1、Statista. Anzahl der Smartphone-Nutzer weltweit von 2016 bis 2019 und Prognose bis 2023[EB/OL]. 2021. [2021-01-14]. https://de.statista.com/statistik/daten/studie/309656/umfrage/prognose-zur-anzahl-der-smartphone-nutzer-weltweit/.Statista. Anzahl der Smartphone-Nutzer weltweit von 2016 bis 2019 und Prognose bis 2023[EB/OL]. 2021. [2021-01-14]. https://de.statista.com/statistik/daten/studie/309656/umfrage/prognose-zur-anzahl-der-smartphone-nutzer-weltweit/.
2、Whitehead L, Seaton P. The Effectiveness of self-management mobile phone and tablet apps in long-term condition management: A systematic review[J]. J Med Internet Res, 2016, 18(5): e97.Whitehead L, Seaton P. The Effectiveness of self-management mobile phone and tablet apps in long-term condition management: A systematic review[J]. J Med Internet Res, 2016, 18(5): e97.
3、Yang M, Lo ACY, Lam WC. Smart phone apps every ophthalmologist should know about[J]. Int J Ophthalmol, 2020, 13(8): 1329-1333.Yang M, Lo ACY, Lam WC. Smart phone apps every ophthalmologist should know about[J]. Int J Ophthalmol, 2020, 13(8): 1329-1333.
4、Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Lancet, 2010, 376(9735): 124-136.Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Lancet, 2010, 376(9735): 124-136.
5、Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss[J]. Eye Vis (Lond), 2015, 2: 17.Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss[J]. Eye Vis (Lond), 2015, 2: 17.
6、Rodrigues GB, Abe RY, Zangalli C, et al. Neovascular glaucoma: A review[J]. Int J Retina Vitreous, 2016, 2: 26.Rodrigues GB, Abe RY, Zangalli C, et al. Neovascular glaucoma: A review[J]. Int J Retina Vitreous, 2016, 2: 26.
7、Tan CH, Kyaw BM, Smith H, et al. Use of Smartphones to detect diabetic retinopathy: Scoping review and meta-analysis of diagnostic test accuracy studies[J]. J Med Internet Res, 2020, 22(5): e16658.Tan CH, Kyaw BM, Smith H, et al. Use of Smartphones to detect diabetic retinopathy: Scoping review and meta-analysis of diagnostic test accuracy studies[J]. J Med Internet Res, 2020, 22(5): e16658.
8、Rajalakshmi R, Subashini R, Anjana RM, et al. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence[J]. Eye (Lond), 2018, 32(6): 1138-1144.Rajalakshmi R, Subashini R, Anjana RM, et al. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence[J]. Eye (Lond), 2018, 32(6): 1138-1144.
9、Natarajan S, Jain A, Krishnan R, et al. Diagnostic accuracy of community-based diabetic retinopathy screening with an offline artificial intelligence system on a smartphone[J]. JAMA Ophthalmol, 2019, 137(10): 1182-1188.Natarajan S, Jain A, Krishnan R, et al. Diagnostic accuracy of community-based diabetic retinopathy screening with an offline artificial intelligence system on a smartphone[J]. JAMA Ophthalmol, 2019, 137(10): 1182-1188.
10、Klonoff DC, Schwartz DM. An economic analysis of interventions for diabetes[J]. Diabetes Care, 2000, 23(3): 390-404.Klonoff DC, Schwartz DM. An economic analysis of interventions for diabetes[J]. Diabetes Care, 2000, 23(3): 390-404.
11、Kanagasingam Y, Xiao D, Vignarajan J, et al. Evaluation of artificial intelligence-based grading of diabetic retinopathy in primary care[J]. JAMA Netw Open, 2018, 1(5): e182665.Kanagasingam Y, Xiao D, Vignarajan J, et al. Evaluation of artificial intelligence-based grading of diabetic retinopathy in primary care[J]. JAMA Netw Open, 2018, 1(5): e182665.
12、Liu TYA. Smartphone-based, artificial intelligence-enabled diabetic retinopathy screening[J]. JAMA Ophthalmol, 2019, 137(10): 1188-1189.Liu TYA. Smartphone-based, artificial intelligence-enabled diabetic retinopathy screening[J]. JAMA Ophthalmol, 2019, 137(10): 1188-1189.
