1、Xu X, Zhang L, Li J, et al. A hybrid global-local representation CNN
model for automatic cataract grading[J]. IEEE J Biomed Health Inform,
2020, 24(2): 556-567. DOI: 10.1109/JBHI.2019.2914690.Xu X, Zhang L, Li J, et al. A hybrid global-local representation CNN
model for automatic cataract grading[J]. IEEE J Biomed Health Inform,
2020, 24(2): 556-567. DOI: 10.1109/JBHI.2019.2914690.
2、2019 Blindness and Vision Impairment Collaborators GBD, Vision
Loss Expert Group of the Global Burden of Disease Study. Causes of
blindness and vision impairment in 2020 and trends over 30 years,
and prevalence of avoidable blindness in relation to VISION 2020: the
Right to Sight: an analysis for the Global Burden of Disease Study[J].
Lancet Glob Health, 2021, 9(2): e144-e160. DOI: 10.1016/S2214-
109X(20)30489-7.2019 Blindness and Vision Impairment Collaborators GBD, Vision
Loss Expert Group of the Global Burden of Disease Study. Causes of
blindness and vision impairment in 2020 and trends over 30 years,
and prevalence of avoidable blindness in relation to VISION 2020: the
Right to Sight: an analysis for the Global Burden of Disease Study[J].
Lancet Glob Health, 2021, 9(2): e144-e160. DOI: 10.1016/S2214-
109X(20)30489-7.
3、Wu X, Huang Y, Liu Z, et al. Universal artificial intelligence platform
for collaborative management of cataracts[J]. Br J Ophthalmol, 2019,
103(11): 1553-1560. DOI: 10.1136/bjophthalmol-2019-314729.Wu X, Huang Y, Liu Z, et al. Universal artificial intelligence platform
for collaborative management of cataracts[J]. Br J Ophthalmol, 2019,
103(11): 1553-1560. DOI: 10.1136/bjophthalmol-2019-314729.
4、Khanna R, Pujari S, Sangwan V. Cataract surgery in developing
countries[J]. Curr Opin Ophthalmol, 2011, 22(1): 10-14. DOI:
10.1097/ICU.0b013e3283414f50.Khanna R, Pujari S, Sangwan V. Cataract surgery in developing
countries[J]. Curr Opin Ophthalmol, 2011, 22(1): 10-14. DOI:
10.1097/ICU.0b013e3283414f50.
5、Lee CM, Afshari NA. The global state of cataract blindness[J].
Curr Opin Ophthalmol, 2017, 28(1): 98-103. DOI: 10.1097/
ICU.0000000000000340.Lee CM, Afshari NA. The global state of cataract blindness[J].
Curr Opin Ophthalmol, 2017, 28(1): 98-103. DOI: 10.1097/
ICU.0000000000000340.
6、Liu YC, Wilkins M, Kim T, et al. Cataracts[J]. Lancet, 2017,390(10094): 600-612. DOI: 10.1016/s0140-6736(17)30544-5.Liu YC, Wilkins M, Kim T, et al. Cataracts[J]. Lancet, 2017,390(10094): 600-612. DOI: 10.1016/s0140-6736(17)30544-5.
7、Acharya RU, Yu W, Zhu K, et al. Identification of cataract and
post-cataract surgery optical images using artificial intelligence
techniques[J]. J Med Syst, 2010, 34(4): 619-628. DOI: 10.1007/
s10916-009-9275-8.Acharya RU, Yu W, Zhu K, et al. Identification of cataract and
post-cataract surgery optical images using artificial intelligence
techniques[J]. J Med Syst, 2010, 34(4): 619-628. DOI: 10.1007/
s10916-009-9275-8.
