1、Anwar S, Ding H, Xu M, et al. Recent advances in synthesis, optical
properties, and biomedical applications of carbon dots[ J]. ACS Appl
Bio Mater, 2019, 2(6): 2317-2338. DOI: 10.1021/acsabm.9b00112.Anwar S, Ding H, Xu M, et al. Recent advances in synthesis, optical
properties, and biomedical applications of carbon dots[ J]. ACS Appl
Bio Mater, 2019, 2(6): 2317-2338. DOI: 10.1021/acsabm.9b00112.
2、Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of
fluorescent single-walled carbon nanotube fragments[ J]. J Am Chem
Soc, 2004, 126(40): 12736-12737. DOI: 10.1021/ja040082h.Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of
fluorescent single-walled carbon nanotube fragments[ J]. J Am Chem
Soc, 2004, 126(40): 12736-12737. DOI: 10.1021/ja040082h.
3、Sun YP, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and
colorful photoluminescence[ J]. J Am Chem Soc, 2006, 128(24): 7756-
7757. DOI: 10.1021/ja062677d.Sun YP, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and
colorful photoluminescence[ J]. J Am Chem Soc, 2006, 128(24): 7756-
7757. DOI: 10.1021/ja062677d.
4、Cosert KM, Kim S, Jalilian I, et al. Metallic engineered nanomaterials
and ocular toxicity: a current perspective[ J]. Pharmaceutics, 2022,
14(5): 981. DOI: 10.3390/pharmaceutics14050981.Cosert KM, Kim S, Jalilian I, et al. Metallic engineered nanomaterials
and ocular toxicity: a current perspective[ J]. Pharmaceutics, 2022,
14(5): 981. DOI: 10.3390/pharmaceutics14050981.
5、Bondarenko O, Juganson K, Ivask A, et al. Toxicity of Ag, CuO and
ZnO nanoparticles to selected environmentally relevant test organisms
and mammalian cells in vitro: a critical review[ J]. Arch Toxicol, 2013,
87(7): 1181-1200. DOI: 10.1007/s00204-013-1079-4.Bondarenko O, Juganson K, Ivask A, et al. Toxicity of Ag, CuO and
ZnO nanoparticles to selected environmentally relevant test organisms
and mammalian cells in vitro: a critical review[ J]. Arch Toxicol, 2013,
87(7): 1181-1200. DOI: 10.1007/s00204-013-1079-4.
6、 Gaillet S, Rouanet JM. Silver nanoparticles: their potential toxic effects
after oral exposure and underlying mechanisms: a review[ J]. Food
Chem Toxicol, 2015, 77: 58-63. DOI: 10.1016/j.fct.2014.12.019. Gaillet S, Rouanet JM. Silver nanoparticles: their potential toxic effects
after oral exposure and underlying mechanisms: a review[ J]. Food
Chem Toxicol, 2015, 77: 58-63. DOI: 10.1016/j.fct.2014.12.019.
7、Antony JJ, Sivalingam P, Chen B. Toxicological effects of silver
nanoparticles[ J]. Environ Toxicol Pharmacol, 2015, 40(3): 729-732.
DOI: 10.1016/j.etap.2015.09.003.Antony JJ, Sivalingam P, Chen B. Toxicological effects of silver
nanoparticles[ J]. Environ Toxicol Pharmacol, 2015, 40(3): 729-732.
DOI: 10.1016/j.etap.2015.09.003.
8、Ivask A, Titma T, Visnapuu M, et al. Toxicity of 11 metal oxide
nanoparticles to three mammalian cell types in vitro[ J]. Curr Top Med
Chem, 2015, 15(18): 1914-1929. DOI: 10.2174/15680266156661505
06150109.Ivask A, Titma T, Visnapuu M, et al. Toxicity of 11 metal oxide
nanoparticles to three mammalian cell types in vitro[ J]. Curr Top Med
Chem, 2015, 15(18): 1914-1929. DOI: 10.2174/15680266156661505
06150109.
