您的位置: 首页 > 2023年7月 第38卷 第7期 > 文字全文
2023年7月 第38卷 第7期11
目录

Bruch 膜开口 - 最小盘沿宽度在开角型青光眼中的应用

Application of Bruch's membrane opening minimum rim width in open-angle glaucoma

来源期刊: 眼科学报 | 2023年7月 第38卷 第7期 526-534 发布时间: 收稿时间:2023/9/7 15:42:27 阅读量:5457
作者:
关键词:
开角型青光眼Bruch膜开口-最小盘沿宽度视网膜神经纤维层
open-angle glaucoma Bruch’s membrane opening minimum rim width retinal nerve fiber layer
DOI:
10.12419/2301020001
收稿时间:
 
修订日期:
 
接收日期:
 
青光眼是全球首位不可逆性致盲眼病,该疾病与进行性视网膜神经节细胞凋亡相关,大多数患者在视功能改变之前视盘结构已经发生改变,检测视盘R结构改变对于早期青光眼的诊断至关重要。近几年新视盘参数Bruch膜开口-最小盘沿宽度(Bruch's membrane opening minimum rim width,BMO-MRW)在临床上应用越来越广泛,成为目前临床研究的一个热点参数。众所周知视网膜神经纤维层(retinal nerve fiber layer,RNFL)具有很好的青光眼诊断能力,很多研究表明BMO-MRW与RNFL具有相似的诊断性能,并在近视性、异常视盘等一些视盘结构不清晰的青光眼中,BMO-MRW的诊断能力优于RNFL,该参数在监测青光眼病情变化方面也起到一定作用。也有研究表明该参数对青光眼术后随访的应用可能受到一定限制。该文对BMO-MRW在开角型青光眼的诊断及随访中的临床应用加以综述,供临床同道参考。
Glaucoma is the leading cause for irreversible blindness in the world, which is associated with progressive retinal ganglion cell apoptosis. The changes in optic disc structure have been found before visual function variation in many patients. Detecting changes in the structure of the optic disc R is crucial for the diagnosis of early glaucoma. Recently, a new optic disc parameter, Bruce's membrane opening minimum rim width (BMO-MRW) , has been increasingly widely used in clinical practice and become a popular parameter in current clinical research. Retinal nerve fiber layer (RNFL)is an important diagnostic indicator for glaucoma. Many studies indicated that BMO-MRW and RNFL have similar diagnostic performance. In some glaucoma cases with unclear optic disc structure, such as myopia and abnormal optic disc, BMO-MRW provides better diagnostic parameter than RNFL does. It also plays a role in monitoring the changes of glaucoma. Some studies also stated the limitation of the application of this parameter in glaucoma postoperative follow-up. This artice reviews the clinical application of BMO-MRW in diagnosis and follow-up of open-angle glaucoma,providing reference for clinical practicers.

1 青光眼定义

青光眼是全球首位不可逆性致盲眼病,预计到2040年青光眼患者将达到1.118亿[1],其中74%为开角型青光眼[2]。欧洲青光眼指南将原发性开角型青光眼(primary open-angle glaucoma,POAG)定义为一种慢性、进行性、伴有特征性视盘和视网膜神经纤维层(retinal nerve fiber layer,RNFL)形态学改变且不伴有其他眼病或先天异常的视神经病变,该病变与进行性视网膜神经节细胞(retinal ganglion cells,RGCs)凋亡有关,大多数患者在视功能改变之前视盘结构已经发生改变[3],因此检测视盘结构改变对于青光眼早发现、早诊断、早治疗至关重要。

2 光学相干断层扫描技术

光学相干断层扫描技术(optical coherence tomography,OCT)是由Huang等[4]在1991年提出的,目前在眼科已经被广泛应用,它可以检测到RNFL、视盘、黄斑、巩膜、筛板、脉络膜等组织学结构[5],OCT扫描获得的视盘参数可以作为青光眼诊断与监测疾病进展的客观依据[6]。OCT视盘扫描在传统模式以视网膜色素上皮层来界定视盘边缘的,但该方法容易受到视网膜色素上皮层萎缩、高度近视、视盘倾斜及检查眼位等影响而产生一定误差[7-8],而Bruch膜开口(Bruch's membrane opening,BMO)代表一个稳定的开口,所有RGCs轴突都通过BMO出眼组成视神经,因此BMO是RGCs轴突真正的解剖学边界[8-9]

3 高级扫描模式

随着技术的发展,海德堡公司开发了Spectralis-OCT(SD-OCT)6.0版软件:青光眼高级扫描模式(glaucoma module premium,GMP),一种客观的分析视乳神经盘(optic nerve head,ONH)的方法,它是一种三维立体扫描,并非传统的平面扫描,GMP不仅能够获得更加准确的RNFL(该模式下获得的RNFL在本文称为BMO-RNFL,ONH传统环扫获得的 RNFL称为传统-RNFL),并且还可以获得目前国内外研究的热点参数Bruch膜开口-最小盘沿宽度(Bruch-membrance opening minimum rim width,BMO-MRW),BMO-MRW定义为BMO到内界膜的最小距离[8]。GMP的具体扫描步骤首先通过精准的解剖定位系统定位BMO及黄斑中心凹并确定BMO中心与黄斑中心凹连线即Fo-BMO轴,然后进行24次放射状扫描,3次环形扫描,最后获得BMO-MRW及直径分别为3.5 mm、4.1 mm、4.7 mm 的RNFL,见图1。本文对GMP下获得的BMO-MRW在青光眼诊断及随访中的应用加以综述,为临床上POAG的诊断和及时治疗提供更加准确的依据。
图1 高级青光眼扫描
Figure1 Glaucoma Module Premium
(A)红色圈为BMO,绿色线是为获得BMO-MRW对视盘进行24次放色状扫描,蓝色箭头为BMO-MRW,(B)白色虚线为Fo-BMO轴,绿色圆圈分别为直径3.5 mm、4.1 mm和4.7 mm的环形扫描,红色线与蓝色线之间为RNFL。
(A)The red circle represents the BMO, the green line indicates the 24-color pattern scanning of the BMO-MRW at the optic disc, and the blue arrow represents the BMO-MRW. (B)The white dashed line represents the Fo-BMO, the green circles represent the annular scans with diameters of 3.5 mm, 4.1 mm, and 4.7 mm respectively, and the region between the red line and the blue line represents the RNFL.

