经核间极/尾突过渡区,上颈椎索状连接和丘脑,抵达大脑皮质高级中枢,这是急性伤害性疼痛传导的路径[23-25]。然而,随着反复持续性伤害不断累积,该疼痛反馈变得适应不良,失去保护机制,并进展为涉及外周和中枢神经系统的非保护性疼痛。
4.3.2 外周神经敏感化
周围神经过敏是外周疼痛系统对反复伤害性刺激形成的不良适应。持续性伤害和炎症刺激导致这类急性疼痛转变为慢性神经性疼痛。严重的(通常是外科手术–如角膜屈光手术)或反复受伤会引起角膜组织炎症反应。各种炎性因子如前列腺素、细胞因子和小分子活性肽等释放[26-27]。神经末梢释放的小分子活性肽能诱导神经干细胞再生。神经异常放电导致受伤的神经残端形成病理性神经再生,即创伤性神经瘤(traumatic neuroma,TN)。TN持续性释放炎症因子,形成恶性循环。疼痛离子通道通透性上调,固有膜动作电位改变和条件反射阈值降低,使得伤害感受器对机械性或化学刺激异常敏锐。角膜神经纤维动作电位异常放电,产生神经性疼痛。该不受中枢神经调控的刺激信号(或阈下刺激)持续释放,导致外周神经敏感化[28]
4.3.3 中枢神经敏感化
除突触前三叉神经末梢中伤害感受器调控外,持续性炎症和神经损伤也影响脊髓突触后连接,引起中枢神经系统疼痛途径的直接去极化[29-31]。中枢神经系统中发生的中枢神经敏感化即由以上反复发作的刺激所致。兴奋性神经递质[主要是N-甲基-D-天冬氨酸(N-Methyl-D-Aspartate,NMDA)]的上调和抑制性神经递质的下调可引起对类似刺激的超敏反应——称为神经元可塑性[32]。尽管最初的刺激得以遏制,创伤组织愈合,但神经元超敏反应的放大效应持续存在,导致NCP。非痛性刺激引起的反馈循环促使疼痛和感觉异常持久,导致“无色斑疼痛”或“幻影角膜”[2-4]

5 临床表现

5.1 临床症状

患者通常表现出不同程度的角膜疼痛。其他症状类似于干眼——异物感、烧灼感和反射性流泪等症状[33]。还可出现严重的光敏性疼痛、知觉异常性痛、面部局灶性肌张力障碍和眼睑痉挛。角膜神经病变已被证明与全身慢性疼痛综合征相关,患者常主诉并非单纯眼痛,而是合并“偏头痛”或颈椎疼痛、手臂麻痹等。另外,这些患者经常表现为焦虑、抑郁和冷漠的精神状况[34-35]

5.2 体征

在裂隙灯检查中通常没有异常表现,眼球表面看似很“健康”,但神经性疼痛可能是干眼综合征的一部分。在这种情况下,可能出现角膜表面着色、泪膜渗透压异常以及干眼或其他导致角膜神经异常的眼表结构性疾病[10]。通过活体共聚焦显微镜(in vivo confocal microscope,IVCM)检查,角膜神经病变的患者有角膜上皮下基底层神经纤维病变:角膜神经纤维密度降低、弯曲度增加、神经纤维呈串珠样改变、粗大的神经纤维瘤等[36]。其中,神经纤维密度的降低程度与眼表炎症、疾病严重程度正相关[37]

5.3 诊断

5.3.1 病因分析
找到诱发的病因非常重要。既往角膜屈光手术,眼表疾病,感染状况,全身性疾病,放射线以及局部和全身药物使用等情况。对于角膜上皮病变或损伤轻微,且对常规治疗无应答,症状比较“严重”的患者需进行角膜敏感程度评估[38]
5.3.2 疼痛程度评估
眼疼痛程度评估问卷量表(Ocular Pain Assessment Survey,OPAS)[39]可以用于定量评估眼部疼痛及其对生活的影响。或者可以使用原本仅用于眼表疾病而非疼痛的问卷量表,例如眼表疾病指数问卷量表(Ocular Surface Disease Index,OSDI)等。
5.3.3 眼表健康及功能评估
通过裂隙灯检查角结膜染色、泪液分泌Schirmer测量、泪膜破裂时间、泪膜渗透压和泪膜蛋白质组学等评估眼表状况。角膜神经功能可以使用角膜敏感度测量仪进行评估。该类仪器包括接触式及非接触式2种[10]
5.3.4 中枢性及周边性疼痛鉴别
表面麻醉剂有助于区分神经病变是仅在角膜外周疼痛感受器水平还是已进展为中枢神经性疾病。仅使用普鲁卡因,疼痛可以完全缓解,代表疾病局限于周围神经,但是只是部分缓解或完全没有缓解表明已经累及中枢神经系统[10]。对表面麻醉眼药水无反应表明疼痛主要位于中枢神经系统[40]
5.3.5 IVCM
IVCM图像定位于角膜上皮下神经纤维丛。IVCM图像可显示角膜神经病变:神经的长度和数量减少,角膜上皮下基底丛神经密度降低。神经丛弯曲度、反射率、神经纤维串珠样分布和神经纤维瘤增加。IVCM图像可显示治疗后患者角膜改变,经过治疗后,角膜神经丛形态及分布状态改善[8]。可见角膜上皮性病变,包括浅表上皮细胞密度降低,以及细胞形状改变。此外,基底层细胞中树突状细胞、朗格汉斯细胞增加是局部免疫炎症激活的证据[35]