13、Karakaya M, Hacisoftaoglu RE. Comparison of smartphone-based retinal imaging systems for diabetic retinopathy detection using deep learning[J]. BMC Bioinformatics, 2020, 21(Suppl 4): 259.Karakaya M, Hacisoftaoglu RE. Comparison of smartphone-based retinal imaging systems for diabetic retinopathy detection using deep learning[J]. BMC Bioinformatics, 2020, 21(Suppl 4): 259.
14、Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[J]. NPJ Digit Med, 2018, 1: 39.Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[J]. NPJ Digit Med, 2018, 1: 39.
15、US Food and Drug Administration. FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems[EB/OL]. April 12, 2018 (Washington, DC, 2018). https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eye.US Food and Drug Administration. FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems[EB/OL]. April 12, 2018 (Washington, DC, 2018). https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eye.
16、Osborne NN, Wood JP, Chidlow G, et al. Ganglion cell death in glaucoma: what do we really know?[J]. Br J Ophthalmol, 1999, 83(8): 980-986.Osborne NN, Wood JP, Chidlow G, et al. Ganglion cell death in glaucoma: what do we really know?[J]. Br J Ophthalmol, 1999, 83(8): 980-986.
17、Quigley HA. Neuronal death in glaucoma[J]. Prog Retin Eye Res, 1999, 18(1): 39-57.Quigley HA. Neuronal death in glaucoma[J]. Prog Retin Eye Res, 1999, 18(1): 39-57.
18、Nicoar? S. The mechanisms of neuronal death in glaucoma[J]. Oftalmologia, 2000, 51(2): 4-6.Nicoar? S. The mechanisms of neuronal death in glaucoma[J]. Oftalmologia, 2000, 51(2): 4-6.
19、Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090.Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090.
20、Weinreb RN, Leung CK, Crowston JG, et al. Primary open-angle glaucoma[J]. Nat Rev Dis Primers, 2016, 2: 16067.Weinreb RN, Leung CK, Crowston JG, et al. Primary open-angle glaucoma[J]. Nat Rev Dis Primers, 2016, 2: 16067.
21、 Jonas JB, Aung T, Bourne RR, et al. Glaucoma[J]. Lancet, 2017, 390(10108): 2183-2193. Jonas JB, Aung T, Bourne RR, et al. Glaucoma[J]. Lancet, 2017, 390(10108): 2183-2193.
22、Mohammadpour M, Heidari Z, Mirghorbani M, et al. Smartphones, tele-ophthalmology, and VISION 2020[J]. Int J Ophthalmol, 2017, 10(12): 1909-1918.Mohammadpour M, Heidari Z, Mirghorbani M, et al. Smartphones, tele-ophthalmology, and VISION 2020[J]. Int J Ophthalmol, 2017, 10(12): 1909-1918.
23、Araci IE, Su B, Quake SR, et al. An implantable microfluidic device for self-monitoring of intraocular pressure[J]. Nat Med, 2014, 20(9): 1074-1078.Araci IE, Su B, Quake SR, et al. An implantable microfluidic device for self-monitoring of intraocular pressure[J]. Nat Med, 2014, 20(9): 1074-1078.
24、Russo A, Morescalchi F, Costagliola C, et al. A novel device to exploit the smartphone camera for fundus photography[J]. J Ophthalmol, 2015, 2015: 823139.Russo A, Morescalchi F, Costagliola C, et al. A novel device to exploit the smartphone camera for fundus photography[J]. J Ophthalmol, 2015, 2015: 823139.
25、Li F, Song D, Chen H, et al. Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection[J]. NPJ Digit Med, 2020, 3: 123.Li F, Song D, Chen H, et al. Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection[J]. NPJ Digit Med, 2020, 3: 123.
26、Ran AR, Tham CC, Chan PP, et al. Deep learning in glaucoma with optical coherence tomography: A review[J]. Eye (Lond), 2021, 35(1): 188-201.Ran AR, Tham CC, Chan PP, et al. Deep learning in glaucoma with optical coherence tomography: A review[J]. Eye (Lond), 2021, 35(1): 188-201.
27、前瞻产业研究院. 2018年中国白内障用药发展现状分析: 白内障手术率(CSR)已超前完成2020年目标[Z]. 2018. 前瞻产业研究院. 2018年中国白内障用药发展现状分析: 白内障手术率(CSR)已超前完成2020年目标[Z]. 2018.
28、 Analysis of the development status of cataract medication in China in 2018: Cataract surgery rate (CSR) has been ahead of the 2020 target[Z]. 2008. Analysis of the development status of cataract medication in China in 2018: Cataract surgery rate (CSR) has been ahead of the 2020 target[Z]. 2008.
