您的位置: 首页 > 2024年3月 第39卷 第3期 > 文字全文
2023年7月 第38卷 第7期11
目录

圆锥角膜铁稳态失衡的研究进展

Recent advances in research on iron homeostasis imbalance in Keratoconus

来源期刊: 眼科学报 | 2024年3月 第39卷 第3期 145-152 发布时间: 收稿时间:2024/7/8 11:16:28 阅读量:846
作者:
关键词:
圆锥角膜扩张性眼病铁稳态失衡氧化应激铁代谢
keratoconus ectatic eye disease iron homeostasis imbalance oxidative stress iron metabolism
DOI:
10.12419/24040401
收稿时间:
2024-01-06 
修订日期:
2024-01-28 
接收日期:
2024-02-14 
铁离子在维持角膜细胞正常代谢、DNA合成和修复等生理活动中发挥关键作用,但过量的铁离子可能引发铁稳态失衡继而导致细胞毒性损伤和死亡。圆锥角膜是最常见的扩张性角膜疾病,其典型的Fleischer环是铁稳态失衡的直接证据。圆锥角膜与铁代谢相关的前期研究显示,铁稳态失衡有可能是诱发圆锥角膜发生和发展的潜在致病机制。文章总结了人体及角膜中正常的铁代谢循环以及圆锥角膜铁稳态失衡的证据,并从维持铁稳态角度出发探索可能的治疗策略,为扩张性眼病治疗提供新的思路。
Iron ions are essential for normal metabolism, DNA synthesis, and cellular repair in corneal cells. Nevertheless, an excess of these ions can disrupt iron homeostasis, leading to cellular toxicity, damage, and death. Keratoconus, the most prevalent ectatic corneal disorder, is often marked by the Fleischer ring, which indicates an imbalance in iron homeostasis. A review of early studies on keratoconus and iron metabolism suggests that this imbalance may be a potential pathogenic mechanism contributing to the onset and progression of the disease. This article aims to provide a comprehensive overview of normal iron metabolism in the human body and cornea, highlighting the evidence of iron homeostasis imbalance in keratoconus. It also explores potential therapeutic strategies focused on maintaining iron homeostasis, thereby offering novel insights into the treatment of ectatic eye diseases. 

文章亮点

1. 关键发现

     通过总结分析圆锥角膜与铁代谢相关的前期研究,提出了铁稳态失衡可能在圆锥角膜疾病的发生和发展中起重要作用,并探讨了以恢复铁稳态为目标的潜在治疗策略。

2. 已知与发现

     圆锥角膜是最常见的扩张性角膜疾病,其典型的 Fleischer 环是铁稳态失衡的证据。
     角膜基质的变薄可能与角膜细胞内铁离子沉积及异常铁代谢有关。
     改善角膜铁稳态失衡可成为圆锥角膜治疗的新策略。

3. 意义与改变

     铁稳态失衡可能是诱发圆锥角膜发生和发展的潜在致病机制。随着相关研究的不断深入,有望通过改善角膜铁稳态失衡,为圆锥角膜的临床治疗带来新的思路和突破,为患者提供更精准和个体化的治疗策略。

       人体铁代谢对于维持细胞健康和功能至关重要。铁代谢循环是一个复杂而精密的系统,涉及多种铁相关蛋白和信号通路的调控。在这个系统中,铁的吸收、利用、存储和循环都受到严格的调节,以确保细胞内的铁离子水平处于稳定状态,从而维持各项生理活动。角膜作为眼睛的重要组成部分,其细胞也需要铁离子参与正常的生理活动。角膜的铁离子主要有两处来源——泪液和房水。铁离子稳态对于保障角膜细胞正常代谢和功能至关重要,其稳态失衡可能引发一系列病理性改变。
       圆锥角膜(keratoconus, KC)是一种扩张性眼病,其发病机制尚未完全清楚。近年越来越多的研究表明,铁稳态失衡可能与KC的发生和发展密切相关。Fleischer环的形成,角膜基质的变薄可能与角膜细胞内铁离子沉积及异常铁代谢有关。此外,KC患者的泪液中铁相关蛋白的异常表达,进一步支持了铁稳态失衡可能是诱发圆锥角膜发生和发展的潜在致病机制。目前,铁稳态失衡诱发圆锥角膜的相关机制仍有待研究,铁稳态失衡与其他角膜疾病的关联也需进一步阐明。随着相关研究的不断深入,有望通过改善铁稳态失衡,为角膜疾病的治疗提供新的策略。

1 人体铁代谢循环

       人体所需的铁元素主要来源于日常摄入的食物,膳食铁元素在十二指肠的肠腔中被细胞色素b还原为亚铁离子(Fe2+ ),进而通过二价金属转运蛋白1(divalent metal transporter 1,DMT1)穿过肠腔表面进入肠道细胞 [1] 。肠道细胞内的Fe2+ 会借助铁转运蛋白1(ferroportin 1,FPN1)穿过肠道细胞基底膜进入血液循环 [2] 。进入血液循环的Fe2+ 可被膜铁转运辅助蛋白 [3] 或铜蓝蛋白氧化为铁离子(Fe3+ ),再与血清转铁蛋白(transferrin,Tf)结合。在靶细胞膜上存在转铁蛋白受体(transferrin receptor,TfR1) [4] ,可以与Tf 结合,启动受体介导的内吞过程,Tf-TfR1复合物被内吞入细胞形成“小室”,在其中经过酸化后Fe3+ 从转铁蛋白上释放,并被前列腺跨膜上皮抗原3还原为Fe2+ ,通过DMT1转运至细胞质后形成不稳定铁池(labile iron pool,LIP)。LIP作为细胞内游离铁离子的一个可交换池,其稳定状态直接影响细胞健康和功能,因此LIP动态平衡的维持是生物体健康的一个重要方面。
       所有影响铁代谢相关蛋白水平的因素均可能破坏铁稳态。在人体内维持铁稳态的主要因素是铁调节蛋白(iron-regulatory protein,IRP)和铁调素,分别从细胞水平和系统水平进行调节。当细胞内铁离子水平较低时,IRP可与DMT1、TfR1 mRNAs上的铁反应元件(iron responsive elements,IREs)结合,保护mRNA不被降解,增加上述蛋白的合成,从而提高细胞内的铁离子水平;相反,当IRP与IREs的结合减少时,DMT1和TfR1的mRNA降解增加,导致这些蛋白的合成减少,从而抑制了Fe2+ 向细胞内的转运 [5-6] 。另一方面,由肝脏产生的铁调素,可通过作用于细胞膜上的FPN,调控十二指肠铁的吸收和巨噬细胞中铁的释放,从而维持机体铁稳态 [7] 。此外,当细胞内铁离子水平过高时,Fe2+ 还可通过FPN1和DMT1被排放至细胞外 [8] 。通过以上过程,细胞得以控制和调节胞内铁稳态,维持各项生理活动。

