1、Li JO, Liu H, Ting DSJ, et al. Digital technology, tele-medicine and artificial
intelligence in ophthalmology: a global perspective[J]. Prog Retin Eye Res,
2021, 82: 100900. DOI: 10.1016/j.preteyeres.2020.100900.Li JO, Liu H, Ting DSJ, et al. Digital technology, tele-medicine and artificial
intelligence in ophthalmology: a global perspective[J]. Prog Retin Eye Res,
2021, 82: 100900. DOI: 10.1016/j.preteyeres.2020.100900.
2、Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial
intelligence in retina[J]. Prog Retin Eye Res, 2018, 67: 1-29. DOI:10.1016/j.preteyeres.2018.07.004.Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial
intelligence in retina[J]. Prog Retin Eye Res, 2018, 67: 1-29. DOI:10.1016/j.preteyeres.2018.07.004.
3、Abdullah YI, Schuman JS, Shabsigh R, et al. Ethics of artificial intelligence
in medicine and ophthalmology[J]. Asia Pac J Ophthalmol, 2021, 10(3):
289-298. DOI: 10.1097/APO.0000000000000397.Abdullah YI, Schuman JS, Shabsigh R, et al. Ethics of artificial intelligence
in medicine and ophthalmology[J]. Asia Pac J Ophthalmol, 2021, 10(3):
289-298. DOI: 10.1097/APO.0000000000000397.
4、Pinto-Coelho L. How artificial intelligence is shaping medical imaging
technology: a survey of innovations and applications[J]. Bioengineering,
2023, 10(12): 1435. DOI: 10.3390/bioengineering10121435.Pinto-Coelho L. How artificial intelligence is shaping medical imaging
technology: a survey of innovations and applications[J]. Bioengineering,
2023, 10(12): 1435. DOI: 10.3390/bioengineering10121435.
5、Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women
in China[J]. N Engl J Med, 2010, 362(12):1090-1101. DOI:10.1056/
NEJMoa0908292.Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women
in China[J]. N Engl J Med, 2010, 362(12):1090-1101. DOI:10.1056/
NEJMoa0908292.
6、Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes
and prediabetes in China in 2013[J]. JAMA, 2017, 317(24): 2515-2523.
DOI: 10.1001/jama.2017.7596.Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes
and prediabetes in China in 2013[J]. JAMA, 2017, 317(24): 2515-2523.
DOI: 10.1001/jama.2017.7596.
7、Song P, Yu J, Chan KY, et al. Prevalence, risk factors and burden of diabetic
retinopathy in China: a systematic review and meta-analysis[J]. J Glob
Health, 2018, 8(1): 010803. DOI: 10.7189/jogh.08.010803.Song P, Yu J, Chan KY, et al. Prevalence, risk factors and burden of diabetic
retinopathy in China: a systematic review and meta-analysis[J]. J Glob
Health, 2018, 8(1): 010803. DOI: 10.7189/jogh.08.010803.
8、Jonas JB, Aung T, Bourne RR, et al. Glaucoma[J]. Lancet, 2017,
390(10108): 2183-2193. DOI: 10.1016/S0140-6736(17)31469-1.Jonas JB, Aung T, Bourne RR, et al. Glaucoma[J]. Lancet, 2017,
390(10108): 2183-2193. DOI: 10.1016/S0140-6736(17)31469-1.
9、Chen P, Li F, Harmer P. Healthy China 2030: moving from blueprint to
action with a new focus on public health[J]. Lancet Public Health, 2019,
4(9): e447. DOI: 10.1016/S2468-2667(19)30160-4.Chen P, Li F, Harmer P. Healthy China 2030: moving from blueprint to
action with a new focus on public health[J]. Lancet Public Health, 2019,
4(9): e447. DOI: 10.1016/S2468-2667(19)30160-4.
10、Yousefi S, Yousefi E, Takahashi H, et al. Keratoconus severity identification
using unsupervised machine learning[J]. PLoS One, 2018, 13(11):
e0205998. DOI: 10.1371/journal.pone.0205998.Yousefi S, Yousefi E, Takahashi H, et al. Keratoconus severity identification
using unsupervised machine learning[J]. PLoS One, 2018, 13(11):
e0205998. DOI: 10.1371/journal.pone.0205998.
11、Chen X, Zhao J, Iselin KC, et al. Keratoconus detection of changes using
deep learning of colour-coded maps[J]. BMJ Open Ophthalmol, 2021,
6(1): e000824. DOI: 10.1136/bmjophth-2021-000824.Chen X, Zhao J, Iselin KC, et al. Keratoconus detection of changes using
deep learning of colour-coded maps[J]. BMJ Open Ophthalmol, 2021,
6(1): e000824. DOI: 10.1136/bmjophth-2021-000824.