8、Son KY, Ko J, Kim E, et al. Deep learning-based cataract detection and
grading from slit-lamp and retro-illumination photographs: model
development and validation study[J]. Ophthalmol Sci, 2022, 2(2):
100147. DOI: 10.1016/j.xops.2022.100147.Son KY, Ko J, Kim E, et al. Deep learning-based cataract detection and
grading from slit-lamp and retro-illumination photographs: model
development and validation study[J]. Ophthalmol Sci, 2022, 2(2):
100147. DOI: 10.1016/j.xops.2022.100147.
9、Mayinuer Y, Wang NL. Vision 2020: the progress of blindness
prevention and eye health in China[J]. Zhonghua Yi Xue Za Zhi, 2020,
100(48): 3831-3834. DOI: 10.3760/cma.j.cn112137-20200825-
02468.Mayinuer Y, Wang NL. Vision 2020: the progress of blindness
prevention and eye health in China[J]. Zhonghua Yi Xue Za Zhi, 2020,
100(48): 3831-3834. DOI: 10.3760/cma.j.cn112137-20200825-
02468.
10、World Health Organization. Integrated people-centred eye care,
including preventable vision impairment and blindness [EB/OL].
(2020-10-16)[2024-06-05]. https://apps.who.int/gb/ebwha/pdf_
files/EB148/B148_15-en.pdf.World Health Organization. Integrated people-centred eye care,
including preventable vision impairment and blindness [EB/OL].
(2020-10-16)[2024-06-05]. https://apps.who.int/gb/ebwha/pdf_
files/EB148/B148_15-en.pdf.
11、Chylack LT Jr, Wolfe JK, Singer DM, et al. The lens opacities
classification system III. the longitudinal study of cataract study
group[J]. Arch Ophthalmol, 1993, 111(6): 831-836. DOI: 10.1001/
archopht.1993.01090060119035.Chylack LT Jr, Wolfe JK, Singer DM, et al. The lens opacities
classification system III. the longitudinal study of cataract study
group[J]. Arch Ophthalmol, 1993, 111(6): 831-836. DOI: 10.1001/
archopht.1993.01090060119035.
12、Miller%20DD%2C%20Brown%20EW.%20Artificial%20intelligence%20in%20medical%20practice%3A%20the%0Aquestion%20to%20the%20answer%3F%5BJ%5D.%20Am%20J%20Med%2C%202018%2C%20131(2)%3A%20129-133.%20DOI%3A%0A10.1016%2Fj.amjmed.2017.10.035.Miller%20DD%2C%20Brown%20EW.%20Artificial%20intelligence%20in%20medical%20practice%3A%20the%0Aquestion%20to%20the%20answer%3F%5BJ%5D.%20Am%20J%20Med%2C%202018%2C%20131(2)%3A%20129-133.%20DOI%3A%0A10.1016%2Fj.amjmed.2017.10.035.
13、Azad N, Amos S, Milne K, et al. Telemedicine in a rural memory
disorder clinic-remote management of patients with dementia[J]. Can
Geriatr J, 2012, 15(4): 96-100. DOI: 10.5770/cgj.15.28.Azad N, Amos S, Milne K, et al. Telemedicine in a rural memory
disorder clinic-remote management of patients with dementia[J]. Can
Geriatr J, 2012, 15(4): 96-100. DOI: 10.5770/cgj.15.28.
14、Castaneda C, Nalley K, Mannion C, et al. Clinical decision support
systems for improving diagnostic accuracy and achieving precision
medicine[J]. J Clin Bioinforma, 2015, 5: 4. DOI: 10.1186/s13336-
015-0019-3.Castaneda C, Nalley K, Mannion C, et al. Clinical decision support
systems for improving diagnostic accuracy and achieving precision
medicine[J]. J Clin Bioinforma, 2015, 5: 4. DOI: 10.1186/s13336-
015-0019-3.
15、Singh R, Barker L, Chen SI, et al. Surgical interventions for bilateral
congenital cataract in children aged two years and under[J]. Cochrane
Database Syst Rev, 2022, 9(9): CD003171. DOI: 10.1002/14651858.