2 角膜中铁代谢稳态

       与人体的其他细胞类似,铁离子是角膜上皮细胞正常运作所必需的微量元素之一。在角膜这一精密的器官中,铁离子稳态扮演关键角色。铁离子及其结合形式(如铁-硫簇、血红素等),是氧化酶、过氧化氢酶和核糖核苷酸还原酶等多种酶的关键成分 [9] ,继而参与氧转运、细胞代谢、DNA合成和修复等各种生理活动。同时,过多的铁离子可催化自由基生成导致细胞氧化损伤,也可诱导铁死亡从而造成角膜组织损伤,进而引发各种角膜病理性改变 [10] 。因此,在角膜中维持铁离子的“吸收-利用-存储-循环”稳态对于保障细胞正常代谢和功能至关重要。
       角膜的铁离子主要有两处来源——泪液和房水。铁离子以细胞外形式存在于角膜表面的泪膜中,也与泪腺中腺泡上皮细胞分泌的乳铁蛋白(lactoferrin,LF)结合。LF是一种铁结合糖蛋白,存在于包括泪液在内的许多人体黏膜分泌液中。在泪液中,仅有不到10%的LF与铁离子结合,剩余的LF均作为螯合剂,通过未占用的结合位点,调控铁离子和其他金属离子的稳态。LF可以根据体内铁离子的需求和可用性,灵活地调节铁离子活性和功能 [11] 。泪液中同样存在较低浓度的Tf,参与泪液的铁转运过程。此外,角膜作为一种无血管组织,主要依靠睫状体上皮细胞分泌的房水获取包括铁离子在内的营养物质 [12] 。与体内其他细胞类似,角膜细胞也通过TfR1等铁离子转运体从泪液或房水中将细胞外的铁离子转运入胞内 [13] 。在角膜上皮细胞中也存在铁存储蛋白,可以与铁离子结合将其存储于细胞质中。铁的输出通常是通过细胞外泌体形式实现的,可通过泪液、房水和细胞外基质排出,确保细胞内多余的铁离子被有效清除 [13] 。此外,眼球还通过由视网膜色素上皮细胞和视网膜毛细血管内皮细胞组成的血-视网膜屏障,以及由睫状体上皮细胞形成的血-房水屏障调节铁稳态,保护眼睛免受体内铁水平波动的影响 [14]

3 铁稳态失衡在圆锥角膜发病中的证据

       KC是一种典型的扩张性眼病,好发于青春期,以角膜扩张变薄并向前呈锥形突起为特征,可导致圆锥形角膜中央基底部变薄,严重时可致盲 [15] 。KC的特征之一是角膜锥底部角膜上皮及基底部形成的铁锈色Fleischer环。基于电镜的研究显示,Fleischer环主要由上皮细胞内的铁离子沉积组成 [16] 。关于铁离子沉积所致Fleischer环与KC患者角膜中央基底部变薄的作用机制,主要有两种解释:第一种理论认为角膜上皮细胞功能紊乱导致铁蛋白的沉积,并与角膜基质相互作用,改变基质胶原纤维代谢,造成角膜基质变薄 [17] ;另一种理论则认为,铁稳态失衡可能发生在上皮组织中,并直接导致基质变薄 [18] 。此种联系的证据来源于胶原合成需要铁离子相关蛋白,如Fe2+是羟赖氨酸形成过程中必需的辅助因子,羟赖氨酸会影响角膜中胶原纤维的直径,而研究发现KC患者的羟赖氨酸水平低于正常人 [19] 。以上证据和理论表明,铁稳态失衡可能是Fleischer环的形成原因之一,并且可能导致角膜基质变薄,在KC的发生、发展中发挥重要作用。
      此外,既往研究发现KC患者的铁稳态可能存在异常。有研究通过顺序窗口扫描质谱采集模式技术(sequential windowed acquisition of all theoretical mass spectra,SWATH-MS)分析KC的泪液蛋白质组学,发现18个蛋白存在差异表达,其中包括铁稳态相关蛋白,提示应重视铁稳态在KC病理生理学中作用机制 [20] 。Balasubramanian等 [20] 发现KC患者泪液中LF的水平显著降低,与疾病的严重程度相关。不仅如此,Wojcik等 [21] 发现Tf基因多态性与KC显著相关。有学者深入研究发现Fleischer环附近的金属离子异常分布主要受pH值影响 [22-23] 。此外,现有研究认为角膜上皮细胞中的核铁蛋白通过降低了c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)信号通路的活性,可保护DNA免受紫外线和过氧化氢的氧化损伤 [24-25] 。而角膜铁代谢紊乱不仅可以通过降低交联酶的功能,还可以通过芬顿(Fenton)反应产生活性氧(reactive oxygen species,ROS)来促进KC的发生 [26] 。不仅如此,有学者认为环境污染是造成铁稳态失衡的潜在原因之一 [27-28] 。其他研究发现铁稳态失衡与免疫、衰老和炎症反应密切相关 [29-34] ,但也有研究并未观察到KC患者中血清铁水平与健康对照组存在统计学差异 [35] 。因此,对于这些争议点,未来需要进一步深入探究KC眼部和全身的铁代谢异常情况和具体信号通路。