5.3.6 眼表活体组织印记细胞学
采用活体组织印记细胞学方法在泪液或结膜组织寻找特征性生物标志物[41]。常用的炎性生物标志物包括基质金属蛋白酶2、3、9(matrix metalloproteinase-2, 3, 9,MMP-2、3、9)、白细胞介素1β、6、8、17a(interleukin-1β, 6, 8, 17,IL-1β、8、17a)、单核巨噬细胞、肿瘤坏死因子(tumor necrosis factor-α,TNF-α)[14]等。
5.3.7 功能性核磁共振
功能性磁共振成像可以鉴别畏光是否与心理恐惧症相关或仅为全身躯体性疼痛综合征在眼表结膜、角膜局部的病理改变[42]。此种功能性分子影像学检测,有望找到特征性、全身性生物学信号,为鉴别心理性与躯体性眼痛提供客观依据。

6 治疗

6.1 治疗原则

NCP的治疗应基于个体化原则,即每个患者都需要根据NCP的病因和症状的严重程度进行分级,制定个体化治疗方案。目标是着眼于控制导致眼表炎症及神经损伤的危险因素,恢复眼球表面健康——减少眼表炎症所继发的角膜神经损伤。
确定疾病过程,即明确疾病是否居于外周神经元或已辐射至中枢神经系统。基于神经干细胞激活及营养的干细胞再生疗法有助于逆转角膜神经丛损伤。对于中枢神经已经受累的患者,局部治疗效果通常有限。如果已经发生中枢神经病变,则需要更多的针对中枢神经系统的有创性疼痛控制方案[43]
缓解疼痛药物阶梯疗法指的是针对阻止眼表神经末梢小分子肽释放和伤害感受器的调节,分级使用不同类型及程度的疼痛缓解药物。NCP是全身复杂性疼痛综合症的一部分,需采取多学科联合的方法,通常指的是以眼科专家、疼痛专家、神经病学家、精神科专家、康复治疗专家和药学专家等多学科诊疗团队协同治疗。

6.2 治疗方案

6.2.1 眼表治疗
眼部润滑和干眼的治疗:人工泪液可用于防止角膜干燥,减轻异物感等。通过降低泪膜渗透压,抑制伤害性感受器。眼药水、眼用凝胶或眼膏的具体使用应视情况而定。如果使用超过4次/d,建议使用不含防腐剂的人工泪液。对于泪液缺乏导致视力下降的干眼,地夸磷索钠与泪点栓塞具有相似的作用[14]
睑缘炎是导致泪膜不稳定及蒸发过强型干眼的主要病因,除清洁、按摩、雾化等物理治疗以外,还应局部或全身使用对致病细菌敏感的抗生素。对于蒸发过强型干眼,可使用含Omega-3或不饱和脂肪酸的鱼油或亚麻籽油。
6.2.2 抗炎治疗
类固醇激素:短效类固醇激素能有效控制炎症。该药物能减轻眼球表面炎性刺激,并能停止炎症反应及其继发的神经纤维损伤。炎症一旦控制应及时停止,防止白内障形成及眼内压升高。对眼表刺激性小的类固醇滴眼液有氟甲松龙滴眼液及氯替泼诺滴眼液[14]等。
非类固醇激素:0.5%环孢霉素滴眼液[14]可以有效降低眼表炎症,该T细胞调节性炎症反应控制剂起效缓慢,但其为抑制眼表炎症及修复泪膜稳定性提供新的选择。
6.2.3 自体血清制剂
自体血清在干眼及角膜神经病变方面作用显著[44]。血清中富含神经生长因子,其可促进神经再生和修复神经功能[45]。自体血清治疗主要是针对慢性炎症导致的神经异常性疼痛。含血清制剂的人工泪液富含多种神经生长因子和上皮生长因子,如神经生长因子(never growth factor,NGF)、胰岛素样生长因子-1(insulin-like growth factor-1,IGF-1)、转化生长因子β (transfor ming grow th factor-β,TGF-β)、纤维连接蛋白、P物质、表皮生长因子[46-47]等,其通过促进角膜神经干细胞激活、增殖、分化并适应眼表微环境。
6.2.4 辅助器械
通过湿房镜的佩戴能有效保持局部泪液量、修复泪膜稳定性、改善眼表微环境。治疗性角膜绷带镜、巩膜镜、特别是人工替代眼表生态系统(Replacement of the Ocular Surface Ecosystem,PROSE)[48]可有效治疗屈光手术后NCP。PROSE由坚固的透气镜片制成,镜片因人而异,可为眼球表面细胞提供高湿度、富氧量的营养成分[48]
6.2.5 冻干羊膜及羊膜提取液
同种异体冻干羊膜及新鲜羊膜提取液具有抗炎、抗纤维化和神经营养作用[49]。但并非所有患者都能耐受PROKERA等聚碳酸酯材料的异物性刺激,此时可以将冻干羊膜放置在绷带型隐形眼镜下,使其在提供营养的同时,形成物理屏障以减轻聚碳酸酯材料的异物刺激。