CD003171.pub3.Singh R, Barker L, Chen SI, et al. Surgical interventions for bilateral
congenital cataract in children aged two years and under[J]. Cochrane
Database Syst Rev, 2022, 9(9): CD003171. DOI: 10.1002/14651858.
CD003171.pub3.
16、Chia WL, Martin F. Childhood cataracts[J]. Clin Exp Ophthalmol,
2001, 29(2): 75-80.Chia WL, Martin F. Childhood cataracts[J]. Clin Exp Ophthalmol,
2001, 29(2): 75-80.
17、Solebo AL, Teoh L, Rahi J. Epidemiology of blindness in
children[J]. Arch Dis Child, 2017, 102(9): 853-857. DOI: 10.1136/
archdischild-2016-310532.Solebo AL, Teoh L, Rahi J. Epidemiology of blindness in
children[J]. Arch Dis Child, 2017, 102(9): 853-857. DOI: 10.1136/
archdischild-2016-310532.
18、Lenhart PD, Lambert SR. Current management of infantile
cataracts[J]. Surv Ophthalmol, 2022, 67(5): 1476-1505. DOI:
10.1016/j.survophthal.2022.03.005.Lenhart PD, Lambert SR. Current management of infantile
cataracts[J]. Surv Ophthalmol, 2022, 67(5): 1476-1505. DOI:
10.1016/j.survophthal.2022.03.005.
19、World%20Health%20Organization.%20Vision%202020%3A%20The%20Right%20to%20Sight%0A%5BEB%2FOL%5D.%20%5B2024-06-05%5D.%20https%3A%2F%2Fapps.who.int%2Firis%2Fbitstream%2F%0Ahandle%2F10665%2F206524%2FB1464.pdf%3Fsequence%3D1.World%20Health%20Organization.%20Vision%202020%3A%20The%20Right%20to%20Sight%0A%5BEB%2FOL%5D.%20%5B2024-06-05%5D.%20https%3A%2F%2Fapps.who.int%2Firis%2Fbitstream%2F%0Ahandle%2F10665%2F206524%2FB1464.pdf%3Fsequence%3D1.
20、Jiang J, Lei S, Zhu M, et al. Improving the generalizability of infantile
cataracts detection via deep learning-based lens partition strategy and
multicenter datasets[J]. Front Med, 2021, 8: 664023. DOI: 10.3389/
fmed.2021.664023.Jiang J, Lei S, Zhu M, et al. Improving the generalizability of infantile
cataracts detection via deep learning-based lens partition strategy and
multicenter datasets[J]. Front Med, 2021, 8: 664023. DOI: 10.3389/
fmed.2021.664023.
21、Long E, Lin H, Liu Z, et al. An artificial intelligence platform for the
multihospital collaborative management of congenital cataracts[J]. Nat
Biomed Eng, 2017, 1: 24. DOI: 10.1038/s41551-016-0024.Long E, Lin H, Liu Z, et al. An artificial intelligence platform for the
multihospital collaborative management of congenital cataracts[J]. Nat
Biomed Eng, 2017, 1: 24. DOI: 10.1038/s41551-016-0024.
22、Lin H, Li R, Liu Z, et al. Diagnostic efficacy and therapeutic decision-
making capacity of an artificial intelligence platform for childhood
cataracts in eye clinics: a multicentre randomized controlled
trial[J]. EClinicalMedicine, 2019, 9: 52-59. DOI: 10.1016/
j.eclinm.2019.03.001.Lin H, Li R, Liu Z, et al. Diagnostic efficacy and therapeutic decision-
making capacity of an artificial intelligence platform for childhood
cataracts in eye clinics: a multicentre randomized controlled
trial[J]. EClinicalMedicine, 2019, 9: 52-59. DOI: 10.1016/
j.eclinm.2019.03.001.