4 铁稳态失衡与铁死亡的关联

       铁死亡是近年来发现的特殊类型基因调控的细胞死亡,其核心机制是细胞内氧化损伤的累积和抗氧化物质的缺乏 [36] 。铁稳态失衡是造成铁死亡的关键因素,并且当细胞的铁死亡启动后,细胞还会通过多种机制进一步提高细胞内的铁含量:1)细胞表面的TfR1表达增加,促进细胞外的Fe3+ 进入细胞 [37] ;2)DMT1的活性被抑制,细胞内过量的Fe2+ 无法向外排放 [38] ;3)核受体共激活因子4(nuclear receptor coactivator 4,NCOA4)表达增加,通过诱导铁蛋白自噬,导致细胞内Fe2+ 水平增加 [39-40] ;4)IRP功能受到抑制,与IRE的结合发生紊乱,两者比值也发生失衡,细胞内Fe2+ 水平的正常调节被破坏 [41]
       当细胞和组织发生铁稳态失衡时,过量的铁会在细胞和组织内蓄积。铁离子通过Fenton反应释放出ROS物质,Fenton反应是一种无机化学反应,具体过程是过氧化氢(H2O2)与Fe2+ 结合,产生具有强氧化能力的羟基自由基 [42] 。ROS既可以直接攻击细胞内以及细胞膜表面的蛋白质和脂质等物质,造成细胞损伤,也可通过一系列机制启动铁死亡,触发细胞死亡 [42]
       抗氧化胱氨酸/谷氨酸反向转运体(System Xc - )-谷胱甘肽(glutathione,GSH)-谷胱甘肽过氧化酶4(glutathione peroxidase 4,GPX4)轴受损是铁死亡的重要机制。其中,System Xc - 负责将胱氨酸从细胞外转运到细胞内,并同时将代谢产物交换到细胞外;GSH是细胞内的一种重要抗氧化剂,可以清除细胞内的自由基和其他有害物质;GPX4作为GSH发挥作用的辅助因子,参与调控细胞内过氧化脂质的水平。System Xc - -GSH-GPX4轴是一个重要的细胞内抗氧化应激通路,也是调节铁死亡的经典通路 [43] 。通过调控该轴的任意环节均可影响细胞铁死亡,例如抑癌基因P53、BRCA1相关蛋白1(BRCA1 associated protein 1,BAP1)可以通过下调溶质载体家族7成员11(solute carrier family 7 member 11,SLC7A11)的表达,抑制System Xc - 功能从而诱导铁死亡 [44-45] ;细胞内硒离子的含量也可以直接调控GPX4的活性诱导铁死亡 [43] 。此外,脂质过氧化物也推动细胞铁死亡的发生。细胞发生铁死亡时,胞内高水平的Fe2+ 通过Fenton反应产生大量ROS,ROS将细胞膜上的不饱和脂肪酸磷脂(poly-unsaturated fatty acid-phosphatidyl ethanolamine,PUFA-PE)过氧化,形成脂质过氧化物 [46] ,最终分解产生的丙二醛(malondialdehyde,MDA)与细胞内的蛋白质和核酸发生反应,破坏细胞膜的结构和功能 [47] ,导致细胞膜破裂、细胞死亡。
       KC是一种扩张性疾病,研究发现机械牵拉可通过促进角膜基质细胞蛋白酶的产生,诱导KC发生 [48] 。铁稳态失衡可导致一系列扩张性疾病的发生与发展。体内游离铁离子过量增加可诱发氧化应激和ROS的生成,进而损伤心肌细胞,导致间质纤维化和心脏肥大,最终发展成扩张型心肌病 [49] 。此外,近视作为一种后段扩张性眼病,最新研究发现不同程度近视受试者的角膜中铁蛋白轻链和重链的表达与近视发展呈负相关,而Tf的表达与近视发展呈正相关,提示近视程度较高的眼角膜中发生了铁代谢紊乱 [50] ,证明铁代谢的紊乱可能与近视发展密切相关。
       现有证据表明,KC患者眼表存在炎症反应。有研究发现KC患者角膜组织中存在大量的超氧阴离子、过氧化氢和羟基自由基等ROS物质 [51] 。另有研究发现KC患者的泪液和角膜组织中多种炎症因子增多,且眼表存在炎症细胞浸润 [52] 。谢立信院士团队最近也在KC样本的免疫细胞中,发现验证相关的细胞因子升高,支持炎症反应参与KC的进展 [48] 。基于此可推测,KC的发生可能与氧化应激所导致的炎症反应关系密切。同时,既往研究在KC患者的角膜上皮细胞中,醛酮还原酶1C3(aldo-keto reductase family 1 member C3,AKR1C3)表达低下,从而引起SLC7A11表达下调,进而影响了System Xc - -GSH-GPX4轴的正常功能 [53] 。这可能会导致角膜上皮细胞对于氧化应激的处理能力下降,从而促进铁死亡的发生。有研究者报道,KC患者泪液和角膜基质中Tf明显下调,导致游离铁离子在组织中积累,造成氧化应激和活性物质增加,从而促进细胞凋亡和组织损伤 [54] 。由此可见,FPN的改变、活性物质的增加以及具有抗氧化活性蛋白表达的减少,可能在KC的发病过程中具有重要意义。因此,角膜上皮细胞内铁稳态失衡导致细胞内铁离子的异常积聚,进而引发ROS和脂质过氧化物的大量生成,最终触发细胞铁死亡 [21] 。这可能是KC的潜在病理机制之一。