6.2.6 全身止痛药、抗抑郁药和抗精神药
NCP患者也有其他眼外症状,通常是全身系统性、复杂性疼痛综合征的一部分。全身性疼痛强度与抑郁程度相关,而创伤后应激紊乱(post-traumatic stress disorder,PTSD)与干眼严重程度相关。对NCP或全身疼痛综合征患者常采用三环类抗抑郁药(阿米替林、去甲替林)、抗惊厥药(卡马西平)、非甾体抗炎药(布洛芬、氯芬酸钠)、阿片类镇痛药(屈大麻酚、曲马多)、钙离子通道调节剂(加巴喷丁、普瑞巴林)等单一或联合治疗,获得良好疗效[50]
6.2.7 其他药物补充治疗
6.2.7.1 激素调节治疗
通过对体内激素水平调节,能有效地调控眼表炎症及感觉神经末梢反应性。雄激素可减少角膜神经末梢单核巨噬细胞,炎症介质TNF-α和IL-1β的表达,从而减少眼表炎症因子释放[14]。雌激素也可降低干眼症状的严重程度[51]。均衡体内性激素水平,调整激素相对表达可有效控制神经末梢炎症及神经反应性。
6.2.7.2 维生素B12
多种维生素参与NCP的疾病过程。其中维生素B12对疱疹病毒性神经病变、糖尿病性神经病变和创伤性神经疼痛的症状控制有效。这是因为其具有减轻伤害刺激级联释放反应的作用。维生素B12能通过增加大脑皮层不同区域血清素水平,抑制脊柱传出神经元兴奋性,减轻海马神经元或启动鸦片肽样受体等多种途径产生镇痛作用。维生素B 12局部治疗可阻断环氧合酶,促使外伤后角膜表面神经重新分布,抑制眼表细胞氧化应激及炎症反应,降低神经元对疼痛刺激的反应性[52],从而促进角膜上皮再生。维生素B12全身治疗可通过降低丘脑神经元的反应性,或启动阿片样受体发挥作用[53]。维生素B12在氮氧化-cGMP系统、阻止环氧激酶途径和前列腺素E2释放级联反应等过程起重要作用[54-55]
6.2.7.3 肉毒杆菌毒素A
接受肉毒杆菌A治疗的慢性偏头痛患者,其眼部异物感和畏光症状明显改善。肉毒杆菌素A作用的机制包括:阻断起源于颈椎水平三叉神经性偏头痛、光敏性损伤和眼表伤害性信号转导,抑制神经感受器敏感化和信号传导放大,减少达到后部丘脑的不良刺激;阻断炎性介质如降钙素基因相关肽的释放[56]等。
6.2.7.4 TRPM8拮抗剂
TRPM8拮抗剂减少了干眼患者角膜中持续性、自发性和寒冷刺激诱发的三叉神经睫状节神经冲动,并减轻位于角膜和三叉神经节的炎症反应,可有效控制干眼相关性角膜疼痛综合征[17]
6.2.8 中枢神经系统物理治疗
中枢神经系统电刺激疗法基于电压门控神经脉冲的原理,阻断疼痛刺激信号自下而上的传导[57]。使用经皮放置单向电极片于角膜,对传入性大直径神经纤维进行电脉冲干扰,从而靶向三叉神经颈椎复合体,干扰脊髓颈椎水平三叉神经系统的角膜伤害性信号传入神经与颈椎的C1/C 2水平区域中的二级神经元活动,直接抑制小直径神经纤维性感受器末端放电。但该操作难度大,且随着放置引线的迁移而导致治疗效果不确定。此外,经颅骨磁性刺激(trans cranial magnetic stimulation,TcMS)[58]及以心血管有氧运动、饮食调整、冥想和中医按摩、针灸疗法为代表的综合治疗也显示出良好的效果[59]

7 结语

NCP是指具有干眼症状、但缺乏体征的一类角膜神经性疾病。局部及全身因素参与NCP的过程。通过实时活体共焦显微镜及印迹细胞学等方法能够找到角膜神经特征性改变,以功能磁共振为代表的诊断方法为研究该类疾病提供新的选择。作为全身慢性疼痛综合征的一部分,NCP的治疗应遵循个体化、多学科联合的原则,在药物治疗的选择上要充分考虑患者的利与弊。虽然药物治疗的阶梯化、综合化等为临床研究的重点,但是局部或全身物理、心理等综合治疗展现出可期待的前景。
1、Dermer H, Hwang J, Mittal R, et al. Corneal sub-basal nerve plexus microneuromas in individuals with and without dry eye[ J]. Br J Ophthalmol, 2021, Epub ahead of print.Dermer H, Hwang J, Mittal R, et al. Corneal sub-basal nerve plexus microneuromas in individuals with and without dry eye[ J]. Br J Ophthalmol, 2021, Epub ahead of print.