29、Moshirfar M, Milner D, Patel BC. Cataract surgery. In: StatPearls. Treasure Island (FL): StatPearls Publishing; November 2, 2021.Moshirfar M, Milner D, Patel BC. Cataract surgery. In: StatPearls. Treasure Island (FL): StatPearls Publishing; November 2, 2021.
30、冯晶晶, 么莉, 安磊, 等. 我国白内障摘除手术效果及影响因素分析[J]. 中华眼科杂志, 2021, 57(1): 63-70.冯晶晶, 么莉, 安磊, 等. 我国白内障摘除手术效果及影响因素分析[J]. 中华眼科杂志, 2021, 57(1): 63-70.
31、 Visual outcome of cataract surgery and its influ-encing factors in China[J]. Chinese Journal of Ophthalmology, 2021, 57(1): 63-70. Visual outcome of cataract surgery and its influ-encing factors in China[J]. Chinese Journal of Ophthalmology, 2021, 57(1): 63-70.
32、姚克. 我国白内障研究发展方向及面临的问题[J]. 中华眼科杂志, 2015, 51(4): 241-244.姚克. 我国白内障研究发展方向及面临的问题[J]. 中华眼科杂志, 2015, 51(4): 241-244.
33、 Cataract in China: Research and development direction and problems encountered[J]. Chinese Journal of Ophthalmology, 2015, 51(4): 241-244. Cataract in China: Research and development direction and problems encountered[J]. Chinese Journal of Ophthalmology, 2015, 51(4): 241-244.
34、Eppig T, Scholz K, L?ffler A, et al. Effect of decentration and tilt on the image quality of aspheric intraocular lens designs in a model eye[J]. J Cataract Refract Surg, 2009, 35(6): 1091-1100.Eppig T, Scholz K, L?ffler A, et al. Effect of decentration and tilt on the image quality of aspheric intraocular lens designs in a model eye[J]. J Cataract Refract Surg, 2009, 35(6): 1091-1100.
35、Baumeister M, Bühren J, Kohnen T. Tilt and decentration of spherical and aspheric intraocular lenses: Effect on higher-order aberrations[J]. J Cataract Refract Surg, 2009, 35(6): 1006-1012.Baumeister M, Bühren J, Kohnen T. Tilt and decentration of spherical and aspheric intraocular lenses: Effect on higher-order aberrations[J]. J Cataract Refract Surg, 2009, 35(6): 1006-1012.
36、Oshika T, Sugita G, Miyata K, et al. Influence of tilt and decentration of scleral-sutured intraocular lens on ocular higher-order wavefront aberration[J]. Br J Ophthalmol, 2007, 91(2): 185-188.Oshika T, Sugita G, Miyata K, et al. Influence of tilt and decentration of scleral-sutured intraocular lens on ocular higher-order wavefront aberration[J]. Br J Ophthalmol, 2007, 91(2): 185-188.
37、Ashena Z, Maqsood S, Ahmed SN, et al. Effect of intraocular lens tilt and decentration on visual acuity, dysphotopsia and wavefront aberrations[J]. Vision (Basel), 2020, 4(3): 41.Ashena Z, Maqsood S, Ahmed SN, et al. Effect of intraocular lens tilt and decentration on visual acuity, dysphotopsia and wavefront aberrations[J]. Vision (Basel), 2020, 4(3): 41.
38、Xin C, Bian GB, Zhang H, et al. Optical coherence tomography-based deep learning algorithm for quantification of the location of the intraocular lens[J]. Ann Transl Med, 2020, 8(14): 872.Xin C, Bian GB, Zhang H, et al. Optical coherence tomography-based deep learning algorithm for quantification of the location of the intraocular lens[J]. Ann Transl Med, 2020, 8(14): 872.
39、Wu X, Long E, Lin H, et al. Prevalence and epidemiological characteristics of congenital cataract: A systematic review and meta-analysis[J]. Sci Rep, 2016, 6: 28564.Wu X, Long E, Lin H, et al. Prevalence and epidemiological characteristics of congenital cataract: A systematic review and meta-analysis[J]. Sci Rep, 2016, 6: 28564.
40、Lin D, Chen J, Lin Z, et al. A practical model for the identification of congenital cataracts using machine learning[J]. EBioMedicine, 2020, 51: 102621.Lin D, Chen J, Lin Z, et al. A practical model for the identification of congenital cataracts using machine learning[J]. EBioMedicine, 2020, 51: 102621.