5 从铁稳态出发的潜在治疗方式

       目前,KC的主流治疗方法为角膜移植以及角膜胶原交联术。考虑到铁代谢紊乱及其引发的细胞铁死亡机制在KC发生、发展中的作用,可以从降低细胞铁水平、恢复铁稳态和抗细胞铁死亡等角度出发,探寻潜在治疗方式,或能为KC的治疗提供新的方向。
       铁螯合剂指的是一类能够与游离铁离子有效结合,并形成高度稳定络合物的化合物。这是降低铁含量的一种直接有效的治疗方式,具有治疗KC的潜力。目前临床常用的铁螯合剂包括去铁酮(Deferiprone)以及地拉罗司(Deferasirox)。研究发现,Deferiprone可以螯合视网膜中由病理性高眼压损伤所导致升高的Fe2+ ,发挥视功能保护作用 [55] ;Deferasirox可以减轻N-甲基-M-天冬氨酸(N-methyl-D-aspartate-receptor,NMDA)诱导的视网膜氧化应激损伤 [56] 。在角膜治疗应用方面,Deferiprone也被证明可以减少角膜异物损伤后存在的含铁锈环 [57] 。实验发现,Deferiprone滴剂可去除实验动物的角膜锈斑,并有效促进角膜损伤愈合 [58] 。这些发现证明了铁螯合剂在视网膜保护和角膜损伤治疗中的潜力,进而提示其在治疗KC上的潜在应用前景。
       然而,使用临床可用的铁螯合剂治疗KC存在许多挑战。首先,理想情况下,铁螯合剂应该具有与铁选择性结合的能力,而不是与其他生物学上重要的二价金属结合,如Zn2+ 和Cu2+[59] 。此外,为了达到治疗效果,有效的铁螯合剂必须能够以足够高的水平到达其目标位点,并且具有脂溶性和小分子尺寸 [60] 。未来药物研究需注意铁螯合剂可能存在的潜在毒性,以及长期使用对铁稳态的过度干预,可能导致铁缺乏等过度矫正问题。
       LF是一种铁结合蛋白,可作为铁螯合剂参与到角膜正常铁代谢的过程。对KC患者的泪液进行分析后发现,LF的水平与正常人相比明显降低 [20] 。因此,为KC患者的角膜补充减少的LF,进而降低角膜上皮细胞内蓄积的铁离子,减轻ROS所导致的炎症反应和铁死亡,可对KC起到治疗作用 [61] 。LF已显示临床使用前景,最近一项临床试验发现,给KC患者佩戴负载有LF的隐形眼镜可以降低角膜的氧化应激,减轻炎症反应对于患者角膜的影响,是一种潜在的KC治疗方法 [62] 。LF在应用于KC治疗方面,具有许多优点,LF在多种体液中均被发现,并且在不同的病理学中均表现出有益作用 [63] 。此外,LF除独立治疗外还可与其他药物联合使用以提高疗效 [64]
       和其他螯合剂类似,LF的临床剂量控制和在不同患者体内的铁调节效果可能因人而异,需要进一步的研究以优化治疗效果。当分子量增加,LF扩散速率降低,因此,延长LF在角膜表面的停留时间,并促进LF渗透至基质中至关重要 [65] 。研究发现LF纳米颗粒适用于局部眼科用药,这些纳米颗粒能够在角膜中保持较长时间,延长药物释放的持续时间,从而更好地用于KC治疗过程 [66] ,患者只需较低的药物剂量和更少的频率就能达到治疗效果。这种新型给药方式不仅有助于患者更好地坚持治疗,而且能够实现个体化治疗,根据患者的需求和特征进行药物释放,从而提高治疗效果。
       除LF等铁螯合剂外,对铁死亡过程关键靶点进行调控也是KC的潜在治疗方式。例如,细胞内GPX4的下调可促进胞内过氧化物的产生,促进细胞铁死亡,而Ferrostatin-1可改善因GPX4基因缺失引起的细胞损伤,抑制铁依赖性脂质过氧化物的产生,发挥抗铁死亡作用 [67-68] 。目前已制成的脂质体负载Fer-1(Fer-1- NPs),更好地克服了Fer-1水溶性差和眼表生物利用度低的问题,增加了在角膜的滞留时间,被证实能缓解碱烧伤引起的角膜氧化应激,且没有明显的细胞毒性和全身毒性 [69] ,或可作为一种铁死亡抑制剂对角膜起保护作用。

6 总结与展望

       文章总结并探讨了铁稳态在维系角膜健康中的关键作用,阐述了铁稳态失衡在KC发病中的重要角色,进一步综述了以恢复铁稳态为目标的潜在治疗策略。目前关于铁稳态失衡导致KC的发病机制仍存在诸多未知。随着相关研究的不断深入,有望通过改善角膜铁稳态失衡,为KC的临床治疗带来新的思路和突破,为患者提供更精准和个体化的治疗策略。