2、Belmonte C. Eye dryness sensations after refractive surgery: impaired tear secretion or “phantom” cornea?[ J]. J Refract Surg, 2007, 23(6): 598-602.Belmonte C. Eye dryness sensations after refractive surgery: impaired tear secretion or “phantom” cornea?[ J]. J Refract Surg, 2007, 23(6): 598-602.
3、Kim J, Yoon HJ, You IC, et al. Clinical characteristics of dry eye with ocular neuropathic pain features: comparison according to the types of sensitization based on the Ocular Pain Assessment Survey[ J]. BMC Ophthalmol, 2020, 20(1): 455.Kim J, Yoon HJ, You IC, et al. Clinical characteristics of dry eye with ocular neuropathic pain features: comparison according to the types of sensitization based on the Ocular Pain Assessment Survey[ J]. BMC Ophthalmol, 2020, 20(1): 455.
4、Tagawa Y, Noda K, Ohguchi T, et al. Corneal hyperalgesia in patients with short tear film break-up time dry eye[ J]. Ocul Surf, 2019, 17(1): 55-59.Tagawa Y, Noda K, Ohguchi T, et al. Corneal hyperalgesia in patients with short tear film break-up time dry eye[ J]. Ocul Surf, 2019, 17(1): 55-59.
5、Crane AM, Levitt RC, Felix ER , et al. Patients with more severe symptoms of neuropathic ocular pain report more frequent and severe chronic overlapping pain conditions and psychiatric disease[ J]. Br J Ophthalmol, 2017, 101(2): 227-231.Crane AM, Levitt RC, Felix ER , et al. Patients with more severe symptoms of neuropathic ocular pain report more frequent and severe chronic overlapping pain conditions and psychiatric disease[ J]. Br J Ophthalmol, 2017, 101(2): 227-231.
6、Galor A, Covington D, Levitt AE, et al. Neuropathic ocular pain due to dry eye is associated with multiple comorbid chronic pain syndromes[ J]. J Pain, 2016, 17(3): 310-318.Galor A, Covington D, Levitt AE, et al. Neuropathic ocular pain due to dry eye is associated with multiple comorbid chronic pain syndromes[ J]. J Pain, 2016, 17(3): 310-318.
7、Rosenthal P, Borsook D, Moulton EA. Oculofacial pain: corneal nerve damage leading to pain beyond the eye[ J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5285-5287.Rosenthal P, Borsook D, Moulton EA. Oculofacial pain: corneal nerve damage leading to pain beyond the eye[ J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5285-5287.
8、Rosenthal P, Borsook D. Ocular neuropathic pain[ J]. Br J Ophthalmol, 2016, 100: 128-134.Rosenthal P, Borsook D. Ocular neuropathic pain[ J]. Br J Ophthalmol, 2016, 100: 128-134.
9、Kalangara JP, Galor A, Levitt RC, et al. Burning eye syndrome: do neuropathic pain mechanisms underlie chronic dry eye?[ J]. Pain Med, 2016, 17(4): 746-755.Kalangara JP, Galor A, Levitt RC, et al. Burning eye syndrome: do neuropathic pain mechanisms underlie chronic dry eye?[ J]. Pain Med, 2016, 17(4): 746-755.
10、Goyal S, Hamrah P. Understanding neuropathic corneal pain--gaps and current therapeutic approaches[ J]. Semin Ophthalmol, 2016, 31(1/2): 59-70.Goyal S, Hamrah P. Understanding neuropathic corneal pain--gaps and current therapeutic approaches[ J]. Semin Ophthalmol, 2016, 31(1/2): 59-70.
11、Galor A, Moein HR, Lee C, et al. Neuropathic pain and dry eye[ J]. Ocul Surf, 2018, 16(1): 31-44.Galor A, Moein HR, Lee C, et al. Neuropathic pain and dry eye[ J]. Ocul Surf, 2018, 16(1): 31-44.
12、Aggarwal S, Colon C, Kheirkhah A, et al. Efficacy of autologous serum tears for treatment of neuropathic corneal pain[ J]. Ocul Surf, 2019, 17(3): 532-539.Aggarwal S, Colon C, Kheirkhah A, et al. Efficacy of autologous serum tears for treatment of neuropathic corneal pain[ J]. Ocul Surf, 2019, 17(3): 532-539.
13、Theophanous C, Jacobs DS, Hamrah P. Corneal neuralgia after LASIK[ J]. Optom Vis Sci, 2015, 92(9): e233-e240.Theophanous C, Jacobs DS, Hamrah P. Corneal neuralgia after LASIK[ J]. Optom Vis Sci, 2015, 92(9): e233-e240.
14、Tsubota K, Pflugfelder SC, Liu Z, et al. Defining dry eye from a clinical perspective[ J]. Int J Mol Sci, 2020, 21(23): 9271.Tsubota K, Pflugfelder SC, Liu Z, et al. Defining dry eye from a clinical perspective[ J]. Int J Mol Sci, 2020, 21(23): 9271.