4 BMO-MRW在POAG中的应用

4.1 BMO-MRW在早期POAG中的诊断性能

准确评估视神经损害以及进展是开角型青光眼早期诊断及随访治疗的关键。目前青光眼患者视盘结构改变常用的检测参数是传统-RNFL[10],但是它会受到视神经盘解剖变异、近视性改变、视盘旁萎缩等因素影响,因此这种方法可能具有诊断局限性[11-12]。近年来,随着OCT的GMP模式的建立,利用 APS定位精准BMO,获得BMO-MRW在早期青光眼诊断性能方面的研究逐渐成为研究热点。
Fan等[13]比较了传统ONH环形扫描获得的二维RNFL与三维BMO-MRW两参数诊断青光眼的准确性,在95%可信区间两参数的曲线下面积(area under the curve,AUC)分别为0.85和0.93(P<0.05)。Li等[14]比较了早期POAG患者通过GMP扫描获得的 BMO-MRW、Bruch膜开口-最小盘沿面积(Bruch's membrane opening-minimum rim area,BMO-MRA)、BMO-RNFL及传统的盘沿面积(optic disc margin-rim area,DM-RA)四个参数在中国人群中诊断青光眼的能力,四个参数在95%置信区间的AUC分别为0.93、0.90、0.95和0.74,该研究中其他三个参数诊断性能明显高于传统的DM-RA。BMO-MRW与BMO-RNFL的AUC比较差异无统计学意义,表明BMO-MRW与BMO-RNFL具有相似的诊断效能。BMO-MRA与BMO-RNFL和BMO-MRW差异具有统计学意义,说明BMO-MRA诊断效的诊断和及时干预尤为重要,以上研究发现在早期POAG的诊断中,BMO-MRW与BMO-RNFL具有相似的诊断性能,并且略高于传统-RNFL。
Gmeiner等[15]应用SD-OCT对40名健康人、50例早期青光眼患者进行GMP扫描,获得BMO-MRW和BMO-RNFL数值,发现在95%可信区间区分早期青光眼和健康对照组AUC分别为0.93和0.95,两参数无统计学差异。而将BMO-MRW与BMO-RNFL结合,区分早期青光眼AUC为0.96,该研究分析两参数结合AUC提高是因为RNFL扫描容易识别视盘周边神经纤维层缺损,而BMO-MRW能够识别视神经盘中央病变,因此将两参数结合分析诊断性能更高。Wu等[16]也比较了独立参数BMO-MRW、传统-RNFL和两参数结合在区分早期青光眼和健康眼的能力,发现单独使用两参数和结合使用对早期青光眼的诊断无统计学差异(AUC分别为:0.94、0.96和0.96)。Bambo等[17]利用线性判别函数将GMP获得的BMO-MRW与扫描直径分别为3.5 mm、4.1 mm和4.7 mm的BMO-RNFL三个数值随机组合,比较了随机组合参数、传统-RNFL、BMO-MRW和BMO-RNFL(直径分别为3.5 mm、4.1 mm、4.7 mm)的AUC,分别为0.88、0.88、0.85、0.84、0.81、0.82,结果显示各组之间差异统计学无统计学意义,此研究表明将BMO-MRW和不同直径下BMO-RNFL随机组合与独立参数相比,具有相似的诊断能力。
以上研究结果表明BMO-MRW与BMO-RNFL具有相似诊断性能,都具有很高的AUC值,在临床应用中,可以将BMO-MRW与RNFL相结合来诊断青光眼,但对于BMO-MRW与其他参数相结合来诊断早期POAG,诊断能力是否提高,以上研究的结果仍然存在一定争议。