利益冲突

   所有作者均声明不存在利益冲突。

开放获取声明

   本文适用于知识共享许可协议 (Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/。








1、Yanatori I, Kishi F. DMT1 and iron transport[J]. Free Radic Biol Med, 2019, 133: 55-63. DOI: 10.1016/j.freeradbiomed.2018.07.020.Yanatori I, Kishi F. DMT1 and iron transport[J]. Free Radic Biol Med, 2019, 133: 55-63. DOI: 10.1016/j.freeradbiomed.2018.07.020.
2、Billesb%C3%B8lle%20CB%2C%20Azumaya%20CM%2C%20Kretsch%20RC%2C%20et%20al.%20Structure%20of%20hepcidin-%0Abound%20ferroportin%20reveals%20iron%20homeostatic%20mechanisms%5BJ%5D.%20Nature%2C%202020%2C%0A586(7831)%3A%20807-811.%20DOI%3A%2010.1038%2Fs41586-020-2668-z.Billesb%C3%B8lle%20CB%2C%20Azumaya%20CM%2C%20Kretsch%20RC%2C%20et%20al.%20Structure%20of%20hepcidin-%0Abound%20ferroportin%20reveals%20iron%20homeostatic%20mechanisms%5BJ%5D.%20Nature%2C%202020%2C%0A586(7831)%3A%20807-811.%20DOI%3A%2010.1038%2Fs41586-020-2668-z.
3、Hudson DM, Curtis SB, Smith VC, et al. Human hephaestin expression is not limited to enterocytes of the gastrointestinal tract but is also found in the antrum, the enteric nervous system, and pancreatic{beta}-cells[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 298(3): G425-G432. DOI: 10.1152/ajpgi.00453.2009.Hudson DM, Curtis SB, Smith VC, et al. Human hephaestin expression is not limited to enterocytes of the gastrointestinal tract but is also found in the antrum, the enteric nervous system, and pancreatic{beta}-cells[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 298(3): G425-G432. DOI: 10.1152/ajpgi.00453.2009.
4、Gao G, Li J, Zhang Y, et al. Cellular iron metabolism and regulation[J]. Adv Exp Med Biol, 2019, 1173: 21-32. DOI: 10.1007/978-981-13-9589-5_2.Gao G, Li J, Zhang Y, et al. Cellular iron metabolism and regulation[J]. Adv Exp Med Biol, 2019, 1173: 21-32. DOI: 10.1007/978-981-13-9589-5_2.
5、Kawabata H. Transferrin and transferrin receptors update[J]. Free Radic Biol Med, 2019, 133: 46-54. DOI: 10.1016/j.freeradbiomed.2018.06.037.Kawabata H. Transferrin and transferrin receptors update[J]. Free Radic Biol Med, 2019, 133: 46-54. DOI: 10.1016/j.freeradbiomed.2018.06.037.
6、Iwai K. Regulation of cellular iron metabolism: iron-dependent degradation of IRP by SCFFBXL5 ubiquitin ligase[J]. Free Radic Biol Med, 2019, 133: 64-68. DOI: 10.1016/j.freeradbiomed.2018.09.011.Iwai K. Regulation of cellular iron metabolism: iron-dependent degradation of IRP by SCFFBXL5 ubiquitin ligase[J]. Free Radic Biol Med, 2019, 133: 64-68. DOI: 10.1016/j.freeradbiomed.2018.09.011.
7、Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004, 306(5704): 2090-2093. DOI: 10.1126/science.1104742.
8、Zhao T, Guo X, Sun Y. Iron accumulation and lipid peroxidation in the aging retina: implication of ferroptosis in age-related macular degeneration[J]. Aging Dis, 2021, 12(2): 529-551. DOI: 10.14336/ AD.2020.0912.Zhao T, Guo X, Sun Y. Iron accumulation and lipid peroxidation in the aging retina: implication of ferroptosis in age-related macular degeneration[J]. Aging Dis, 2021, 12(2): 529-551. DOI: 10.14336/ AD.2020.0912.
9、Boldt DH. New perspectives on iron: an introduction[J]. Am J Med Sci, 1999, 318(4): 207-212. DOI: 10.1097/00000441-199910000-00001.Boldt DH. New perspectives on iron: an introduction[J]. Am J Med Sci, 1999, 318(4): 207-212. DOI: 10.1097/00000441-199910000-00001.
10、Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron- dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060- 1072. DOI: 10.1016/j.cell.2012.03.042.Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron- dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060- 1072. DOI: 10.1016/j.cell.2012.03.042.
11、Yang TJ, Yu Y, Yang JY, et al. Involvement of transient receptor potential channels in ocular diseases: a narrative review[J]. Ann Transl Med, 2022, 10(15): 839. DOI: 10.21037/atm-21-6145.
12、Bishop PN, Takanosu M, Le Goff M, et al. The role of the posterior ciliary body in the biosynthesis of vitreous humour[J]. Eye, 2002, 16(4): 454- 460. DOI: 10.1038/sj.eye.6700199.
13、Ashok A, Chaudhary S, McDonald D, et al. Local synthesis of hepcidin in the anterior segment of the eye: a novel observation with physiological and pathological implications[J]. Exp Eye Res, 2020, 190: 107890. DOI: 10.1016/j.exer.2019.107890.
14、Liu K, Li H, Wang F, et al. Ferroptosis: mechanisms and advances in ocular diseases[J]. Mol Cell Biochem, 2023, 478(9): 2081-2095. DOI: 10.1007/ s11010-022-04644-5.
15、Gomes JAP, Tan D, Rapuano CJ, et al. Global consensus on keratoconus and ectatic diseases[J]. Cornea, 2015, 34(4): 359-369. DOI: 10.1097/ ICO.0000000000000408.
16、Navel V, Malecaze J, Pereira B, et al. Oxidative and antioxidative stress markers in keratoconus: a systematic review and meta-analysis[J]. Acta Ophthalmol, 2021, 99(6): e777-e794. DOI: 10.1111/aos.14714.
17、Joseph R, Srivastava OP, Pfister RR. Differential epithelial and stromal protein profiles in keratoconus and normal human corneas[J]. Exp Eye Res, 2011, 92(4): 282-298. DOI: 10.1016/j.exer.2011.01.008.
18、Chaerkady R, Shao H, Scott SG, et al. The keratoconus corneal proteome: loss of epithelial integrity and stromal degeneration[J]. J Proteomics, 2013, 87: 122-131. DOI: 10.1016/j.jprot.2013.05.023.
19、Takaoka A, Babar N, Hogan J, et al. An evaluation of lysyl oxidase- derived cross-linking in keratoconus by liquid chromatography/mass spectrometry[J]. Invest Ophthalmol Vis Sci, 2016, 57(1): 126-136. DOI: 10.1167/iovs.15-18105.
20、Balasubramanian SA, Pye DC, Willcox MDP. Levels of lactoferrin, secretory IgA and serum albumin in the tear film of people with keratoconus[J]. Exp Eye Res, 2012, 96(1): 132-137. DOI: 10.1016/j.exer.2011.12.010.
21、Wójcik KA, Synowiec E, Jiménez-García MP, et al. Polymorphism of the transferrin gene in eye diseases: keratoconus and Fuchs endothelial corneal dystrophy[J]. Biomed Res Int, 2013, 2013: 247438. DOI:10.1155/2013/247438.