15、Pi?a R, Ugarte G, Campos M, et al. Role of TRPM8 channels in altered cold sensitivity of corneal primary sensory neurons induced by axonal damage[ J]. J Neurosci, 2019, 39(41): 8177-8192.Pi?a R, Ugarte G, Campos M, et al. Role of TRPM8 channels in altered cold sensitivity of corneal primary sensory neurons induced by axonal damage[ J]. J Neurosci, 2019, 39(41): 8177-8192.
16、Parra A, Gonzalez-Gonzalez O, Gallar J, et al. Tear fluid hyperosmolality increases nerve impulse activity of cold thermoreceptor endings of the cornea[ J]. Pain, 2014, 155(8): 1481-1491.Parra A, Gonzalez-Gonzalez O, Gallar J, et al. Tear fluid hyperosmolality increases nerve impulse activity of cold thermoreceptor endings of the cornea[ J]. Pain, 2014, 155(8): 1481-1491.
17、Fakih D, Baudouin C, Réaux-Le Goazigo A, et al. TRPM8: a therapeutic target for neuroinflammatory symptoms induced by severe dry eye disease[ J]. Int J Mol Sci, 2020, 21(22): 8756.Fakih D, Baudouin C, Réaux-Le Goazigo A, et al. TRPM8: a therapeutic target for neuroinflammatory symptoms induced by severe dry eye disease[ J]. Int J Mol Sci, 2020, 21(22): 8756.
18、Horwitz V, Dachir S, Cohen M, et al. Differential expression of corneal and limbal cytokines and chemokines throughout the clinical course of sulfur mustard induced ocular injury in the rabbit model[ J]. Exp Eye Res, 2018, 177: 145-152.Horwitz V, Dachir S, Cohen M, et al. Differential expression of corneal and limbal cytokines and chemokines throughout the clinical course of sulfur mustard induced ocular injury in the rabbit model[ J]. Exp Eye Res, 2018, 177: 145-152.
19、Lafreniere JD, Kelly MEM. Potential for endocannabinoid system modulation in ocular pain and inflammation: filling the gaps in current pharmacological options[ J]. Neuronal Signal, 2018, 2(4): NS20170144.Lafreniere JD, Kelly MEM. Potential for endocannabinoid system modulation in ocular pain and inflammation: filling the gaps in current pharmacological options[ J]. Neuronal Signal, 2018, 2(4): NS20170144.
20、Luna C, Mizerska K, Quirce S, et al. Sodium channel blockers modulate abnormal activity of regenerating nociceptive corneal nerves after surgical lesion[ J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 2.Luna C, Mizerska K, Quirce S, et al. Sodium channel blockers modulate abnormal activity of regenerating nociceptive corneal nerves after surgical lesion[ J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 2.
21、Cruzat A, Qazi Y, Hamrah P. In vivo confocal microscopy of corneal nerves in health and disease[ J]. Ocul Surf, 2017, 15(1): 15-47.Cruzat A, Qazi Y, Hamrah P. In vivo confocal microscopy of corneal nerves in health and disease[ J]. Ocul Surf, 2017, 15(1): 15-47.
22、Hirata H, Mizerska K, Dallacasagrande V, et al. Acute corneal epithelial debridement unmasks the corneal stromal nerve responses to ocular stimulation in rats: implications for abnormal sensations of the eye[ J]. J Neurophysiol, 2017, 117(5): 1935-1947.Hirata H, Mizerska K, Dallacasagrande V, et al. Acute corneal epithelial debridement unmasks the corneal stromal nerve responses to ocular stimulation in rats: implications for abnormal sensations of the eye[ J]. J Neurophysiol, 2017, 117(5): 1935-1947.
23、Belmonte C. Pain, dryness, and itch sensations in eye surface disorders are defined by a balance between inflammation and sensory nerve injury[ J]. Cornea, 2019, 38(Suppl 1): S11-S24.Belmonte C. Pain, dryness, and itch sensations in eye surface disorders are defined by a balance between inflammation and sensory nerve injury[ J]. Cornea, 2019, 38(Suppl 1): S11-S24.
24、Belmonte C, Acosta MC, Merayo-Lloves J, et al. What causes eye pain?[ J] Curr Ophthalmol Rep, 2015, 3(2): 111-121.Belmonte C, Acosta MC, Merayo-Lloves J, et al. What causes eye pain?[ J] Curr Ophthalmol Rep, 2015, 3(2): 111-121.
25、Aicher SA , Hermes SM, Hegarty DM, et al. Corneal afferents differentially target thalamic-and parabrachial-projecting neurons in spinal trigeminal nucleus caudalis[ J]. Neuroscience, 2013, 232: 182-193.Aicher SA , Hermes SM, Hegarty DM, et al. Corneal afferents differentially target thalamic-and parabrachial-projecting neurons in spinal trigeminal nucleus caudalis[ J]. Neuroscience, 2013, 232: 182-193.
26、Levitt AE, Galor A, Chowdhury AR, et al. Evidence that dry eye represents a chronic overlapping pain condition[ J]. Mol Pain, 2017, 13: 1744806917729306.Levitt AE, Galor A, Chowdhury AR, et al. Evidence that dry eye represents a chronic overlapping pain condition[ J]. Mol Pain, 2017, 13: 1744806917729306.