4.1 BMO-MRW与VF相关性

视野(visual field,VF)是评估青光眼视功能的重要指标,也是青光眼确诊的金标准,能够完全清楚了解结构与功能之间的关系仍然是一个挑战,也是当前关于青光眼研究的一个热门话题。据文献报道,当视野开始发生变化时,已有25%~35%的RGCs丢失[18]、8%~42%的RNFL缺失[3, 19],因此在视野缺损之前能够检测到视盘结构变化是青光眼患者长期保持视功能的基础。也有文献报道,青光眼患者视野与视盘结构同时发生改变甚至更早的发生改变[20],因此监测青光眼患者的视野改变同样非常重要。下面将探讨结构参数BMO-MRW与视功能参数视野平均缺损(mean defect,MD)的相关性,并与RNFL与视野相关性作比较分析。
Amini等[21]比较了具有视野改变的POAG患者视盘结构改变与V F改变之间的相关性,M D为?5.90 dB(?12.60~?3.60 dB),视盘结构参数采取了平均和各个扇形区BMO-MRW 和BMO-RNFL值,并且对矫正BMO大小不同的、选择偏倚后的矫正BMO-MRW与VF相关性做了研究,三种相关参数平均扇形区均值与视野的皮尔逊相关系数分别为BMO-MRW:0.35~0.66;BMO-RNFL:0.55~0.80;矫正BMO-MRW:0.38~0.65,结果表明BMO-MRW和矫正BMO-MRW与视野的相关性小于BMO-RNFL,而BMO-MRW和矫正BMO-MRW比较差异无统计学意义。该研究结果表明BMO-RNFL与视野相关性更好。Reznicek等[22]对具有视野改变(MD为?8.65±7.02 dB)的POAG患者也做了相关分析,分析结果发现平均BMO-MRW和BMO-RNFL的皮尔逊相关系数分别为0.76和0.63,各个扇形区两个参数与VF相关性普遍较差,在此基础上该团队还对青光眼组患者按照屈光度将小于?4.00 D患者分为一个亚组,发现在此亚组BMO-MRW的皮尔逊相关系数(0.87)明显大于BMO-RNFL(0.62)。
以上两项研究都是选取视盘大小正常的研究者,在不区分屈光度的情况下,两参数与视野相关性存在争议,这种差异可能与选取研究对象的MD值不同有关。而Reznicek团队在按屈光度分组后发现在近视组BMO-MRW具有一定优势。 Enders团队在异常视盘患者中研究BMO-MRW 和BMO-RNFL与视野相关性,在小视盘患者中两参数与视野的相关系数分别为ρ=0.65和ρ=0.58。在大视盘患者中,两参数与视野的相关系数分别为ρ=0.71和ρ=0.52,结果表明在异常视盘研究中BMO-MRW与视野的相关性更高[23-24]。由于在近视、异常视盘等视盘边缘解剖学定位不易确定时,RNFL的测量可能会受到影响,此时BMO-MRW具有一定的优势,因此BMO-MRW显示出比RNFL更高的相关性。但BMO-MRW与VF的相关性还应加大样本量中继续研究。
Park等[25]对8 5名健康对照组和83例青光眼患者进行视野和OCT检查,获得MD值和BMO-MRW值。使用broken-stick统计模型评估VF缺失和BMO-MRW值之间的关系,当VF开始下降时,此时BMO-MRW的数值为检测到的阈值,并比较了阈值上下的斜率。结果显示在95%可信区间平均阈值为189.80μm,缺失占比为26%,在阈值上下斜率分别0.02和0.06,研究结果显示差异具有统计学意义。因此该研究表明平均BMO-MRW缺损量达到26%才能检测到VF损失。Li等[26]利用同样统计学方法证实视野开始发生改变时平均BMO-MRW阈值为234.38μm,并且也发现阈值以下斜率明显增加。在此基础上该团队将开角型青光眼分为POAG和正常眼压青光眼(normal-tension glaucoma,NTG)两个亚组,两组的各象限平均阈值分别为228.09μm和249.68μm,但在颞下方NTG组阈值明显低于POAG组(188.14μm和244.04μm),差异具有统计学意义。该结果表明NTG在发生VF缺失时可能有更多视盘结构丢失,可能是因为发病机制不同而造成的。
通过以上两项研究可以了解,当视野开始下降时, BMO-MRW已经变薄,并且存在阈值,这也间接证明视盘结构改变早于功能改变,而视盘参数BMO-MRW可能成为诊断视野前POAG的一个有力参考指标,有利于临床医生对视野前POAG做出正确诊断,为青光眼早期治疗提供客观依据。但是上述研究中在视野发生改变时,BMO-MRW阈值存在差异,并有研究发现在亚洲和欧洲人群中,BMO-MRW诊断青光眼的灵敏度和特异度也具有差异[27]。因此在不同种族、性别、年龄间的阈值是否存在差异,有待进一步研究,期待在不久的将来,BMO-MRW可以为来自不同种族的青光眼患者提供视野开始下降时的预警值。

4.3 BMO-MRW与VD相关性

使用光学相干断层扫描血管成像技术测量的视网膜血管密度(vessel density,VD)可作为青光眼早期诊断的参考指标[28]。已有研究证实青光眼患者的VD减少,并且与视野和RNFL缺损的严重程度呈正相关[29]。Enders等[30]对BMO-MRW与VD的相关性进行研究,发现二者的相关系数为0.53,并与BMO-RNFL(相关系数为0.57)比较,两参数比较差异无统计学意义,该研究表明除RNFL外,BMO-MRW与VD也具有一定的相关性,可成为青光眼早期诊断的重要结构参数。目前将BMO-MRW与VD相结合的文献报道较少,因此该话题有待于进一步研究。

4.4 BMO-MRW在异常视盘性青光眼中的应用

在正常人群中,由于视盘大小不同,BMO-MRW值与视网膜神经纤维层厚度之间的相关性明显不同。已有文献报道,随着视盘增大,BMO-MRW和RNFL均变薄,二者的相关性越好,因此在诊断青光眼时,也需要考虑视盘大小[31-32]
小视盘与正常视盘的神经节轴突的数量是相同的,但视觉上小视盘神经视网膜边缘似乎更厚[33],因此更难发现小视盘患者早期青光眼结构的改变。Enders等[24]利用共聚焦激光断层扫描成像技术软件确定82例ONH<1.63 mm2受试者,其中51例诊断为青光眼[平均MD:(?7.50±6.70) dB]、11例诊断为高眼压症和20名健康对照,比较在95%特异度下BMO-MRW和BMO-RNFL的灵敏度,结果显示BMO-MRWAUC=0.87、灵敏度为69%,BMO-RNFLAUC=0.81、灵敏度为66%,两参数AUC及灵敏度相似。
大视盘神经节轴突的数量也与正常视盘相当,甚至更高,但眼底镜下视盘的盘沿似乎变薄[33],其原因是大视盘在生理解剖结构上表现为ONH大而不规则的凹陷。Enders团队[23]同样利用共聚焦激光断层扫描成像技术的方法确定视盘大小,对125例ONH>2.45mm2的患者进行研究,其中44例诊断为青光眼[平均MD(?10.00±6.10) dB]、11例诊断为高眼压症和70名健康对照。该研究发现对于大视盘患者,BMO-MRW具有更好的青光眼诊断能力(BMO-MRW AUC为0.96,灵敏度为95%,BMO-RNFL AUC为0.89,灵敏度为63%),而BMO-RNFL和RA对青光眼的诊断效能明显降低。前文提及Li等[14]将大视盘患者作为一个独立研究对象,同样分析了BMO-MRW、BMO-MRA 、BMO-RNFL及传统DM-RA四个参数诊断青光眼的效能,BMO-MRW、BMO-MRA和BMO-RNFL的AUC分别为0.95、0.93和0.94,三者之间比较差异无统计学意义,但远远高于DM-RA(AUC为0.70)。在前文已经提到BMO-MRW、BMO-MRA 和BMO-RNFL区分普通青光眼患者与健康人的AUC分别为0.93、0.90和0.95。该研究表明BMO-MRW和BMO-MRA在区分大视盘青光眼患者与健康人的AUC有所提高。
以上研究证明,在异常视盘性青光眼的诊断中,无论是大视盘还是小视盘,BMO-MRW都具有很好的诊断效能,尤其在大视盘的诊断中,BMO-MRW有明显的优势,这是因为无论传统RNFL扫描还是GMP模式下RNFL扫描,环形扫描均会受到视盘增大的影响,但 BMO-MRW不会受到视盘大小影响,因此在大视盘青光眼诊断中BMO-MRW显示出独特的优势。