12、Kamiya K, Ayatsuka Y, Kato Y, et al. Keratoconus detection using deep
learning of colour-coded maps with anterior segment optical coherence
tomography: a diagnostic accuracy study[J]. BMJ Open, 2019, 9(9):
e031313. DOI: 10.1136/bmjopen-2019-031313.Kamiya K, Ayatsuka Y, Kato Y, et al. Keratoconus detection using deep
learning of colour-coded maps with anterior segment optical coherence
tomography: a diagnostic accuracy study[J]. BMJ Open, 2019, 9(9):
e031313. DOI: 10.1136/bmjopen-2019-031313.
13、Lavric A, Valentin P. KeratoDetect: keratoconus detection algorithm using
convolutional neural networks[J]. ComputIntellNeurosci, 2019, 2019:
8162567. DOI: 10.1155/2019/8162567.Lavric A, Valentin P. KeratoDetect: keratoconus detection algorithm using
convolutional neural networks[J]. ComputIntellNeurosci, 2019, 2019:
8162567. DOI: 10.1155/2019/8162567.
14、Lv J, Zhang K, Chen Q, et al. Deep learning-based automated diagnosis of
fungal keratitis with in vivo confocal microscopy images[J]. Ann Transl
Med, 2020, 8(11): 706. DOI: 10.21037/atm.2020.03.134.Lv J, Zhang K, Chen Q, et al. Deep learning-based automated diagnosis of
fungal keratitis with in vivo confocal microscopy images[J]. Ann Transl
Med, 2020, 8(11): 706. DOI: 10.21037/atm.2020.03.134.
15、Deng L, Lyu J, Huang H, et al. The SUSTech-SYSU dataset for
automatically segmenting and classifying corneal ulcers[J]. Sci Data, 2020,
7(1): 23. DOI: 10.1038/s41597-020-0360-7.Deng L, Lyu J, Huang H, et al. The SUSTech-SYSU dataset for
automatically segmenting and classifying corneal ulcers[J]. Sci Data, 2020,
7(1): 23. DOI: 10.1038/s41597-020-0360-7.
16、Li Z, Jiang J, Chen K, et al. Preventing corneal blindness caused by keratitis
using artificial intelligence[J]. Nat Commun, 2021, 12(1): 3738. DOI:
10.1038/s41467-021-24116-6.Li Z, Jiang J, Chen K, et al. Preventing corneal blindness caused by keratitis
using artificial intelligence[J]. Nat Commun, 2021, 12(1): 3738. DOI:
10.1038/s41467-021-24116-6.
17、Salvi M, Dazzi D, Pellistri I, et al. Prediction of the progression of thyroid-
associated ophthalmopathy at first ophthalmologic examination:
use of a neural network[J]. Thyroid, 2002, 12(3): 233-236. DOI:10.1089/105072502753600197.Salvi M, Dazzi D, Pellistri I, et al. Prediction of the progression of thyroid-
associated ophthalmopathy at first ophthalmologic examination:
use of a neural network[J]. Thyroid, 2002, 12(3): 233-236. DOI:10.1089/105072502753600197.
18、Song X, Liu Z, Li L, et al. Artificial intelligence CT screening model for
thyroid-associated ophthalmopathy and tests under clinical conditions[J].
Int J Comput Assist Radiol Surg, 2021, 16(2): 323-330. DOI: 10.1007/
s11548-020-02281-1.Song X, Liu Z, Li L, et al. Artificial intelligence CT screening model for
thyroid-associated ophthalmopathy and tests under clinical conditions[J].
Int J Comput Assist Radiol Surg, 2021, 16(2): 323-330. DOI: 10.1007/
s11548-020-02281-1.
19、Lin C, Song X, Li L, et al. Detection of active and inactive phases of thyroid-
associated ophthalmopathy using deep convolutional neural network[J].
BMC Ophthalmol, 2021, 21(1): 39. DOI: 10.1186/s12886-020-01783-5.Lin C, Song X, Li L, et al. Detection of active and inactive phases of thyroid-
associated ophthalmopathy using deep convolutional neural network[J].
BMC Ophthalmol, 2021, 21(1): 39. DOI: 10.1186/s12886-020-01783-5.
20、Wang L, Ding L, Liu Z, et al. Automated identification of malignancy
in whole-slide pathological images: identification of eyelid malignant
melanoma in gigapixel pathological slides using deep learning[J]. Br J
Ophthalmol, 2020, 104(3): 318-323. DOI: 10.1136/bjophthalmol-2018-
313706.Wang L, Ding L, Liu Z, et al. Automated identification of malignancy
in whole-slide pathological images: identification of eyelid malignant
melanoma in gigapixel pathological slides using deep learning[J]. Br J
Ophthalmol, 2020, 104(3): 318-323. DOI: 10.1136/bjophthalmol-2018-
313706.