27、Suo J, Wang M, Zhang P, et al. Siwei Jianbu decoction improves painful paclitaxel-induced peripheral neuropathy in mouse model by modulating the NF-κB and MAPK signaling pathways[ J]. Regen Med Res, 2020; 8: 2.Suo J, Wang M, Zhang P, et al. Siwei Jianbu decoction improves painful paclitaxel-induced peripheral neuropathy in mouse model by modulating the NF-κB and MAPK signaling pathways[ J]. Regen Med Res, 2020; 8: 2.
28、Baum P, Koj S, Kl?ting N, et al. Treatment-induced neuropathy in diabetes (TIND)-developing a disease model in type 1 diabetic rats[ J]. Int J Mol Sci, 2021, 22(4): 1571.Baum P, Koj S, Kl?ting N, et al. Treatment-induced neuropathy in diabetes (TIND)-developing a disease model in type 1 diabetic rats[ J]. Int J Mol Sci, 2021, 22(4): 1571.
29、Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity[ J]. Nature, 1983, 306(5944): 686-688.Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity[ J]. Nature, 1983, 306(5944): 686-688.
30、Stapleton F, Marfurt C, Golebiowski B, et al. TFOS International Workshop on Contact Lens Discomfort. The TFOS International Workshop on Contact Lens Discomfort: report of the subcommittee on neurobiology[ J]. Invest Ophthalmol Vis Sci, 2013, 54(11): TFOS71-97.Stapleton F, Marfurt C, Golebiowski B, et al. TFOS International Workshop on Contact Lens Discomfort. The TFOS International Workshop on Contact Lens Discomfort: report of the subcommittee on neurobiology[ J]. Invest Ophthalmol Vis Sci, 2013, 54(11): TFOS71-97.
31、Varshney V, Osborn J, Chatur vedi R , et al. Advances in the interventional management of neuropathic pain[ J]. Ann Transl Med, 2021, 9(2): 187.Varshney V, Osborn J, Chatur vedi R , et al. Advances in the interventional management of neuropathic pain[ J]. Ann Transl Med, 2021, 9(2): 187.
32、Navid MS, Lelic D, Niazi IK, et al. The effects of chiropractic spinal manipulation on central processing of tonic pain - a pilot study using standardized low-resolution brain electromagnetic tomography (sLORETA)[ J]. Sci Rep, 2019, 9(1): 6925.Navid MS, Lelic D, Niazi IK, et al. The effects of chiropractic spinal manipulation on central processing of tonic pain - a pilot study using standardized low-resolution brain electromagnetic tomography (sLORETA)[ J]. Sci Rep, 2019, 9(1): 6925.
33、Galor A, Zlotcavitch L, Walter SD, et al. Dry eye symptom severity and persistence are associated with symptoms of neuropathic pain[ J]. Br J Ophthalmol, 2015, 99(5): 665-668.Galor A, Zlotcavitch L, Walter SD, et al. Dry eye symptom severity and persistence are associated with symptoms of neuropathic pain[ J]. Br J Ophthalmol, 2015, 99(5): 665-668.
34、Borsook D, Rosenthal P. Chronic (neuropathic) corneal pain and blepharospasm: five case reports[ J]. Pain, 2011, 152(10): 2427-2431.Borsook D, Rosenthal P. Chronic (neuropathic) corneal pain and blepharospasm: five case reports[ J]. Pain, 2011, 152(10): 2427-2431.
35、Hamrah P, Qazi Y, Shahatit B, et al. Corneal nerve and epithelial cell alterations in corneal allodynia: an in vivo confocal microscopy case series[ J]. Ocul Surf, 2017, 15(1): 139-151Hamrah P, Qazi Y, Shahatit B, et al. Corneal nerve and epithelial cell alterations in corneal allodynia: an in vivo confocal microscopy case series[ J]. Ocul Surf, 2017, 15(1): 139-151
36、Guerrero-Moreno A, Baudouin C, Melik Parsadaniantz S, et al. Morphological and functional changes of corneal nerves and their contribution to peripheral and central sensory abnormalities[ J]. Front Cell Neurosci, 2020, 14: 610342.Guerrero-Moreno A, Baudouin C, Melik Parsadaniantz S, et al. Morphological and functional changes of corneal nerves and their contribution to peripheral and central sensory abnormalities[ J]. Front Cell Neurosci, 2020, 14: 610342.
37、Tepelus TC, Chiu GB, Huang J, et al. Correlation between corneal innervation and inflammation evaluated with confocal microscopy and symptomatology in patients with dry eye syndromes: a preliminary study[ J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(9): 1771-1778.Tepelus TC, Chiu GB, Huang J, et al. Correlation between corneal innervation and inflammation evaluated with confocal microscopy and symptomatology in patients with dry eye syndromes: a preliminary study[ J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(9): 1771-1778.
38、Dua HS, Said DG, Messmer EM, et al. Neurotrophic keratopathy[ J]. Prog Retin Eye Res, 2018, 66: 107-131.Dua HS, Said DG, Messmer EM, et al. Neurotrophic keratopathy[ J]. Prog Retin Eye Res, 2018, 66: 107-131.