5 BMO-MRW在近视性青光眼中的应用

近视患者视盘倾斜可能与眼轴伸长过程中视神经从眼球出口倾斜和结缔组织重塑有关。由于这种解剖和组织生物力学变化,近视可能更容易受到眼压变化的影响,从而导致近视患者青光眼患病率更高[34]。Malik等[35]对56例近视性青光眼患者(平均屈光度为?5.81 D),74例近视患者(平均屈光度为?6.06 D),使用SD-OCT通过定位BMO位置获得BMO-MRW和BMO-RNFL的值,研究发现在90%特异度下,近视性青光眼患者组BMO-MRW和BMO-RNFL的灵敏度均为71%,远远高于传统的DM-RA,其灵敏度仅为30%,但排除近视后,BMO-MRW和BMO-RNFL的灵敏度分别为85%和81%,该研究表明在近视性青光眼的诊断中,BMO-MRW和BMO-RNFL具有相似的诊断效能,优于盘沿面积,但灵敏度远远低于非近视性青光眼。Park等[36]在此基础上研究BMO-MRW和BMO-RNFL在早期POAG合并近视、可疑POAG合并近视和正常对照组间两参数诊断性能的比较(三组患者眼轴平均值均大于36 mm)。研究结果显示:平均BMO-MRW和BMO-RNFL区分早期POAG合并近视组与正常对照组的AUC分别为0.95、0.93,区分早期POAG合并近视组与可疑POAG合并近视组的AUC分别为0.91、0.88,即使两组两参数AUC比较差异都无统计学意义,但可以看出BMO-MRW的AUC略大于BMO-RNFL。
由于人口老龄化和近视人数的快速增加,POAG合并近视引起视觉缺陷的风险在未来几十年可能会急剧增加[37]。然而近视患者往往存在视盘倾斜和旋转,视盘旁β区广泛的萎缩弧,以及类似于青光眼的视野缺失,因此POAG的准确筛查和诊断对于临床医生是具有挑战性的。由于GMP模式下的APS在解剖学上更精准地定位了盘沿组织,因此与传统的盘沿参数相比,BMO-MRW对POAG合并近视患者的诊断更为准确,可能超过RNFL,因此BMO-MRW为临床医生对近视性青光眼诊断提供了良好的诊断依据。
Uzair等[38]比较了BMO-MRW与传统-RNFL诊断OAG合并近视的可靠性,在50只中度近视眼中,有25只被青光眼专家诊断为青光眼(青光眼患病率为50%),而传统-RNFL检测到72%为青光眼(50只眼中36只)、 BMO-MRW检测到56%为青光眼(50只眼中28只)。该研究说明BMO-MRW的假阳性率(14%)低于传统-RNFL的假阳性率(33%)。由于传统-RNFL测量不具有APS定位系统,因此对于Fodi轴的定位以及视盘中心的确定可能与实际存在差异,尤其是对于视盘边界不清晰的高度近视患者。而 BMO-MRW是通过APS定位获得的Fo-BMO轴,可以更准确地定位视盘中心,能够更加真实地展示出视盘结构改变。