9、Nurunnabi M, Khatun Z, Huh KM, et al. In vivo biodistribution and
toxicology of carboxylated graphene quantum dots[ J]. ACS Nano,
2013, 7(8): 6858-6867. DOI: 10.1021/nn402043cNurunnabi M, Khatun Z, Huh KM, et al. In vivo biodistribution and
toxicology of carboxylated graphene quantum dots[ J]. ACS Nano,
2013, 7(8): 6858-6867. DOI: 10.1021/nn402043c
10、Li Y, Wu S, Zhang J, et al. Sulphur doped carbon dots enhance
photodynamic therapy via PI3K/Akt signalling pathway[ J]. Cell Prolif,
2020, 53(5): e12821. DOI: 10.1111/cpr.12821.Li Y, Wu S, Zhang J, et al. Sulphur doped carbon dots enhance
photodynamic therapy via PI3K/Akt signalling pathway[ J]. Cell Prolif,
2020, 53(5): e12821. DOI: 10.1111/cpr.12821.
11、Dong X , Liang W, Meziani MJ, et al. Carbon dots as potent
antimicrobial agents[ J]. Theranostics, 2020, 10(2): 671-686. DOI:
10.7150/thno.39863Dong X , Liang W, Meziani MJ, et al. Carbon dots as potent
antimicrobial agents[ J]. Theranostics, 2020, 10(2): 671-686. DOI:
10.7150/thno.39863
12、Mintz KJ, Mercado G, Zhou Y, et al. Tryptophan carbon dots and their
ability to cross the blood-brain barrier[ J]. Colloids Surf B Biointerfaces, 2019, 176: 488-493. DOI: 10.1016/j.colsurfb.2019.01.031.Mintz KJ, Mercado G, Zhou Y, et al. Tryptophan carbon dots and their
ability to cross the blood-brain barrier[ J]. Colloids Surf B Biointerfaces, 2019, 176: 488-493. DOI: 10.1016/j.colsurfb.2019.01.031.
13、Ye P, Li L, Qi XT, et al. Macrophage membrane-encapsulated nitrogendoped carbon quantum dot nanosystem for targeted treatment
of Alzheimer 's disease: Regulating metal ion homeostasis and
photothermal removal of β-amyloid[ J]. J Colloid Interface Sci,
2023,650(Pt B): 1749-1761. DOI: 10.1016/j.jcis.2023.07.132Ye P, Li L, Qi XT, et al. Macrophage membrane-encapsulated nitrogendoped carbon quantum dot nanosystem for targeted treatment
of Alzheimer 's disease: Regulating metal ion homeostasis and
photothermal removal of β-amyloid[ J]. J Colloid Interface Sci,
2023,650(Pt B): 1749-1761. DOI: 10.1016/j.jcis.2023.07.132
14、Lesani P, Mohamad Hadi AH, Lu Z, et al. Design principles and
biological applications of red-emissive two-photon carbon dots[ J].
Commun Mater, 2021, 2: 108. DOI: 10.1038/s43246-021-00214-2.Lesani P, Mohamad Hadi AH, Lu Z, et al. Design principles and
biological applications of red-emissive two-photon carbon dots[ J].
Commun Mater, 2021, 2: 108. DOI: 10.1038/s43246-021-00214-2.
15、Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent
carbogenic dots from carbohydrates[ J]. Chem Mater, 2009, 21(23):
5563-5565. DOI: 10.1021/cm901593yPeng H, Travas-Sejdic J. Simple aqueous solution route to luminescent
carbogenic dots from carbohydrates[ J]. Chem Mater, 2009, 21(23):
5563-5565. DOI: 10.1021/cm901593y
16、Zheng L, Chi Y, Dong Y, et al. Electrochemiluminescence of watersoluble carbon nanocr ystals released electrochemically from
graphite[ J]. J Am Chem Soc, 2009, 131(13): 4564-4565. DOI:
10.1021/ja809073f.Zheng L, Chi Y, Dong Y, et al. Electrochemiluminescence of watersoluble carbon nanocr ystals released electrochemically from
graphite[ J]. J Am Chem Soc, 2009, 131(13): 4564-4565. DOI:
10.1021/ja809073f.