39、Qazi Y, Hurwitz S, Khan S, et al. Validity and reliability of a novel ocular pain assessment survey (OPAS) in quantifying and monitoring corneal and ocular surface pain[ J]. Ophthalmology, 2016, 123(7): 1458-1468.Qazi Y, Hurwitz S, Khan S, et al. Validity and reliability of a novel ocular pain assessment survey (OPAS) in quantifying and monitoring corneal and ocular surface pain[ J]. Ophthalmology, 2016, 123(7): 1458-1468.
40、Galor A, Batawi H, Felix ER, et al. Incomplete response to artificial tears is associated with features of neuropathic ocular pain[ J]. Br J Ophthalmol, 2016, 100(6): 745-749.Galor A, Batawi H, Felix ER, et al. Incomplete response to artificial tears is associated with features of neuropathic ocular pain[ J]. Br J Ophthalmol, 2016, 100(6): 745-749.
41、Wei Y, Gadaria-Rathod N, Epstein S, et al. Tear cytokine profile as a noninvasive biomarker of inflammation for ocular surface diseases: standard operating procedures[ J]. Invest Ophthalmol Vis Sci, 2013,54(13): 8327-8336.Wei Y, Gadaria-Rathod N, Epstein S, et al. Tear cytokine profile as a noninvasive biomarker of inflammation for ocular surface diseases: standard operating procedures[ J]. Invest Ophthalmol Vis Sci, 2013,54(13): 8327-8336.
42、Moulton EA, Becerra L, Rosenthal P, et al. An approach to localizing corneal pain representation in human primary somatosensory cortex[ J]. PLoS One, 2012, 7(9): e44643.Moulton EA, Becerra L, Rosenthal P, et al. An approach to localizing corneal pain representation in human primary somatosensory cortex[ J]. PLoS One, 2012, 7(9): e44643.
43、Adami G, Gerratana E, Atzeni F, et al. Is central sensitization an important determinant of functional disability in patients with chronic inflammatory arthritides?[ J]. Ther Adv Musculoskelet Dis, 2021, 13: 1759720X21993252.Adami G, Gerratana E, Atzeni F, et al. Is central sensitization an important determinant of functional disability in patients with chronic inflammatory arthritides?[ J]. Ther Adv Musculoskelet Dis, 2021, 13: 1759720X21993252.
44、Gudasheva TA, Ostrovskaya RU, Seredenin SB. Novel technologies for dipeptide drugs design and their implantation[ J]. Curr Pharm Des, 2018, 24(26): 3020-3027.Gudasheva TA, Ostrovskaya RU, Seredenin SB. Novel technologies for dipeptide drugs design and their implantation[ J]. Curr Pharm Des, 2018, 24(26): 3020-3027.
45、Bumgarner JR, Walker WH, Liu JA, et al. Dim light at night exposure induces cold hyperalgesia and mechanical allodynia in male mice[ J]. Neuroscience, 2020, 434: 111-119.Bumgarner JR, Walker WH, Liu JA, et al. Dim light at night exposure induces cold hyperalgesia and mechanical allodynia in male mice[ J]. Neuroscience, 2020, 434: 111-119.
46、Versura P, Giannaccare G, Pellegrini M, et al. Neurotrophic keratitis: current challenges and future prospects[ J]. Eye Brain, 2018, 10: 37-45.Versura P, Giannaccare G, Pellegrini M, et al. Neurotrophic keratitis: current challenges and future prospects[ J]. Eye Brain, 2018, 10: 37-45.
47、Pan Q, Angelina A, Zambrano A, et al. Autologous serum eye drops for dry eye[ J]. Cochrane Database Syst Rev, 2013, 8(8): CD009327.Pan Q, Angelina A, Zambrano A, et al. Autologous serum eye drops for dry eye[ J]. Cochrane Database Syst Rev, 2013, 8(8): CD009327.
48、Mian SZ, Agranat JS, Jacobs DS. Prosthetic replacement of the ocular surface ecosystem (PROSE) treatment for complications after LASIK[ J]. Eye Contact Lens, 2016, 42(6): 371-373.Mian SZ, Agranat JS, Jacobs DS. Prosthetic replacement of the ocular surface ecosystem (PROSE) treatment for complications after LASIK[ J]. Eye Contact Lens, 2016, 42(6): 371-373.
49、Morkin MI, Hamrah P. Efficacy of self-retained cryopreserved amniotic membrane for treatment of neuropathic corneal pain[ J]. Ocul Surf, 2018, 16(1): 132-138.Morkin MI, Hamrah P. Efficacy of self-retained cryopreserved amniotic membrane for treatment of neuropathic corneal pain[ J]. Ocul Surf, 2018, 16(1): 132-138.
50、Ceci FM, Ferraguti G, Petrella C, et al. Nerve growth factor in alcohol use disorders[ J]. Curr Neuropharmacol, 2021, 19(1): 45-60.Ceci FM, Ferraguti G, Petrella C, et al. Nerve growth factor in alcohol use disorders[ J]. Curr Neuropharmacol, 2021, 19(1): 45-60.