6 BMO-MRW在青光眼随访中的应用

早期发现视盘参数改变和监测进展率是决定治疗方案和随访时间的重要因素。亚洲人的NTG在POAG中占76%[39],因此对NTG结构参数进展速度的研究是非常有必要的,尤其是关于新参数BMO-MRW的研究。Cho等[40]观察了115例早期NTG患者BMO-MRW和BMO-RNFL的变化率。每隔三个月进行一次OCT扫描,平均随访时间为(20.99±6.99)月,结果发现BMO-MRW和BMO-RNFL的变化率分别为?1.64%和?1.20%,结果比较差异无统计学意义,但是平均和各个扇形区的BMO-MRW的变化率都高于BMO-RNFL,因此该研究表明BMO-MRW可以监测早期NTG患者病情变化,并且在各个象限BMO-MRW的变化率略高于RNFL。 Park等[27]将111只患有POAG的眼睛按视野严重程度分成三组,研究发现在所有组中,RNFL在颞下区变薄的速度最快,BMO-MRW在早期POAG组中颞下区变薄的速度快而在中晚期POAG组中颞上区变薄快。RNFL变化率除鼻侧以外在平均和各个象限比较差异均无统计学意义,BMO-MRW在早期POAG组颞下区的变化率比较差异均无统计学意义,但在中晚期POAG组颞上区的变化率明显大于早期POAG组。该研究表明RNFL最快变薄速度始终是在颞下区,而BMO-MRW最快变薄速度由颞下区转移到颞上区,这可能对青光眼发病机制的研究起到一定作用,BMO-MRW不仅是检测青光眼进展的良好指标,并且对于探讨青光眼发病及进展过程中致病机制是否发生变化也具有一定参考价值。
临床医生通常通过结构与视功能随时间的变化率来监测青光眼的进展,然而在健康人群中,衰老也会导致具有与青光眼相似的视盘结构变化,因此临床上评估青光眼进展需要考虑到因衰老造成的视盘结构改变[41]。Vianna 等[42]首次比较了青光眼患者和健康人群BMO-MRW与传统-RNFL两个参数的纵向变化率,该团队每隔6个月对受试者进行一次OCT扫描,监测时间为2~4年。利用最小二乘回归统计学方法估计个体视盘结构变化和线性混合效应模型估计平均变化率和组间差异。发现健康人群因衰老导致BMO-MRW与传统-RNFL两数值明显降低,该研究解释了为何眼压控制良好且接受长期治疗的青光眼患者视盘参数仍进行性恶化的原因。因此在评估青光眼进展时应该了解视盘与年龄相关性。Bowd等[43]对不同种族(欧洲和非洲)BMO-MRW和BMO-RNFL的变化率差异进行研究,发现在健康对照组和青光眼组,BMO-MRW和BMO-RNFL变化率不存在种族差异。在可疑青光眼组,欧洲和非洲BMO-MRW变化率分别为?1.82 μm/年和?2.20 μm/年,差异具有统计学意义,而BMO-RNFL变化率分别为?0.64 μm/年和?0.75 μm/年(P=0.75),差异无统计学意义。即使BMO-MRW在不同类型青光眼都具有比较好的诊断效能,并且可以利用APS定位系统自动追踪比较BMO-MRW数值变化,但BMO-MRW会随着衰老而发生变化,因此在追踪青光眼进展时,临床医生需要考虑到老化的因素,并且也要考虑到种族差异。
对于药物无法控制眼压的青光眼患者,需要进一步手术治疗,最常见的手术为滤过手术,Gietzelt等[44]研究发现, BMO-MRW在术后最先发生变化,厚度逐渐增加,持续到术后第一周,并且变化幅度与降压幅度呈正相关,而RNFL变化不明显。但该研究并不完全针对POAG。Koenig等[45]对POAG做了同样研究,得到相似结果,BMO-MRW的增加与眼压的降低显著相关,在此基础上,Park等[46]还对术后BMO-MRW变化的相关因素进行分析,发现年龄越小和降压幅度越大的BMO-MRW变化越大。Gietzelt团队[47]还对滤过术术后患者进行长期研究,随访6个月后发现滤过手术对RNFL厚度和视野无明显影响,BMO-MRW随着眼压降低而增厚,因此眼科医生在评估青光眼术后患者的纵向随访时,需要考虑BMO-MRW的这些变化。
综上所述,BMO-MRW可以作为临床医生在青光眼诊疗过程中的一个重要参考指标,与RNFL相结合,对疾病做出正确诊断以及观察疾病的进展情况。BMO-MRW在青光眼不同阶段的变化率差异也可能有助于了解青光眼的发病机制以及预测青光眼的进展。但是作为青光眼诊疗过程中的重要参数,由于人口的年龄及其种族差异等因素,该参数的参考范围可能也有差异,并且对于青光眼滤过术术后患者该参数随着眼压降低也有一定变化,因此在临床应用时,临床医生需要考虑这些因素。