23、Asbell PA, Dualan I, Mindel J, et al. Age-related cataract[J]. Lancet,
2005, 365(9459): 599-609. DOI: 10.1016/S0140-6736(05)17911-2.Asbell PA, Dualan I, Mindel J, et al. Age-related cataract[J]. Lancet,
2005, 365(9459): 599-609. DOI: 10.1016/S0140-6736(05)17911-2.
24、Li H, Lim JH, Liu J, et al. A computer-aided diagnosis system of nuclear
cataract[J]. IEEE Trans Biomed Eng, 2010, 57(7): 1690-1698. DOI:
10.1109/TBME.2010.2041454.Li H, Lim JH, Liu J, et al. A computer-aided diagnosis system of nuclear
cataract[J]. IEEE Trans Biomed Eng, 2010, 57(7): 1690-1698. DOI:
10.1109/TBME.2010.2041454.
25、Keenan TDL, Chen Q, Agrón E, et al. DeepLensNet: deep learning
automated diagnosis and quantitative classification of cataract type and
severity[J]. Ophthalmology, 2022, 129(5): 571-584. DOI: 10.1016/
j.ophtha.2021.12.017.Keenan TDL, Chen Q, Agrón E, et al. DeepLensNet: deep learning
automated diagnosis and quantitative classification of cataract type and
severity[J]. Ophthalmology, 2022, 129(5): 571-584. DOI: 10.1016/
j.ophtha.2021.12.017.
26、Zhang H, Niu K, Xiong Y, et al. Automatic cataract grading methods
based on deep learning[J]. Comput Methods Programs Biomed, 2019,
182: 104978. DOI: 10.1016/j.cmpb.2019.07.006.Zhang H, Niu K, Xiong Y, et al. Automatic cataract grading methods
based on deep learning[J]. Comput Methods Programs Biomed, 2019,
182: 104978. DOI: 10.1016/j.cmpb.2019.07.006.
27、Wu X, Xu D, Ma T, et al. Artificial intelligence model for
antiinterference cataract automatic diagnosis: a diagnostic accuracy
study[J]. Front Cell Dev Biol, 2022, 10: 906042. DOI: 10.3389/fcell.
2022.906042.Wu X, Xu D, Ma T, et al. Artificial intelligence model for
antiinterference cataract automatic diagnosis: a diagnostic accuracy
study[J]. Front Cell Dev Biol, 2022, 10: 906042. DOI: 10.3389/fcell.
2022.906042.
28、Yang JJ, Li J, Shen R, et al. Exploiting ensemble learning for automatic
cataract detection and grading[J]. Comput Methods Programs Biomed,
2016, 124: 45-57. DOI: 10.1016/j.cmpb.2015.10.007.Yang JJ, Li J, Shen R, et al. Exploiting ensemble learning for automatic
cataract detection and grading[J]. Comput Methods Programs Biomed,
2016, 124: 45-57. DOI: 10.1016/j.cmpb.2015.10.007.
29、Karkuzhali S, Mishra A, Ajay MS, et al. Glaucoma diagnosis based
on both hidden features and domain knowledge through deep
learning models[C]//2020 International Conference on Computer
Communication and Informatics (ICCCI). Coimbatore, India. IEEE,
2020: 1-9. DOI: 10.1109/ICCCI48352.2020.9104157.Karkuzhali S, Mishra A, Ajay MS, et al. Glaucoma diagnosis based
on both hidden features and domain knowledge through deep
learning models[C]//2020 International Conference on Computer
Communication and Informatics (ICCCI). Coimbatore, India. IEEE,
2020: 1-9. DOI: 10.1109/ICCCI48352.2020.9104157.