17、Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of high
quality carbon nanodots and their photocatalytic property[ J]. Dalton
Trans, 2012, 41(31): 9526-9531. DOI: 10.1039/C2DT30985H.Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of high
quality carbon nanodots and their photocatalytic property[ J]. Dalton
Trans, 2012, 41(31): 9526-9531. DOI: 10.1039/C2DT30985H.
18、Chan KK, Yap SHK, Yong KT. Biogreen synthesis of carbon dots for
biotechnology and nanomedicine applications[ J]. Nanomicro Lett,
2018, 10(4): 72. DOI: 10.1007/s40820-018-0223-3.Chan KK, Yap SHK, Yong KT. Biogreen synthesis of carbon dots for
biotechnology and nanomedicine applications[ J]. Nanomicro Lett,
2018, 10(4): 72. DOI: 10.1007/s40820-018-0223-3.
19、Yan X, Cui X, Li LS. Synthesis of large, stable colloidal graphene
quantum dots with tunable size[ J]. J Am Chem Soc, 2010, 132(17):
5944-5945. DOI: 10.1021/ja1009376.Yan X, Cui X, Li LS. Synthesis of large, stable colloidal graphene
quantum dots with tunable size[ J]. J Am Chem Soc, 2010, 132(17):
5944-5945. DOI: 10.1021/ja1009376.
20、Tang L, Ji R, Cao X, et al. Deep ultraviolet photoluminescence of watersoluble self-passivated graphene quantum dots[ J]. ACS Nano, 2012,
6(6): 5102-5110. DOI: 10.1021/nn300760g.Tang L, Ji R, Cao X, et al. Deep ultraviolet photoluminescence of watersoluble self-passivated graphene quantum dots[ J]. ACS Nano, 2012,
6(6): 5102-5110. DOI: 10.1021/nn300760g.
21、Lai S, Jin Y, Shi L, et al. Mechanisms behind excitation- and
concentration-dependent multicolor photoluminescence in graphene
quantum dots[ J]. Nanoscale, 2020, 12(2): 591-601. DOI: 10.1039/
c9nr08461d.Lai S, Jin Y, Shi L, et al. Mechanisms behind excitation- and
concentration-dependent multicolor photoluminescence in graphene
quantum dots[ J]. Nanoscale, 2020, 12(2): 591-601. DOI: 10.1039/
c9nr08461d.
22、Zhu S, Zhang J, Tang S, et al. Surface chemistry routes to modulate
the photoluminescence of graphene quantum dots: from fluorescence
mechanism to up-conversion bioimaging applications[ J]. Adv Funct
Mater, 2012, 22(22): 4732-4740. DOI: 10.1002/adfm.201201499Zhu S, Zhang J, Tang S, et al. Surface chemistry routes to modulate
the photoluminescence of graphene quantum dots: from fluorescence
mechanism to up-conversion bioimaging applications[ J]. Adv Funct
Mater, 2012, 22(22): 4732-4740. DOI: 10.1002/adfm.201201499
23、Ansari L, Hallaj S, Hallaj T, et al. Doped-carbon dots: recent
advances in their biosensing, bioimaging and therapy applications[ J].
Colloids Surf B Biointerfaces, 2021, 203: 111743. DOI: 10.1016/
j.colsurfb.2021.111743.Ansari L, Hallaj S, Hallaj T, et al. Doped-carbon dots: recent
advances in their biosensing, bioimaging and therapy applications[ J].
Colloids Surf B Biointerfaces, 2021, 203: 111743. DOI: 10.1016/
j.colsurfb.2021.111743.