7 总结与展望

青光眼作为首位不可逆性致盲性眼病,对于青光眼准确诊断以及尽早实施正确的干预治疗至关重要,BMO-MRW作为新的视盘参数,很多研究表明该参数对于青光眼的诊断以及随访都具有重要意义,尤其对于解剖学定位不确定的视盘结构异常的患者具有很大的优势,相信在不久的将来,BMO-MRW将成为眼科医生诊疗青光眼过程中的重要参考指标。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/
1、Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[ J]. Ophthalmology, 2014, 121(11): 2081-2090.Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[ J]. Ophthalmology, 2014, 121(11): 2081-2090.
2、Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020[ J]. Br J Ophthalmol, 2006, 90(3): 262- 267.Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020[ J]. Br J Ophthalmol, 2006, 90(3): 262- 267.
3、Alasil T, Wang K, Yu F, et al. Correlation of retinal nerve fiber layer thickness and visual fields in glaucoma: a broken stick model[ J]. Am J Ophthalmol, 2014, 157(5): 953-959.Alasil T, Wang K, Yu F, et al. Correlation of retinal nerve fiber layer thickness and visual fields in glaucoma: a broken stick model[ J]. Am J Ophthalmol, 2014, 157(5): 953-959.
4、Huang D,Swanson EA,Lin CP,et al.Optical coherence tomography[ J]. Science, 1991, 254(5035): 1178-1181.Huang D,Swanson EA,Lin CP,et al.Optical coherence tomography[ J]. Science, 1991, 254(5035): 1178-1181.
5、Adhi M, Duker JS. Optical coherence tomography: current and future applications[ J]. Curr Opin Ophthalmol, 2013, 24(3): 213-221.Adhi M, Duker JS. Optical coherence tomography: current and future applications[ J]. Curr Opin Ophthalmol, 2013, 24(3): 213-221.
6、Budenz DL, Michael A, Chang RT, et al. Sensitivity and specificity of the StratusOCT for perimetric glaucoma[ J]. Ophthalmology, 2005, 112(1): 3-9.Budenz DL, Michael A, Chang RT, et al. Sensitivity and specificity of the StratusOCT for perimetric glaucoma[ J]. Ophthalmology, 2005, 112(1): 3-9.
7、Reis AS, Sharpe GP, Yang H, et al. Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography[ J]. Ophthalmology, 2012, 119(4): 738- 747.Reis AS, Sharpe GP, Yang H, et al. Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography[ J]. Ophthalmology, 2012, 119(4): 738- 747.
8、Chauhan BC, O'Leary N, AlMobarak FA, et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter[ J]. Ophthalmology, 2013, 120(3): 535-543.Chauhan BC, O'Leary N, AlMobarak FA, et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter[ J]. Ophthalmology, 2013, 120(3): 535-543.
9、Reis AS, O'Leary N, Yang H, et al. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation[ J]. Invest Ophthalmol Vis Sci, 2012, 53(4): 1852-1860.Reis AS, O'Leary N, Yang H, et al. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation[ J]. Invest Ophthalmol Vis Sci, 2012, 53(4): 1852-1860.
10、Chen TC. Spectral domain optical coherence tomography in glaucoma: qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (an AOS thesis)[ J]. Trans Am Ophthalmol Soc, 2009, 107: 254-281.Chen TC. Spectral domain optical coherence tomography in glaucoma: qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (an AOS thesis)[ J]. Trans Am Ophthalmol Soc, 2009, 107: 254-281.
11、Young KS, Park Hae-Young L, Kee PC. The effects of peripapillary atrophy on the diagnostic ability of Stratus and Cirrus OCT in the analysis of optic nerve head parameters and disc size[ J]. Investig Ophthalmol Vis Sci, 2012, 53(8): 4475-84.Young KS, Park Hae-Young L, Kee PC. The effects of peripapillary atrophy on the diagnostic ability of Stratus and Cirrus OCT in the analysis of optic nerve head parameters and disc size[ J]. Investig Ophthalmol Vis Sci, 2012, 53(8): 4475-84.
12、van der Schoot J, Vermeer KA, de Boer JF, et al. The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images[ J]. Invest Ophthalmol Vis Sci, 2012, 53(4): 2424-2430.van der Schoot J, Vermeer KA, de Boer JF, et al. The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images[ J]. Invest Ophthalmol Vis Sci, 2012, 53(4): 2424-2430.
13、Fan KC, Tsikata E, Khoueir Z, et al. Enhanced diagnostic capability for glaucoma of 3-dimensional versus 2-dimensional neuroretinal rim parameters using spectral domain optical coherence tomography[ J]. J Glaucoma, 2017, 26(5): 450-458.Fan KC, Tsikata E, Khoueir Z, et al. Enhanced diagnostic capability for glaucoma of 3-dimensional versus 2-dimensional neuroretinal rim parameters using spectral domain optical coherence tomography[ J]. J Glaucoma, 2017, 26(5): 450-458.
14、Li R , Wang X , Wei Y, et al. Diagnostic capability of different morphological parameters for primary open-angle glaucoma in the Chinese population[ J]. BMC Ophthalmol, 2021, 21(1):151Li R , Wang X , Wei Y, et al. Diagnostic capability of different morphological parameters for primary open-angle glaucoma in the Chinese population[ J]. BMC Ophthalmol, 2021, 21(1):151
15、Gmeiner JM, Schrems WA, Mardin CY, et al. Comparison of bruch's membrane opening minimum rim width and peripapillary retinal nerve fiber layer thickness in early glaucoma assessment[ J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT575-OCT584.Gmeiner JM, Schrems WA, Mardin CY, et al. Comparison of bruch's membrane opening minimum rim width and peripapillary retinal nerve fiber layer thickness in early glaucoma assessment[ J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT575-OCT584.
16、Wu Z, Vianna JR, Reis ASC, et al. Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage[ J]. Br J Ophthalmol, 2020, 104(7): 980- 984.Wu Z, Vianna JR, Reis ASC, et al. Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage[ J]. Br J Ophthalmol, 2020, 104(7): 980- 984.
17、Bambo MP, Fuentemilla E, Cameo B, et al. Diagnostic capability of a linear discriminant function applied to a novel Spectralis OCT glaucoma-detection protocol[ J]. BMC Ophthalmol, 2020, 20(1): 35.Bambo MP, Fuentemilla E, Cameo B, et al. Diagnostic capability of a linear discriminant function applied to a novel Spectralis OCT glaucoma-detection protocol[ J]. BMC Ophthalmol, 2020, 20(1): 35.