21、Lin H, Long E, Ding X, et al. Prediction of myopia development among
Chinese school-aged children using refraction data from electronic medical
records: a retrospective, multicentre machine learning study[J]. PLoS Med,
2018, 15(11): e1002674. DOI: 10.1371/journal.pmed.1002674.Lin H, Long E, Ding X, et al. Prediction of myopia development among
Chinese school-aged children using refraction data from electronic medical
records: a retrospective, multicentre machine learning study[J]. PLoS Med,
2018, 15(11): e1002674. DOI: 10.1371/journal.pmed.1002674.
22、Foo LL, Lim GYS, Lanca C, et al. Deep learning system to predict the 5-year
risk of high myopia using fundus imaging in children[J]. NPJ Digit Med,
2023, 6(1): 10. DOI: 10.1038/s41746-023-00752-8.Foo LL, Lim GYS, Lanca C, et al. Deep learning system to predict the 5-year
risk of high myopia using fundus imaging in children[J]. NPJ Digit Med,
2023, 6(1): 10. DOI: 10.1038/s41746-023-00752-8.
23、Yoo TK, Ryu IH, Choi H, et al. Explainable machine learning approach as a
tool to understand factors used to select the refractive surgery technique on
the expert level[J]. Transl Vis Sci Technol, 2020, 9(2): 8. DOI: 10.1167/
tvst.9.2.8.Yoo TK, Ryu IH, Choi H, et al. Explainable machine learning approach as a
tool to understand factors used to select the refractive surgery technique on
the expert level[J]. Transl Vis Sci Technol, 2020, 9(2): 8. DOI: 10.1167/
tvst.9.2.8.
24、Barkana Y, Dorairaj S. Re: Tham et Al.: global prevalence of glaucoma and
projections of glaucoma burden through 2040: a systematic review and
meta-analysis (Ophthalmology 2014;121: 2081-90)[J]. Ophthalmology,
2015, 122(7): e40-e41. DOI: 10.1016/j.ophtha.2014.11.030.Barkana Y, Dorairaj S. Re: Tham et Al.: global prevalence of glaucoma and
projections of glaucoma burden through 2040: a systematic review and
meta-analysis (Ophthalmology 2014;121: 2081-90)[J]. Ophthalmology,
2015, 122(7): e40-e41. DOI: 10.1016/j.ophtha.2014.11.030.
25、Mariottoni EB, Datta S, Shigueoka LS, et al. Deep Learning-Assisted
Detection of Glaucoma Progressionin Spectral-Domain OCT[J].
Ophthalmol Glaucoma. 2023 May-Jun;6(3):228-238. doi: 10.1016/
j.ogla.2022.11.004.Mariottoni EB, Datta S, Shigueoka LS, et al. Deep Learning-Assisted
Detection of Glaucoma Progressionin Spectral-Domain OCT[J].
Ophthalmol Glaucoma. 2023 May-Jun;6(3):228-238. doi: 10.1016/
j.ogla.2022.11.004.
26、Liu X, Jiang J, Zhang K, et al. Localization and diagnosis framework for
pediatric cataracts based on slit-lamp images using deep features of a
convolutional neural network[J]. PLoS One, 2017, 12(3): e0168606.
DOI: 10.1371/journal.pone.0168606.Liu X, Jiang J, Zhang K, et al. Localization and diagnosis framework for
pediatric cataracts based on slit-lamp images using deep features of a
convolutional neural network[J]. PLoS One, 2017, 12(3): e0168606.
DOI: 10.1371/journal.pone.0168606.
27、Nguyen HV, Tan GS, Tapp RJ, et al. Cost-effectiveness of a national
telemedicine diabetic retinopathy screening program in Singapore[J].
Ophthalmology, 2016, 123(12): 2571-2580. DOI: 10.1016/j.ophtha.
2016.08.021.Nguyen HV, Tan GS, Tapp RJ, et al. Cost-effectiveness of a national
telemedicine diabetic retinopathy screening program in Singapore[J].
Ophthalmology, 2016, 123(12): 2571-2580. DOI: 10.1016/j.ophtha.
2016.08.021.
28、Trese%20MT.%20What%20is%20the%20real%20gold%20standard%20for%20ROP%20screening%3F%5BJ%5D.%20Retina%2C%0A2008%2C%2028(3%20Suppl)%3A%20S1-S2.%20DOI%3A%2010.1097%2FIAE.0b013e31816a5587.Trese%20MT.%20What%20is%20the%20real%20gold%20standard%20for%20ROP%20screening%3F%5BJ%5D.%20Retina%2C%0A2008%2C%2028(3%20Suppl)%3A%20S1-S2.%20DOI%3A%2010.1097%2FIAE.0b013e31816a5587.