30、World Health Organization. Discussion Paper: Proposed global targets
for 2030 on integrated people-centred eye care[EB/OL] (2020-11-
11)[2024-06-05]. https://who.int/docs/default-source/blindness-
and-visual-impairment/discussion-paper-eye-care-indicators-and-
proposed-targets-11-11-20.pdf.World Health Organization. Discussion Paper: Proposed global targets
for 2030 on integrated people-centred eye care[EB/OL] (2020-11-
11)[2024-06-05]. https://who.int/docs/default-source/blindness-
and-visual-impairment/discussion-paper-eye-care-indicators-and-
proposed-targets-11-11-20.pdf.
31、Xie H, Li Z, Wu C, et al. Deep learning for detecting visually impaired
cataracts using fundus images[J]. Front Cell Dev Biol, 2023, 11:
1197239. DOI: 10.3389/fcell.2023.1197239.Xie H, Li Z, Wu C, et al. Deep learning for detecting visually impaired
cataracts using fundus images[J]. Front Cell Dev Biol, 2023, 11:
1197239. DOI: 10.3389/fcell.2023.1197239.
32、Chua J, Lim B, Fenwick EK, et al. Prevalence, risk factors, and impact of
undiagnosed visually significant cataract: the Singapore epidemiology of eye diseases study[J]. PLoS One, 2017, 12(1): e0170804. DOI:
10.1371/journal.pone.0170804.Chua J, Lim B, Fenwick EK, et al. Prevalence, risk factors, and impact of
undiagnosed visually significant cataract: the Singapore epidemiology of eye diseases study[J]. PLoS One, 2017, 12(1): e0170804. DOI:
10.1371/journal.pone.0170804.
33、Vasan CS, Gupta S, Shekhar M, et al. Accuracy of an artificial
intelligence-based mobile application for detecting cataracts: results
from a field study[J]. Indian J Ophthalmol, 2023, 71(8): 2984-2989.
DOI: 10.4103/IJO.IJO_3372_22.Vasan CS, Gupta S, Shekhar M, et al. Accuracy of an artificial
intelligence-based mobile application for detecting cataracts: results
from a field study[J]. Indian J Ophthalmol, 2023, 71(8): 2984-2989.
DOI: 10.4103/IJO.IJO_3372_22.
34、Zéboulon P, Panthier C, Rouger H, et al. Development and validation
of a pixel wise deep learning model to detect cataract on swept-source
optical coherence tomography images[J]. J Optom, 2022, 15(Suppl 1):
S43-S49. DOI: 10.1016/j.optom.2022.08.003.Zéboulon P, Panthier C, Rouger H, et al. Development and validation
of a pixel wise deep learning model to detect cataract on swept-source
optical coherence tomography images[J]. J Optom, 2022, 15(Suppl 1):
S43-S49. DOI: 10.1016/j.optom.2022.08.003.
35、Chen D, Li Z, Huang J, et al. Lens nuclear opacity quantitation with
long-range swept-source optical coherence tomography: correlation
to LOCS III and a Scheimpflug imaging-based grading system[J].
Br J Ophthalmol, 2019, 103(8): 1048-1053. DOI: 10.1136/
bjophthalmol-2018-312661.Chen D, Li Z, Huang J, et al. Lens nuclear opacity quantitation with
long-range swept-source optical coherence tomography: correlation
to LOCS III and a Scheimpflug imaging-based grading system[J].
Br J Ophthalmol, 2019, 103(8): 1048-1053. DOI: 10.1136/
bjophthalmol-2018-312661.
36、Abdullah YI, Schuman JS, Shabsigh R, et al. Ethics of artificial
intelligence in medicine and ophthalmology[J]. Asia Pac J Ophthalmol,
2021, 10(3): 289-298. DOI: 10.1097/APO.0000000000000397.Abdullah YI, Schuman JS, Shabsigh R, et al. Ethics of artificial
intelligence in medicine and ophthalmology[J]. Asia Pac J Ophthalmol,
2021, 10(3): 289-298. DOI: 10.1097/APO.0000000000000397.