18、Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons[ J]. Invest Ophthalmol Vis Sci, 2000, 41(3): 741-748.Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons[ J]. Invest Ophthalmol Vis Sci, 2000, 41(3): 741-748.
19、Wollstein G, Kagemann L, Bilonick RA, et al. Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point[ J]. Br J Ophthalmol, 2012, 96(1): 47-52.Wollstein G, Kagemann L, Bilonick RA, et al. Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point[ J]. Br J Ophthalmol, 2012, 96(1): 47-52.
20、Hirooka K, Manabe S, Tenkumo K, et al. Use of the structure-function relationship in detecting glaucoma progression in early glaucoma[ J]. BMC Ophthalmol, 2014, 14: 118.Hirooka K, Manabe S, Tenkumo K, et al. Use of the structure-function relationship in detecting glaucoma progression in early glaucoma[ J]. BMC Ophthalmol, 2014, 14: 118.
21、Amini N, Daneshvar R , Sharifipour F, et al. Structure-function relationships in perimetric glaucoma: comparison of minimum-rim width and retinal nerve fiber layer parameters[ J]. Invest Ophthalmol Vis Sci, 2017, 58(11): 4623-4631.Amini N, Daneshvar R , Sharifipour F, et al. Structure-function relationships in perimetric glaucoma: comparison of minimum-rim width and retinal nerve fiber layer parameters[ J]. Invest Ophthalmol Vis Sci, 2017, 58(11): 4623-4631.
22、Reznicek L, Burzer S, Laubichler A , et al. Structure-function relationship comparison between retinal nerve fibre layer and Bruch's membrane opening-minimum rim width in glaucoma[ J]. Int J Ophthalmol, 2017, 10(10): 1534-1538.Reznicek L, Burzer S, Laubichler A , et al. Structure-function relationship comparison between retinal nerve fibre layer and Bruch's membrane opening-minimum rim width in glaucoma[ J]. Int J Ophthalmol, 2017, 10(10): 1534-1538.
23、Enders P, Schaub F, Adler W, et al. Bruch's membrane opening-based optical coherence tomography of the optic nerve head: a useful diagnostic tool to detect glaucoma in macrodiscs[ J]. Eye (Lond), 2018, 32(2): 314-323.Enders P, Schaub F, Adler W, et al. Bruch's membrane opening-based optical coherence tomography of the optic nerve head: a useful diagnostic tool to detect glaucoma in macrodiscs[ J]. Eye (Lond), 2018, 32(2): 314-323.
24、Enders P, Schaub F, Adler W, et al. The use of Bruch's membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs[ J]. Br J Ophthalmol, 2017, 101(4): 530-535.Enders P, Schaub F, Adler W, et al. The use of Bruch's membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs[ J]. Br J Ophthalmol, 2017, 101(4): 530-535.
25、Park KH, Lee JW, Kim JM, et al. Bruch's membrane opening-minimum rim width and visual field loss in glaucoma: a broken stick analysis[ J]. Int J Ophthalmol, 2018, 11(5):828-834.Park KH, Lee JW, Kim JM, et al. Bruch's membrane opening-minimum rim width and visual field loss in glaucoma: a broken stick analysis[ J]. Int J Ophthalmol, 2018, 11(5):828-834.
26、Li R, Wang X, Wei Y, et al. Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes[ J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2020, 258(3): 595-605.Li R, Wang X, Wei Y, et al. Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes[ J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2020, 258(3): 595-605.
27、Park D, Park SP, Na KI. Comparison of retinal nerve fiber layer thickness and Bruch's membrane opening minimum rim width thinning rate in open-angle glaucoma[ J]. Sci Rep, 2022, 12(1): 16069.Park D, Park SP, Na KI. Comparison of retinal nerve fiber layer thickness and Bruch's membrane opening minimum rim width thinning rate in open-angle glaucoma[ J]. Sci Rep, 2022, 12(1): 16069.
28、Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma[ J]. JAMA Ophthalmol, 2015, 133(9): 1045-1052.Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma[ J]. JAMA Ophthalmol, 2015, 133(9): 1045-1052.
29、Lee EJ, Kim S, Hwang S, et al. Microvascular compromise develops following nerve fiber layer damage in normal-tension glaucoma without choroidal vasculature involvement[ J]. J Glaucoma, 2017, 26(3): 216- 222.Lee EJ, Kim S, Hwang S, et al. Microvascular compromise develops following nerve fiber layer damage in normal-tension glaucoma without choroidal vasculature involvement[ J]. J Glaucoma, 2017, 26(3): 216- 222.
30、Enders P, Longo V, Adler W, et al. Analysis of peripapillary vessel density and Bruch's membrane opening-based neuroretinal rim parameters in glaucoma using OCT and OCT-angiography[ J]. Eye (Lond), 2020, 34(6): 1086-1093.Enders P, Longo V, Adler W, et al. Analysis of peripapillary vessel density and Bruch's membrane opening-based neuroretinal rim parameters in glaucoma using OCT and OCT-angiography[ J]. Eye (Lond), 2020, 34(6): 1086-1093.
31、Cho HK, Park JM, Kee C. Effect of optic disc size on correlation between Bruch's membrane opening-minimum rim width and peripapillary retinal nerve fibre layer thickness[ J]. Eye Lond Engl, 2019, 33(12): 1930-1938.Cho HK, Park JM, Kee C. Effect of optic disc size on correlation between Bruch's membrane opening-minimum rim width and peripapillary retinal nerve fibre layer thickness[ J]. Eye Lond Engl, 2019, 33(12): 1930-1938.
32、Enders P, Schaub F, Hermann MM, et al. Neuroretinal rim in non-glaucomatous large optic nerve heads: a comparison of confocal scanning laser tomography and spectral domain optical coherence tomography[ J]. Br J Ophthalmol, 2017, 101(2): 138-142.Enders P, Schaub F, Hermann MM, et al. Neuroretinal rim in non-glaucomatous large optic nerve heads: a comparison of confocal scanning laser tomography and spectral domain optical coherence tomography[ J]. Br J Ophthalmol, 2017, 101(2): 138-142.
33、Hoffmann EM, Zangwill LM, Crowston JG, et al. Optic disk size and glaucoma[ J]. Surv Ophthalmol, 2007, 52(1): 32-49.Hoffmann EM, Zangwill LM, Crowston JG, et al. Optic disk size and glaucoma[ J]. Surv Ophthalmol, 2007, 52(1): 32-49.