22、Avetisov SE, Mamikonyan VR, Novikov IA, et al. Abnormal distribution of trace elements in keratoconic corneas[J]. Vestn Oftalmol, 2015, 131(6): 34-42. DOI: 10.17116/oftalma2015131634-42.
23、Avetisov SE, Mamikonian VR, Novikov IA. The role of tear acidity and Cu-cofactor of lysyl oxidase activity in the pathogenesis of keratoconus[J]. Vestn Oftalmol, 2011, 127(2): 3-8.
24、Kubilus JK, Beazley KE, Talbot CJ, et al. Nuclear ferritin mediated regulation of JNK signaling in corneal epithelial cells[J]. Exp Eye Res, 2016, 145: 337-340. DOI: 10.1016/j.exer.2016.02.002.Kubilus JK, Beazley KE, Talbot CJ, et al. Nuclear ferritin mediated regulation of JNK signaling in corneal epithelial cells[J]. Exp Eye Res, 2016, 145: 337-340. DOI: 10.1016/j.exer.2016.02.002.
25、Nurminskaya MV, Talbot CJ, Nurminsky DI, et al. Nuclear ferritin: a ferritoid-ferritin complex in corneal epithelial cells[J]. Invest Ophthalmol Vis Sci, 2009, 50(8): 3655-3661. DOI: 10.1167/iovs.08-3170.Nurminskaya MV, Talbot CJ, Nurminsky DI, et al. Nuclear ferritin: a ferritoid-ferritin complex in corneal epithelial cells[J]. Invest Ophthalmol Vis Sci, 2009, 50(8): 3655-3661. DOI: 10.1167/iovs.08-3170.
26、Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease[J]. Nat Chem Biol, 2006, 2(8): 406-414. DOI: 10.1038/nchembio807.Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease[J]. Nat Chem Biol, 2006, 2(8): 406-414. DOI: 10.1038/nchembio807.
27、Ghio AJ, Soukup JM, Dailey LA, et al. Air pollutants disrupt iron homeostasis to impact oxidant generation, biological effects, and tissue injury[J]. Free Radic Biol Med, 2020, 151: 38-55. DOI: 10.1016/ j.freeradbiomed.2020.02.007.Ghio AJ, Soukup JM, Dailey LA, et al. Air pollutants disrupt iron homeostasis to impact oxidant generation, biological effects, and tissue injury[J]. Free Radic Biol Med, 2020, 151: 38-55. DOI: 10.1016/ j.freeradbiomed.2020.02.007.
28、Guo W, Zhang J, Li W, et al. Disruption of iron homeostasis and resultant health effects upon exposure to various environmental pollutants: a critical review[J]. J Environ Sci, 2015, 34: 155-164. DOI: 10.1016/ j.jes.2015.04.004.Guo W, Zhang J, Li W, et al. Disruption of iron homeostasis and resultant health effects upon exposure to various environmental pollutants: a critical review[J]. J Environ Sci, 2015, 34: 155-164. DOI: 10.1016/ j.jes.2015.04.004.
29、Salahudeen AA, Thompson JW, Ruiz JC, et al. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis[J]. Science, 2009, 326(5953): 722-726. DOI: 10.1126/science.1176326.Salahudeen AA, Thompson JW, Ruiz JC, et al. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis[J]. Science, 2009, 326(5953): 722-726. DOI: 10.1126/science.1176326.
30、Bonadonna M, Altamura S, Tybl E, et al. Iron regulatory protein (IRP)- mediated iron homeostasis is critical for neutrophil development and differentiation in the bone marrow[J]. Sci Adv, 2022, 8(40): eabq4469. DOI: 10.1126/sciadv.abq4469.Bonadonna M, Altamura S, Tybl E, et al. Iron regulatory protein (IRP)- mediated iron homeostasis is critical for neutrophil development and differentiation in the bone marrow[J]. Sci Adv, 2022, 8(40): eabq4469. DOI: 10.1126/sciadv.abq4469.
31、Frost JN, Wideman SK, Preston AE, et al. Plasma iron controls neutrophil production and function[J]. Sci Adv, 2022, 8(40): eabq5384. DOI: 10.1126/sciadv.abq5384.Frost JN, Wideman SK, Preston AE, et al. Plasma iron controls neutrophil production and function[J]. Sci Adv, 2022, 8(40): eabq5384. DOI: 10.1126/sciadv.abq5384.
32、Zeidan RS, Han SM, Leeuwenburgh C, et al. Iron homeostasis and organismal aging[J]. Ageing Res Rev, 2021, 72: 101510. DOI: 10.1016/ j.arr.2021.101510.Zeidan RS, Han SM, Leeuwenburgh C, et al. Iron homeostasis and organismal aging[J]. Ageing Res Rev, 2021, 72: 101510. DOI: 10.1016/ j.arr.2021.101510.
33、Verbon EH, Trapet PL, Stringlis IA, et al. Iron and immunity[J]. Annu Rev Phytopathol, 2017,55: 355-375. doi:10.1146/annurev- phyto-080516-035537.Verbon EH, Trapet PL, Stringlis IA, et al. Iron and immunity[J]. Annu Rev Phytopathol, 2017,55: 355-375. doi:10.1146/annurev- phyto-080516-035537.
34、Wessling-Resnick M. Iron homeostasis and the inflammatory response[J]. Annu Rev Nutr, 2010, 30: 105-122. DOI: 10.1146/annurev. nutr.012809.104804.Wessling-Resnick M. Iron homeostasis and the inflammatory response[J]. Annu Rev Nutr, 2010, 30: 105-122. DOI: 10.1146/annurev. nutr.012809.104804.
35、Bamdad S, Owji N, Bolkheir A. Association between advanced keratoconus and serum levels of zinc, calcium, magnesium, iron, copper, and selenium[J]. Cornea, 2018, 37(10): 1306-1310. DOI: 10.1097/ ICO.0000000000001661.Bamdad S, Owji N, Bolkheir A. Association between advanced keratoconus and serum levels of zinc, calcium, magnesium, iron, copper, and selenium[J]. Cornea, 2018, 37(10): 1306-1310. DOI: 10.1097/ ICO.0000000000001661.
36、Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis[J]. Nat Rev Mol Cell Biol, 2024, 25(2): 133- 155. DOI: 10.1038/s41580-023-00648-1.Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis[J]. Nat Rev Mol Cell Biol, 2024, 25(2): 133- 155. DOI: 10.1038/s41580-023-00648-1.
37、Tang LJ, Zhou YJ, Xiong XM, et al. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion[J]. Free Radic Biol Med, 2021, 162: 339-352. DOI: 10.1016/j.freeradbiomed.2020.10.307.Tang LJ, Zhou YJ, Xiong XM, et al. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion[J]. Free Radic Biol Med, 2021, 162: 339-352. DOI: 10.1016/j.freeradbiomed.2020.10.307.
38、Turcu AL, Versini A, Khene N, et al. DMT1 inhibitors kill cancer stem cells by blocking lysosomal iron translocation[J]. Chemistry, 2020, 26(33): 7369-7373. DOI: 10.1002/chem.202000159.Turcu AL, Versini A, Khene N, et al. DMT1 inhibitors kill cancer stem cells by blocking lysosomal iron translocation[J]. Chemistry, 2020, 26(33): 7369-7373. DOI: 10.1002/chem.202000159.
