1、Pollack IP. Chronic angle-closure glaucoma; diagnosis and treatment
in patients with angles that appear open[ J]. Arch Ophthalmol, 1971,
85(6): 676-689.Pollack IP. Chronic angle-closure glaucoma; diagnosis and treatment
in patients with angles that appear open[ J]. Arch Ophthalmol, 1971,
85(6): 676-689.
2、Kim DY, Fingler J, Zawadzki R J, et al. Optical imaging of the
chorioretinal vasculature in the living human eye[ J]. Proc Natl Acad
Sci U S A, 2013, 110(35): 14354-14359.Kim DY, Fingler J, Zawadzki R J, et al. Optical imaging of the
chorioretinal vasculature in the living human eye[ J]. Proc Natl Acad
Sci U S A, 2013, 110(35): 14354-14359.
3、Uzun S, Pehlivan E. Vascular density in retina and choriocapillaris as
measured by optical coherence tomography angiography[ J]. Am J
Ophthalmol, 2016, 169: 290.Uzun S, Pehlivan E. Vascular density in retina and choriocapillaris as
measured by optical coherence tomography angiography[ J]. Am J
Ophthalmol, 2016, 169: 290.
4、Chansangpetch S, Lin SC. Optical coherence tomography angiography
in glaucoma care[ J]. Curr Eye Res, 2018, 43(9):1067-1082.Chansangpetch S, Lin SC. Optical coherence tomography angiography
in glaucoma care[ J]. Curr Eye Res, 2018, 43(9):1067-1082.
5、Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography
angiography: a comprehensive review of current methods and clinical
applications[ J]. Prog Retin Eye Res, 2017, 60: 66-100.Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography
angiography: a comprehensive review of current methods and clinical
applications[ J]. Prog Retin Eye Res, 2017, 60: 66-100.
6、Faridi A, Jia Y, Gao SS, et al. Sensitivity and specificity of OCT
angiography to detect choroidal neovascularization[ J]. Ophthalmol
Retina, 2017, 1(4): 294-303.Faridi A, Jia Y, Gao SS, et al. Sensitivity and specificity of OCT
angiography to detect choroidal neovascularization[ J]. Ophthalmol
Retina, 2017, 1(4): 294-303.
7、Suh MH, Zangwill LM, Manalastas PI, et al. Deep retinal layer
microvasculature dropout detected by the optical coherence
tomography angiography in glaucoma[ J]. Ophthalmology, 2016,
123(12): 2509-2518.Suh MH, Zangwill LM, Manalastas PI, et al. Deep retinal layer
microvasculature dropout detected by the optical coherence
tomography angiography in glaucoma[ J]. Ophthalmology, 2016,
123(12): 2509-2518.
8、Lee EJ, Lee SH, Kim JA, et al. Parapapillary deep-layer microvasculature
dropout in glaucoma: topographic association with glaucomatous
damage[ J]. Invest Ophthalmol Vis Sci, 2017, 58(7): 3004-3010.Lee EJ, Lee SH, Kim JA, et al. Parapapillary deep-layer microvasculature
dropout in glaucoma: topographic association with glaucomatous
damage[ J]. Invest Ophthalmol Vis Sci, 2017, 58(7): 3004-3010.
9、Miguel AIM, Silva AB, Azevedo LF. Diagnostic performance of optical
coherence tomography angiography in glaucoma: a systematic review
and meta-analysis[ J]. Br J Ophthalmol, 2019, 103(11): 1677-1684.Miguel AIM, Silva AB, Azevedo LF. Diagnostic performance of optical
coherence tomography angiography in glaucoma: a systematic review
and meta-analysis[ J]. Br J Ophthalmol, 2019, 103(11): 1677-1684.
10、Hood DC, Raza AS, de Moraes CG, et al. Glaucomatous damage of the
macula[ J]. Prog Retin Eye Res, 2013, 32: 1-21.Hood DC, Raza AS, de Moraes CG, et al. Glaucomatous damage of the
macula[ J]. Prog Retin Eye Res, 2013, 32: 1-21.
11、Triolo G, Rabiolo A, Shemonski ND, et al. Optical coherence
tomography angiography macular and peripapillary vessel perfusion
density in healthy subjects, glaucoma suspects, and glaucoma
patients[ J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5713-5722.Triolo G, Rabiolo A, Shemonski ND, et al. Optical coherence
tomography angiography macular and peripapillary vessel perfusion
density in healthy subjects, glaucoma suspects, and glaucoma
patients[ J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5713-5722.