34、Grytz R, Yang H, Hua Y, et al. Connective tissue remodeling in myopia and its potential role in increasing risk of glaucoma[ J]. Curr Opin Biomed Eng, 2020, 15: 40-50.Grytz R, Yang H, Hua Y, et al. Connective tissue remodeling in myopia and its potential role in increasing risk of glaucoma[ J]. Curr Opin Biomed Eng, 2020, 15: 40-50.
35、Malik R, Belliveau AC, Sharpe GP, et al. Diagnostic accuracy of optical coherence tomography and scanning laser tomography for identifying glaucoma in myopic eyes[ J]. Ophthalmology, 2016, 123(6): 1181- 1189.Malik R, Belliveau AC, Sharpe GP, et al. Diagnostic accuracy of optical coherence tomography and scanning laser tomography for identifying glaucoma in myopic eyes[ J]. Ophthalmology, 2016, 123(6): 1181- 1189.
36、Park DH, Kook KY, Kang YS, et al. Clinical utility of bruch membrane opening-minimum rim width for detecting early glaucoma in myopic eyes[ J]. J Glaucoma, 2021, 30(11):971-980.Park DH, Kook KY, Kang YS, et al. Clinical utility of bruch membrane opening-minimum rim width for detecting early glaucoma in myopic eyes[ J]. J Glaucoma, 2021, 30(11):971-980.
37、Verkicharla P, Ohno-Matsui K , Saw S. Current and predicted demographics of high myopia and an update of its associated pathological changes[ J]. Ophthalmic Physiol Opt, 2015, 35: 465-475.Verkicharla P, Ohno-Matsui K , Saw S. Current and predicted demographics of high myopia and an update of its associated pathological changes[ J]. Ophthalmic Physiol Opt, 2015, 35: 465-475.
38、Uzair N, Shamim M, Mahmood SA, et al. Comparison of retinal nerve fibre layer versus bruch membrane opening-minimum rim width as an optical coherence tomography-based marker for glaucoma in myopia[ J]. J Coll Physicians Surg Pak, 2021, 31(2): 162-165.Uzair N, Shamim M, Mahmood SA, et al. Comparison of retinal nerve fibre layer versus bruch membrane opening-minimum rim width as an optical coherence tomography-based marker for glaucoma in myopia[ J]. J Coll Physicians Surg Pak, 2021, 31(2): 162-165.
39、Cho HK, Kee C. Population-based glaucoma prevalence studies in Asians[ J]. Surv Ophthalmol, 2014, 59(4): 434-447.Cho HK, Kee C. Population-based glaucoma prevalence studies in Asians[ J]. Surv Ophthalmol, 2014, 59(4): 434-447.
40、Cho HK, Kee C. Rate of change in bruch's membrane opening-minimum rim width and peripapillary RNFL in early normal tension glaucoma[ J]. J Clin Med, 2020, 9(8): 2321.Cho HK, Kee C. Rate of change in bruch's membrane opening-minimum rim width and peripapillary RNFL in early normal tension glaucoma[ J]. J Clin Med, 2020, 9(8): 2321.
41、See JL, Nicolela MT, Chauhan BC. Rates of neuroretinal rim and peripapillary atrophy area change: a comparative study of glaucoma patients and normal controls[ J]. Ophthalmology, 2009, 116(5): 840- 847.See JL, Nicolela MT, Chauhan BC. Rates of neuroretinal rim and peripapillary atrophy area change: a comparative study of glaucoma patients and normal controls[ J]. Ophthalmology, 2009, 116(5): 840- 847.
42、Vianna JR, Danthurebandara VM, Sharpe GP, et al. Importance of normal aging in estimating the rate of glaucomatous neuroretinal rim and retinal nerve fiber layer loss[ J]. Ophthalmology, 2015, 122(12): 2392-2398.Vianna JR, Danthurebandara VM, Sharpe GP, et al. Importance of normal aging in estimating the rate of glaucomatous neuroretinal rim and retinal nerve fiber layer loss[ J]. Ophthalmology, 2015, 122(12): 2392-2398.
43、Bowd C, Zangwill LM, Weinreb RN, et al. Racial differences in rate of change of spectral-domain optical coherence tomography-measured minimum rim width and retinal nerve fiber layer thickness[ J]. Am J Ophthalmol, 2018, 196: 154-164.Bowd C, Zangwill LM, Weinreb RN, et al. Racial differences in rate of change of spectral-domain optical coherence tomography-measured minimum rim width and retinal nerve fiber layer thickness[ J]. Am J Ophthalmol, 2018, 196: 154-164.
44、Gietzelt C, Lüke JN, Adler W, et al. Short-term changes in Bruch's membrane opening-based morphometrics during the first week after trabeculectomy[ J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2022, 260(10): 3321-3329.Gietzelt C, Lüke JN, Adler W, et al. Short-term changes in Bruch's membrane opening-based morphometrics during the first week after trabeculectomy[ J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2022, 260(10): 3321-3329.
45、Koenig SF, Hirneiss CW. Changes of neuroretinal rim and retinal nerve fiber layer thickness assessed by optical coherence tomography after filtration surgery in glaucomatous eyes[ J]. Clin Ophthalmol, 2021, 15: 2335-2344.Koenig SF, Hirneiss CW. Changes of neuroretinal rim and retinal nerve fiber layer thickness assessed by optical coherence tomography after filtration surgery in glaucomatous eyes[ J]. Clin Ophthalmol, 2021, 15: 2335-2344.
46、Park D, Cha S. Factors associated with increased neuroretinal rim thickness measured based on bruch's membrane opening-minimum rim width after trabeculectomy[ J]. J Clin Med, 2021, 10(16): 3646.Park D, Cha S. Factors associated with increased neuroretinal rim thickness measured based on bruch's membrane opening-minimum rim width after trabeculectomy[ J]. J Clin Med, 2021, 10(16): 3646.
47、Gietzelt C, von Goscinski C, Lemke J, et al. Dynamics of structural reversal in Bruch's membrane opening-based morphometrics after glaucoma drainage device surgery[ J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2020, 258(6): 1227-1236.Gietzelt C, von Goscinski C, Lemke J, et al. Dynamics of structural reversal in Bruch's membrane opening-based morphometrics after glaucoma drainage device surgery[ J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2020, 258(6): 1227-1236.
1、黑龙江省博士后资助项目(LBH-Z17112)。
This work was supported by Heilongjiang Postdoctoral Science Foundation (LBH-Z17112).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录