39、Du J, Wang T, Li Y, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin[J]. Free Radic Biol Med, 2019, 131: 356-369. DOI: 10.1016/ j.freeradbiomed.2018.12.011.Du J, Wang T, Li Y, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin[J]. Free Radic Biol Med, 2019, 131: 356-369. DOI: 10.1016/ j.freeradbiomed.2018.12.011.
40、Zhou B, Liu J, Kang R, et al. Ferroptosis is a type of autophagy-dependent cell death[J]. Semin Cancer Biol, 2020, 66: 89-100. DOI: 10.1016/ j.semcancer.2019.03.002.Zhou B, Liu J, Kang R, et al. Ferroptosis is a type of autophagy-dependent cell death[J]. Semin Cancer Biol, 2020, 66: 89-100. DOI: 10.1016/ j.semcancer.2019.03.002.
41、Scindia PhD Y, Leeds Md J, Swaminathan Md S. Iron homeostasis in healthy kidney and its role in acute kidney injury[J]. Semin Nephrol, 2019, 39(1): 76-84. DOI: 10.1016/j.semnephrol.2018.10.006.Scindia PhD Y, Leeds Md J, Swaminathan Md S. Iron homeostasis in healthy kidney and its role in acute kidney injury[J]. Semin Nephrol, 2019, 39(1): 76-84. DOI: 10.1016/j.semnephrol.2018.10.006.
42、Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. DOI: 10.1038/s41580-020-00324-8.Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. DOI: 10.1038/s41580-020-00324-8.
43、Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3): 409-422.e21. DOI: 10.1016/j.cell.2017.11.048.Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3): 409-422.e21. DOI: 10.1016/j.cell.2017.11.048.
44、Zhang Y, Shi J, Liu X, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression[J]. Nat Cell Biol, 2018, 20(10): 1181-1192. DOI: 10.1038/s41556-018-0178-0.Zhang Y, Shi J, Liu X, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression[J]. Nat Cell Biol, 2018, 20(10): 1181-1192. DOI: 10.1038/s41556-018-0178-0.
45、Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. DOI: 10.1038/ nature14344.Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. DOI: 10.1038/ nature14344.
46、Dixon SJ, Winter GE, Musavi LS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem Biol, 2015, 10(7): 1604-1609. DOI: 10.1021/acschembio.5b00245.Dixon SJ, Winter GE, Musavi LS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem Biol, 2015, 10(7): 1604-1609. DOI: 10.1021/acschembio.5b00245.
47、Avetisov SE, Mamikonian VR, Novikov IA. The role of tear acidity and Cu-cofactor of lysyl oxidase activity in the pathogenesis of keratoconus[J]. Vestn Oftalmol, 2011, 127(2): 3-8.Avetisov SE, Mamikonian VR, Novikov IA. The role of tear acidity and Cu-cofactor of lysyl oxidase activity in the pathogenesis of keratoconus[J]. Vestn Oftalmol, 2011, 127(2): 3-8.
48、Avetisov SE, Mamikonyan VR, Novikov IA, et al. Abnormal distribution of trace elements in keratoconic corneas[J]. Vestn Oftalmol, 2015, 131(6): 34-42. DOI: 10.17116/oftalma2015131634-42.Avetisov SE, Mamikonyan VR, Novikov IA, et al. Abnormal distribution of trace elements in keratoconic corneas[J]. Vestn Oftalmol, 2015, 131(6): 34-42. DOI: 10.17116/oftalma2015131634-42.
49、Wójcik KA, Synowiec E, Jiménez-García MP, et al. Polymorphism of the transferrin gene in eye diseases: keratoconus and Fuchs endothelial corneal dystrophy[ J]. Biomed Res Int, 2013, 2013: 247438. DOI: 10.1155/2013/247438.Wójcik KA, Synowiec E, Jiménez-García MP, et al. Polymorphism of the transferrin gene in eye diseases: keratoconus and Fuchs endothelial corneal dystrophy[ J]. Biomed Res Int, 2013, 2013: 247438. DOI: 10.1155/2013/247438.
50、Balasubramanian SA, Pye DC, Willcox MDP. Levels of lactoferrin, secretory IgA and serum albumin in the tear film of people with keratoconus[J]. Exp Eye Res, 2012, 96(1): 132-137. DOI: 10.1016/j.exer.2011.12.010.Balasubramanian SA, Pye DC, Willcox MDP. Levels of lactoferrin, secretory IgA and serum albumin in the tear film of people with keratoconus[J]. Exp Eye Res, 2012, 96(1): 132-137. DOI: 10.1016/j.exer.2011.12.010.
51、Takaoka A, Babar N, Hogan J, et al. An evaluation of lysyl oxidasederived cross-linking in keratoconus by liquid chromatography/mass spectrometry[J]. Invest Ophthalmol Vis Sci, 2016, 57(1): 126-136. DOI: 10.1167/iovs.15-18105.Takaoka A, Babar N, Hogan J, et al. An evaluation of lysyl oxidasederived cross-linking in keratoconus by liquid chromatography/mass spectrometry[J]. Invest Ophthalmol Vis Sci, 2016, 57(1): 126-136. DOI: 10.1167/iovs.15-18105.
52、Chaerkady R, Shao H, Scott SG, et al. The keratoconus corneal proteome: loss of epithelial integrity and stromal degeneration[J]. J Proteomics, 2013, 87: 122-131. DOI: 10.1016/j.jprot.2013.05.023.Chaerkady R, Shao H, Scott SG, et al. The keratoconus corneal proteome: loss of epithelial integrity and stromal degeneration[J]. J Proteomics, 2013, 87: 122-131. DOI: 10.1016/j.jprot.2013.05.023.
53、Joseph R, Srivastava OP, Pfister RR. Differential epithelial and stromal protein profiles in keratoconus and normal human corneas[ J]. Exp Eye Res, 2011, 92(4): 282-298. DOI: 10.1016/j.exer.2011.01.008.Joseph R, Srivastava OP, Pfister RR. Differential epithelial and stromal protein profiles in keratoconus and normal human corneas[ J]. Exp Eye Res, 2011, 92(4): 282-298. DOI: 10.1016/j.exer.2011.01.008.
54、Navel V, Malecaze J, Pereira B, et al. Oxidative and antioxidative stress markers in keratoconus: a systematic review and meta-analysis[ J]. Acta Ophthalmol, 2021, 99(6): e777-e794. DOI: 10.1111/aos.14714.Navel V, Malecaze J, Pereira B, et al. Oxidative and antioxidative stress markers in keratoconus: a systematic review and meta-analysis[ J]. Acta Ophthalmol, 2021, 99(6): e777-e794. DOI: 10.1111/aos.14714.
55、Gomes JAP, Tan D, Rapuano CJ, et al. Global consensus on keratoconus and ectatic diseases[ J]. Cornea, 2015, 34(4): 359-369. DOI: 10.1097/ ICO.0000000000000408Gomes JAP, Tan D, Rapuano CJ, et al. Global consensus on keratoconus and ectatic diseases[ J]. Cornea, 2015, 34(4): 359-369. DOI: 10.1097/ ICO.0000000000000408