37、Hong Z, Li N, Li D, et al. Telemedicine during the COVID-19
pandemic: experiences from western China[J]. J Med Internet Res,
2020, 22(5): e19577. DOI: 10.2196/19577.Hong Z, Li N, Li D, et al. Telemedicine during the COVID-19
pandemic: experiences from western China[J]. J Med Internet Res,
2020, 22(5): e19577. DOI: 10.2196/19577.
38、Goh JHL, Lim ZW, Fang X, et al. Artificial intelligence for cataract
detection and management[J]. Asia Pac J Ophthalmol, 2020, 9(2): 88-
95. DOI: 10.1097/01.APO.0000656988.16221.04.Goh JHL, Lim ZW, Fang X, et al. Artificial intelligence for cataract
detection and management[J]. Asia Pac J Ophthalmol, 2020, 9(2): 88-
95. DOI: 10.1097/01.APO.0000656988.16221.04.
39、Ting DSJ, Deshmukh R, Ting DSW, et al. Big data in corneal diseases
and cataract: current applications and future directions[J]. Front Big
Data, 2023, 6: 1017420. DOI: 10.3389/fdata.2023.1017420.Ting DSJ, Deshmukh R, Ting DSW, et al. Big data in corneal diseases
and cataract: current applications and future directions[J]. Front Big
Data, 2023, 6: 1017420. DOI: 10.3389/fdata.2023.1017420.
40、Jiang J, Liu X, Liu L, et al. Predicting the progression of ophthalmic
disease based on slit-lamp images using a deep temporal sequence
network[J]. PLoS One, 2018, 13(7): e0201142. DOI: 10.1371/
journal.pone.0201142.Jiang J, Liu X, Liu L, et al. Predicting the progression of ophthalmic
disease based on slit-lamp images using a deep temporal sequence
network[J]. PLoS One, 2018, 13(7): e0201142. DOI: 10.1371/
journal.pone.0201142.
41、Zhou Y, Dai M, Sun L, et al. The accuracy of intraocular lens power
calculation formulas based on artificial intelligence in highly myopic
eyes: a systematic review and network meta-analysis[J]. Front Public
Health, 2023, 11: 1279718. DOI: 10.3389/fpubh.2023.1279718.Zhou Y, Dai M, Sun L, et al. The accuracy of intraocular lens power
calculation formulas based on artificial intelligence in highly myopic
eyes: a systematic review and network meta-analysis[J]. Front Public
Health, 2023, 11: 1279718. DOI: 10.3389/fpubh.2023.1279718.
42、Wang T, Xia J, Li R, et al. Intelligent cataract surgery supervision and
evaluation via deep learning[J]. Int J Surg, 2022, 104: 106740. DOI:
10.1016/j.ijsu.2022.106740.Wang T, Xia J, Li R, et al. Intelligent cataract surgery supervision and
evaluation via deep learning[J]. Int J Surg, 2022, 104: 106740. DOI:
10.1016/j.ijsu.2022.106740.
43、Khavandi S, Lim E, Higham A, et al. User-acceptability of an automated
telephone call for post-operative follow-up after uncomplicated cataract
surgery[J]. Eye, 2023, 37(10): 2069-2076. DOI: 10.1038/s41433-022-
02289-8.Khavandi S, Lim E, Higham A, et al. User-acceptability of an automated
telephone call for post-operative follow-up after uncomplicated cataract
surgery[J]. Eye, 2023, 37(10): 2069-2076. DOI: 10.1038/s41433-022-
02289-8.
44、Du XL, Li WB, Hu BJ. Application of artificial intelligence in
ophthalmology[J]. Int J Ophthalmol, 2018, 11(9): 1555-1561. DOI:
10.18240/ijo.2018.09.21.Du XL, Li WB, Hu BJ. Application of artificial intelligence in
ophthalmology[J]. Int J Ophthalmol, 2018, 11(9): 1555-1561. DOI:
10.18240/ijo.2018.09.21.