29、Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus
disease in retinopathy of prematurity using deep convolutional neural
networks[J]. JAMA Ophthalmol, 2018, 136(7): 803-810. DOI: 10.1001/
jamaophthalmol.2018.1934.Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus
disease in retinopathy of prematurity using deep convolutional neural
networks[J]. JAMA Ophthalmol, 2018, 136(7): 803-810. DOI: 10.1001/
jamaophthalmol.2018.1934.
30、李云耀,樊金宇,蒋天亮, 等.光学相干层析技术在眼科手术导航
方面的研究进展[J].光电工程,2023,50(1):3-19.DOI: 10.12086/
oee.2023.220027.
Li YY, Fan JY, Jiang TL, et al. Research progress of optical coherence
tomography in ophthalmic surgical navigation[J].Optoelectron
ic,,2023,50(1):3-19. DOI: 10.12086/oee.2023.220027.Li YY, Fan JY, Jiang TL, et al. Research progress of optical coherence
tomography in ophthalmic surgical navigation[J].Optoelectron
ic,,2023,50(1):3-19. DOI: 10.12086/oee.2023.220027.
31、王玲, 朱雪, 王柯. 分子影像技术应用于眼科肿瘤的研究进展[J].
分子影像学杂志, 2023, 46(6): 1138-1142. DOI: 10.12122/j.issn.1674-
4500.2023.06.32.
Wang L, Zhu X, Wang K. Research progress of molecular imaging
technology for ocular tumor[J]. J Mol Imag, 2023, 46(6): 1138-1142.
DOI: 10.12122/j.issn.1674-4500.2023.06.32.Wang L, Zhu X, Wang K. Research progress of molecular imaging
technology for ocular tumor[J]. J Mol Imag, 2023, 46(6): 1138-1142.
DOI: 10.12122/j.issn.1674-4500.2023.06.32.
32、Zhang K, Hu H, Philbrick K, et al. SOUP-GAN: super-resolution MRI
using generative adversarial networks[J]. Tomography, 2022, 8(2): 905-
919. DOI: 10.3390/tomography8020073.Zhang K, Hu H, Philbrick K, et al. SOUP-GAN: super-resolution MRI
using generative adversarial networks[J]. Tomography, 2022, 8(2): 905-
919. DOI: 10.3390/tomography8020073.
33、霞, 梁亮. 静电纺丝技术在眼科中的应用进展[J]. 新医学, 2023,
54(9): 618-623. DOI: 10.3969/j.issn.0253-9802.2023.09.002.
Wu X, Liang L. Progress in application of electrospinning technology
in ophthalmology[J]. J N Med, 2023, 54(9): 618-623. DOI: 10.3969/
j.issn.0253-9802.2023.09.002.Wu X, Liang L. Progress in application of electrospinning technology
in ophthalmology[J]. J N Med, 2023, 54(9): 618-623. DOI: 10.3969/
j.issn.0253-9802.2023.09.002.
34、黄君. 眼视光学设备的技术进步与眼科疾病早期筛查关系[C]//
第三届全国医药研究论坛论文集(三). 西安, 2023: 524-532.
Huang J. The relationship between the technological progress of
ophthalmic optical equipment and early screening of ophthalmic diseases
[C]//Proceedings of the Third National Medical Research Forum (Ⅲ) .
Xi'an, 2023: 524-532.Huang J. The relationship between the technological progress of
ophthalmic optical equipment and early screening of ophthalmic diseases
[C]//Proceedings of the Third National Medical Research Forum (Ⅲ) .
Xi'an, 2023: 524-532.
35、张扬, 卞爱玲, 周崎, 等. 三维动画技术在眼科教学中的应用[J]. 中
国毕业后医学教育, 2023, 7(6): 481-483.
Zhang Y, Bian AL, Zhou Q, et al. Application of three-dimensional
animation in ophthalmology residents training[J]. Chin J Graduate Med
Educ, 2023, 7(6): 481-483.Zhang Y, Bian AL, Zhou Q, et al. Application of three-dimensional
animation in ophthalmology residents training[J]. Chin J Graduate Med
Educ, 2023, 7(6): 481-483.
36、邹绚, 吴世靖, 睢瑞芳. 虚拟现实技术辅助眼部解剖教学的效果分
析[J]. 中华医学教育杂志, 2021, 41(6): 537-540. DOI: 10.3760/cma.
j.cn115259-20210112-00061.
Zou X, Wu SJ, Sui RF. Application of virtual reality-based training tools in
ocular anatomy teaching for medical undergraduates[J]. Chin J Med Educ,
2021, 41(6): 537-540. DOI: 10.3760/cma.j.cn115259-20210112-00061.Zou X, Wu SJ, Sui RF. Application of virtual reality-based training tools in
ocular anatomy teaching for medical undergraduates[J]. Chin J Med Educ,
2021, 41(6): 537-540. DOI: 10.3760/cma.j.cn115259-20210112-00061.