51、Barabino S, Chen Y, Chauhan S, et al. Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease[ J]. Prog Retin Eye Res, 2012, 31(3): 271-285.Barabino S, Chen Y, Chauhan S, et al. Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease[ J]. Prog Retin Eye Res, 2012, 31(3): 271-285.
52、Macri A, Scanarotti C, Bassi A, et al. Evaluation of oxidative stress levels in the conjunctival epithelium of patients with or without dry eye, and dry eye patients treated with preservative-free hyaluronic acid 0.15% and vitamin B12 eye drops[ J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(3): 425-430.Macri A, Scanarotti C, Bassi A, et al. Evaluation of oxidative stress levels in the conjunctival epithelium of patients with or without dry eye, and dry eye patients treated with preservative-free hyaluronic acid 0.15% and vitamin B12 eye drops[ J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(3): 425-430.
53、Takemura Y, Imai S, Kojima H, et al. Brain-derived neurotrophic factor from bone marrow-derived cells promotes post-injury repair of peripheral nerve[ J]. PLoS One, 2012, 7(9): e44592.Takemura Y, Imai S, Kojima H, et al. Brain-derived neurotrophic factor from bone marrow-derived cells promotes post-injury repair of peripheral nerve[ J]. PLoS One, 2012, 7(9): e44592.
54、Chen M, Peyrin-Biroulet L, George A, et al. Methyl deficient diet aggravates experimental colitis in rats[ J]. J Cell Mol Med, 2011, 15(11): 2486-2497.Chen M, Peyrin-Biroulet L, George A, et al. Methyl deficient diet aggravates experimental colitis in rats[ J]. J Cell Mol Med, 2011, 15(11): 2486-2497.
55、Didangelos T, Karlafti E, Kotzakioulafi E, et al. Vitamin B12 supplementation in diabetic neuropathy: a 1-year, randomized, doubleblind, placebo-controlled trial[ J]. Nutrients, 2021, 13(2): 395.Didangelos T, Karlafti E, Kotzakioulafi E, et al. Vitamin B12 supplementation in diabetic neuropathy: a 1-year, randomized, doubleblind, placebo-controlled trial[ J]. Nutrients, 2021, 13(2): 395.
56、 Jirsova K, Seidler Stangova P, Palos M, et al. Aberrant HLA-DR expression in the conjunctival epithelium after autologous serum treatment in patients with graft-versus-host disease or Sj?gren's syndrome[ J]. PLoS One, 2020, 15(4): e0231473. Jirsova K, Seidler Stangova P, Palos M, et al. Aberrant HLA-DR expression in the conjunctival epithelium after autologous serum treatment in patients with graft-versus-host disease or Sj?gren's syndrome[ J]. PLoS One, 2020, 15(4): e0231473.
57、Cai MM, Zhang J. Effectiveness of transcutaneous electrical stimulation combined with artificial tears for the treatment of dry eye: A randomized controlled trial[ J]. Exp Ther Med, 2020, 20(6): 175.Cai MM, Zhang J. Effectiveness of transcutaneous electrical stimulation combined with artificial tears for the treatment of dry eye: A randomized controlled trial[ J]. Exp Ther Med, 2020, 20(6): 175.
58、Dieckmann G, Goyal S, Hamrah P. Neuropathic corneal pain: approaches for management[ J]. Ophthalmology, 2017, 124(11S): S34-S47.Dieckmann G, Goyal S, Hamrah P. Neuropathic corneal pain: approaches for management[ J]. Ophthalmology, 2017, 124(11S): S34-S47.
59、Ebrahimiadib N, Yousefshahi F, Abdi P, et al. Ocular neuropathic pain: an overview focusing on ocular surface pains[ J]. Clin Ophthalmol, 2020, 14: 2843-2854.Ebrahimiadib N, Yousefshahi F, Abdi P, et al. Ocular neuropathic pain: an overview focusing on ocular surface pains[ J]. Clin Ophthalmol, 2020, 14: 2843-2854.
1、仲奇奇. 532nm氩离子激光光凝治疗视网膜疾病后眼表变化的观察研究[D].大连医科大学,2023.
2、李梅. 针刺治疗干眼眼表神经痛的临床疗效观察[D].南京中医药大学,2023.
3、钱丽君. 逍遥散治疗干眼伴焦虑抑郁患者的临床疗效及其对CaMKⅡβ信号通路调节机制研究[D].南京中医药大学,2023.
4、赵文心,梁凌毅.慢性眼移植物抗宿主病的临床特点及相关机制的新进展[J].器官移植,2022,13(2):187-194.Zhao WX, Liang LY. New progress on clinical characteristics and related mechanisms of chronic ocular graft-versus-host disease[J]. Organ Transplant, 2022, 13(2): 187-194.
1、郴州市科技局基金(ZDYF-20200092);郴州市第一人民医院优秀青年基金(N2019-006);南华大学医院管理基金 (2019YJGL04)。
This work was supported by Chenzhou Science and Technology Bureau (ZDYF-20200092), Outstanding Youth Foundation of Chenzhou First People’s Hospital (N2019-006), and University of South China Hospital Management Fund (2019YJGL04), China.()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录