56、Liu K, Li H, Wang F, et al. Ferroptosis: mechanisms and advances in ocular diseases[J]. Mol Cell Biochem, 2023, 478(9): 2081-2095. DOI: 10.1007/ s11010-022-04644-5.Liu K, Li H, Wang F, et al. Ferroptosis: mechanisms and advances in ocular diseases[J]. Mol Cell Biochem, 2023, 478(9): 2081-2095. DOI: 10.1007/ s11010-022-04644-5.
57、Ashok A, Chaudhary S, McDonald D, et al. Local synthesis of hepcidin in the anterior segment of the eye: a novel observation with physiological and pathological implications[J]. Exp Eye Res, 2020, 190: 107890. DOI: 10.1016/j.exer.2019.107890.Ashok A, Chaudhary S, McDonald D, et al. Local synthesis of hepcidin in the anterior segment of the eye: a novel observation with physiological and pathological implications[J]. Exp Eye Res, 2020, 190: 107890. DOI: 10.1016/j.exer.2019.107890.
58、Bishop PN, Takanosu M, Le Goff M, et al. The role of the posterior ciliary body in the biosynthesis of vitreous humour[ J]. Eye, 2002, 16(4): 454- 460. DOI: 10.1038/sj.eye.6700199.Bishop PN, Takanosu M, Le Goff M, et al. The role of the posterior ciliary body in the biosynthesis of vitreous humour[ J]. Eye, 2002, 16(4): 454- 460. DOI: 10.1038/sj.eye.6700199.
59、Yang TJ, Yu Y, Yang JY, et al. Involvement of transient receptor potential channels in ocular diseases: a narrative review[J]. Ann Transl Med, 2022, 10(15): 839. DOI: 10.21037/atm-21-6145.Yang TJ, Yu Y, Yang JY, et al. Involvement of transient receptor potential channels in ocular diseases: a narrative review[J]. Ann Transl Med, 2022, 10(15): 839. DOI: 10.21037/atm-21-6145.
60、Aaseth%20JO%2C%20Nurchi%20VM.%20Chelation%20combination-a%20strategy%20to%20mitigate%20the%0Aneurotoxicity%20of%20manganese%2C%20iron%2C%20and%20copper%3F%5BJ%5D.%20Biomolecules%2C%202022%2C%0A12(11)%3A%201713.%20DOI%3A%2010.3390%2Fbiom12111713.Aaseth%20JO%2C%20Nurchi%20VM.%20Chelation%20combination-a%20strategy%20to%20mitigate%20the%0Aneurotoxicity%20of%20manganese%2C%20iron%2C%20and%20copper%3F%5BJ%5D.%20Biomolecules%2C%202022%2C%0A12(11)%3A%201713.%20DOI%3A%2010.3390%2Fbiom12111713.
61、Antoshin%20AA%2C%20Shpichka%20AI%2C%20Huang%20G%2C%20et%20al.%20Lactoferrin%20as%20a%20regenerative%0Aagent%3A%20the%20old-new%20panacea%3F%5BJ%5D.%20Pharmacol%20Res%2C%202021%2C%20167%3A%20105564.%20DOI%3A%0A10.1016%2Fj.phrs.2021.105564.Antoshin%20AA%2C%20Shpichka%20AI%2C%20Huang%20G%2C%20et%20al.%20Lactoferrin%20as%20a%20regenerative%0Aagent%3A%20the%20old-new%20panacea%3F%5BJ%5D.%20Pharmacol%20Res%2C%202021%2C%20167%3A%20105564.%20DOI%3A%0A10.1016%2Fj.phrs.2021.105564.
62、Pastori V, Tavazzi S, Lecchi M. Lactoferrin-loaded contact lenses counteract cytotoxicity caused in vitro by keratoconic tears[J]. Cont Lens Anterior Eye, 2019, 42(3): 253-257. DOI: 10.1016/j.clae.2018.12.004.Pastori V, Tavazzi S, Lecchi M. Lactoferrin-loaded contact lenses counteract cytotoxicity caused in vitro by keratoconic tears[J]. Cont Lens Anterior Eye, 2019, 42(3): 253-257. DOI: 10.1016/j.clae.2018.12.004.
63、Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004, 306(5704): 2090-2093. DOI: 10.1126/science.1104742.Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004, 306(5704): 2090-2093. DOI: 10.1126/science.1104742.
64、Chen K, Zhang J, Beeraka NM, et al. Novel perspectives on nanotechnological and biomedical implications of monotherapy or combination regimen of lactoferrin[J]. Curr Pharm Des, 2023, 29(20): 1579-1591. DOI: 10.2174/1381612829666230622140926.Chen K, Zhang J, Beeraka NM, et al. Novel perspectives on nanotechnological and biomedical implications of monotherapy or combination regimen of lactoferrin[J]. Curr Pharm Des, 2023, 29(20): 1579-1591. DOI: 10.2174/1381612829666230622140926.
65、Higuchi A, Inoue H, Kaneko Y, et al. Selenium-binding lactoferrin is taken into corneal epithelial cells by a receptor and prevents corneal damage in dry eye model animals[J]. Sci Rep, 2016, 6: 36903. DOI: 10.1038/ srep36903.Higuchi A, Inoue H, Kaneko Y, et al. Selenium-binding lactoferrin is taken into corneal epithelial cells by a receptor and prevents corneal damage in dry eye model animals[J]. Sci Rep, 2016, 6: 36903. DOI: 10.1038/ srep36903.
66、Singh J, Sharma M, Jain N, et al. Lactoferrin and its nano-formulations in rare eye diseases[J]. Indian J Ophthalmol, 2022, 70(7): 2328-2334. DOI: 10.4103/ijo.IJO_303_22.Singh J, Sharma M, Jain N, et al. Lactoferrin and its nano-formulations in rare eye diseases[J]. Indian J Ophthalmol, 2022, 70(7): 2328-2334. DOI: 10.4103/ijo.IJO_303_22.
67、Sakai O, Uchida T, Imai H, et al. Glutathione peroxidase 4 plays an important role in oxidative homeostasis and wound repair in corneal epithelial cells[J]. FEBS Open Bio, 2016, 6(12): 1238-1247. DOI: 10.1002/2211-5463.12141.Sakai O, Uchida T, Imai H, et al. Glutathione peroxidase 4 plays an important role in oxidative homeostasis and wound repair in corneal epithelial cells[J]. FEBS Open Bio, 2016, 6(12): 1238-1247. DOI: 10.1002/2211-5463.12141.
68、Miotto G, Rossetto M, di Paolo ML, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1[J]. Redox Biol, 2020, 28: 101328. DOI: 10.1016/j.redox.2019.101328.Miotto G, Rossetto M, di Paolo ML, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1[J]. Redox Biol, 2020, 28: 101328. DOI: 10.1016/j.redox.2019.101328.
69、Wang K, Jiang L, Zhong Y, et al. Ferrostatin-1-loaded liposome for treatment of corneal alkali burn via targeting ferroptosis[J]. Bioeng Transl Med, 2022, 7(2): e10276. DOI: 10.1002/btm2.10276.Wang K, Jiang L, Zhong Y, et al. Ferrostatin-1-loaded liposome for treatment of corneal alkali burn via targeting ferroptosis[J]. Bioeng Transl Med, 2022, 7(2): e10276. DOI: 10.1002/btm2.10276.
1、国家自然科学基金面上项目(82371021);国家自然科学基金青年项目(82301253);广 东省基础与应用基础研究基金省市联合基金青年基金(2022A151511)。
This work was supported by the General Program of National Natural Science Foundation of China (82371021); Youth Project of National Natural Science Foundation of China Youth Project (82301253); Youth Project of Guangdong Basic and Applied Basic Research Fuundation, China(2022A151511).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录