41、Lambert SR, Purohit A, Superak HM, et al. Long-term risk of glaucoma after congenital cataract surgery[J]. Am J Ophthalmol, 2013, 156(2): 355-361.e2.Lambert SR, Purohit A, Superak HM, et al. Long-term risk of glaucoma after congenital cataract surgery[J]. Am J Ophthalmol, 2013, 156(2): 355-361.e2.
42、Plager DA, Lynn MJ, Buckley EG, et al. Complications, adverse events, and additional intraocular surgery 1 year after cataract surgery in the Infant Aphakia Treatment Study[J]. Ophthalmology, 2011, 118(12): 2330-2334.Plager DA, Lynn MJ, Buckley EG, et al. Complications, adverse events, and additional intraocular surgery 1 year after cataract surgery in the Infant Aphakia Treatment Study[J]. Ophthalmology, 2011, 118(12): 2330-2334.
43、Zhang L, Wu X, Lin D, et al. Visual outcome and related factors in bilateral total congenital cataract patients: A prospective cohort study[J]. Sci Rep, 2016, 6: 31307.Zhang L, Wu X, Lin D, et al. Visual outcome and related factors in bilateral total congenital cataract patients: A prospective cohort study[J]. Sci Rep, 2016, 6: 31307.
44、Long E, Chen J, Wu X, et al. Artificial intelligence manages congenital cataract with individualized prediction and telehealth computing[J]. NPJ Digit Med, 2020, 3: 112.Long E, Chen J, Wu X, et al. Artificial intelligence manages congenital cataract with individualized prediction and telehealth computing[J]. NPJ Digit Med, 2020, 3: 112.
45、Wu X, Huang Y, Liu Z, et al. Universal artificial intelligence platform for collaborative management of cataracts[J]. Br J Ophthalmol, 2019, 103(11): 1553-1560.Wu X, Huang Y, Liu Z, et al. Universal artificial intelligence platform for collaborative management of cataracts[J]. Br J Ophthalmol, 2019, 103(11): 1553-1560.
46、Shahid K, Kolomeyer AM, Nayak NV, et al. Ocular telehealth screenings in an urban community[J]. Telemed J E Health, 2012, 18(2): 95-100.Shahid K, Kolomeyer AM, Nayak NV, et al. Ocular telehealth screenings in an urban community[J]. Telemed J E Health, 2012, 18(2): 95-100.
47、Li JO, Liu H, Ting DSJ, et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective[J]. Prog Retin Eye Res, 2021, 82: 100900.Li JO, Liu H, Ting DSJ, et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective[J]. Prog Retin Eye Res, 2021, 82: 100900.
48、Kiage D, Kherani IN, Gichuhi S, et al. The Muranga teleophthalmology study: Comparison of virtual (Teleglaucoma) with in-person clinical assessment to diagnose glaucoma[J]. Middle East Afr J Ophthalmol, 2013, 20(2): 150-157.Kiage D, Kherani IN, Gichuhi S, et al. The Muranga teleophthalmology study: Comparison of virtual (Teleglaucoma) with in-person clinical assessment to diagnose glaucoma[J]. Middle East Afr J Ophthalmol, 2013, 20(2): 150-157.
49、Rachapelle S, Legood R, Alavi Y, et al. The cost-utility of telemedicine to screen for diabetic retinopathy in India[J]. Ophthalmology, 2013, 120(3): 566-573.Rachapelle S, Legood R, Alavi Y, et al. The cost-utility of telemedicine to screen for diabetic retinopathy in India[J]. Ophthalmology, 2013, 120(3): 566-573.
50、Madanagopalan VG, Raman R. Commentary: Artificial intelligence and smartphone fundus photography—Are we at the cusp of revolutionary changes in retinal disease detection?[J]. Indian J Ophthalmol, 2020, 68(2): 396-397.Madanagopalan VG, Raman R. Commentary: Artificial intelligence and smartphone fundus photography—Are we at the cusp of revolutionary changes in retinal disease detection?[J]. Indian J Ophthalmol, 2020, 68(2): 396-397.
51、Fischer F, Kleen S. Possibilities, problems, and perspectives of data collection by mobile apps in longitudinal epidemiological studies: Scoping review[J]. J Med Internet Res, 2021, 23(1): e17691.Fischer F, Kleen S. Possibilities, problems, and perspectives of data collection by mobile apps in longitudinal epidemiological studies: Scoping review[J]. J Med Internet Res, 2021, 23(1): e17691.