12、Richter GM, Chang R, Situ B, et al. Diagnostic performance of macular
versus peripapillary vessel parameters by optical coherence tomography
angiography for glaucoma[ J]. Transl Vis Sci Technol, 2018, 7(6): 21Richter GM, Chang R, Situ B, et al. Diagnostic performance of macular
versus peripapillary vessel parameters by optical coherence tomography
angiography for glaucoma[ J]. Transl Vis Sci Technol, 2018, 7(6): 21
13、Shin JW, Lee J, Kwon J, et al. Relationship between macular vessel
density and central visual field sensitivity at different glaucoma
stages[ J]. Br J Ophthalmol, 2019, 103(12): 1827-1833.Shin JW, Lee J, Kwon J, et al. Relationship between macular vessel
density and central visual field sensitivity at different glaucoma
stages[ J]. Br J Ophthalmol, 2019, 103(12): 1827-1833.
14、Akil H, Chopra V, Al-Sheikh M, et al. Swept-source OCT angiography
imaging of the macular capillary network in glaucoma[ J]. Br J
Ophthalmol, 2018, 102(4): 515-519.Akil H, Chopra V, Al-Sheikh M, et al. Swept-source OCT angiography
imaging of the macular capillary network in glaucoma[ J]. Br J
Ophthalmol, 2018, 102(4): 515-519.
15、Takusagawa HL, Liu L, Ma KN, et al. Projection-resolved optical
coherence tomography angiography of macular retinal circulation in
glaucoma[ J]. Ophthalmology, 2017, 124(11): 1589-1599.Takusagawa HL, Liu L, Ma KN, et al. Projection-resolved optical
coherence tomography angiography of macular retinal circulation in
glaucoma[ J]. Ophthalmology, 2017, 124(11): 1589-1599.
16、Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical
coherence tomography angiography vessel density in healthy, glaucoma
suspect, and glaucoma eyes[ J]. Invest Ophthalmol Vis Sci, 2016, 57(9):
OCT451-OCT459.Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical
coherence tomography angiography vessel density in healthy, glaucoma
suspect, and glaucoma eyes[ J]. Invest Ophthalmol Vis Sci, 2016, 57(9):
OCT451-OCT459.
17、Jo YH, Sung KR, Yun SC. The relationship between peripapillary
vascular density and visual field sensitivity in primary open-angle and
angle-closure glaucoma[ J]. Invest Ophthalmol Vis Sci, 2018, 59(15):
5862-5867.Jo YH, Sung KR, Yun SC. The relationship between peripapillary
vascular density and visual field sensitivity in primary open-angle and
angle-closure glaucoma[ J]. Invest Ophthalmol Vis Sci, 2018, 59(15):
5862-5867.
18、Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography
of optic disc perfusion in glaucoma[ J]. Ophthalmology, 2014, 121(7):
1322-1332.Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography
of optic disc perfusion in glaucoma[ J]. Ophthalmology, 2014, 121(7):
1322-1332.
19、Lommatzsch C, Rothaus K, Koch JM, et al. Vessel density in OCT
angiography permits differentiation between normal and glaucomatous
optic nerve heads[ J]. Int J Ophthalmol, 2018, 11(5): 835-843.Lommatzsch C, Rothaus K, Koch JM, et al. Vessel density in OCT
angiography permits differentiation between normal and glaucomatous
optic nerve heads[ J]. Int J Ophthalmol, 2018, 11(5): 835-843.
20、Rao HL, Kadambi SV, Weinreb RN, et al. Diagnostic ability of
peripapillary vessel density measurements of optical coherence
tomography angiography in primary open-angle and angle-closure
glaucoma[ J]. Br J Ophthalmol, 2017, 101(8): 1066-1070.Rao HL, Kadambi SV, Weinreb RN, et al. Diagnostic ability of
peripapillary vessel density measurements of optical coherence
tomography angiography in primary open-angle and angle-closure
glaucoma[ J]. Br J Ophthalmol, 2017, 101(8): 1066-1070.
21、Moghimi S, Bowd C, Zangwill LM, et al. Measurement floors and
dynamic ranges of OCT and OCT angiography in glaucoma[ J].
Ophthalmology, 2019, 126(7): 980-988.Moghimi S, Bowd C, Zangwill LM, et al. Measurement floors and
dynamic ranges of OCT and OCT angiography in glaucoma[ J].
Ophthalmology, 2019, 126(7): 980-988.
22、Lu P, Xiao H, Liang C, et al. Quantitative analysis of microvasculature
in macular and peripapillary regions in early primary open-angle
glaucoma[ J]. Curr Eye Res, 2020, 45(5): 629-635.Lu P, Xiao H, Liang C, et al. Quantitative analysis of microvasculature
in macular and peripapillary regions in early primary open-angle
glaucoma[ J]. Curr Eye Res, 2020, 45(5): 629-635.