24、Liu Q, Guo B, Rao Z, et al. Strong two-photon-induced fluorescence
from photostable, biocompatible nitrogen-doped graphene quantum
dots for cellular and deep-tissue imaging[ J]. Nano Lett, 2013, 13(6): 2436-2441. DOI: 10.1021/nl400368v.Liu Q, Guo B, Rao Z, et al. Strong two-photon-induced fluorescence
from photostable, biocompatible nitrogen-doped graphene quantum
dots for cellular and deep-tissue imaging[ J]. Nano Lett, 2013, 13(6): 2436-2441. DOI: 10.1021/nl400368v.
25、Zhao QL, Zhang ZL, Huang BH, et al. Facile preparation of low
cytotoxicity fluorescent carbon nanocrystals by electrooxidation of
graphite[ J]. Chem Commun, 2008(41): 5116-5118. DOI: 10.1039/
b812420e.Zhao QL, Zhang ZL, Huang BH, et al. Facile preparation of low
cytotoxicity fluorescent carbon nanocrystals by electrooxidation of
graphite[ J]. Chem Commun, 2008(41): 5116-5118. DOI: 10.1039/
b812420e.
26、Liu H, Li Z, Sun Y, et al. Synthesis of luminescent carbon dots with
ultrahigh quantum yield and inherent folate receptor-positive cancer
cell targetability[ J]. Sci Rep, 2018, 8(1): 1086. DOI: 10.1038/s41598-
018-19373-3.Liu H, Li Z, Sun Y, et al. Synthesis of luminescent carbon dots with
ultrahigh quantum yield and inherent folate receptor-positive cancer
cell targetability[ J]. Sci Rep, 2018, 8(1): 1086. DOI: 10.1038/s41598-
018-19373-3.
27、Li Y, Zhao Y, Cheng H, et al. Nitrogen-doped graphene quantum dots
with oxygen-rich functional groups[ J]. J Am Chem Soc, 2012, 134(1):
15-18. DOI: 10.1021/ja206030c.Li Y, Zhao Y, Cheng H, et al. Nitrogen-doped graphene quantum dots
with oxygen-rich functional groups[ J]. J Am Chem Soc, 2012, 134(1):
15-18. DOI: 10.1021/ja206030c.
28、L i L L , J i J, Fe i R , e t a l . A f a c i l e m i c r o w a v e a v e n u e t o
electrochemiluminescent two-color graphene quantum dots[ J]. Adv
Funct Materials, 2012, 22(14): 2971-2979. DOI: 10.1002/adfm.
201200166.L i L L , J i J, Fe i R , e t a l . A f a c i l e m i c r o w a v e a v e n u e t o
electrochemiluminescent two-color graphene quantum dots[ J]. Adv
Funct Materials, 2012, 22(14): 2971-2979. DOI: 10.1002/adfm.
201200166.
29、Shen J, Zhu Y, Yang X, et al. One-pot hydrothermal synthesis of
graphenequantum dots surface-passivated by polyethylene glycol and
their photoelectric conversion under near-infrared light[ J]. New J
Chem, 2012, 36(1): 97-101. DOI: 10.1039/C1NJ20658C.Shen J, Zhu Y, Yang X, et al. One-pot hydrothermal synthesis of
graphenequantum dots surface-passivated by polyethylene glycol and
their photoelectric conversion under near-infrared light[ J]. New J
Chem, 2012, 36(1): 97-101. DOI: 10.1039/C1NJ20658C.
30、Tiwari A, Walia S, Sharma S, et al. High quantum yield carbon dots and
nitrogen-doped carbon dots as fluorescent probes for spectroscopic
dopamine detection in human serum[ J]. J Mater Chem B, 2023, 11(5):
1029-1043. DOI: 10.1039/D2TB02188A.Tiwari A, Walia S, Sharma S, et al. High quantum yield carbon dots and
nitrogen-doped carbon dots as fluorescent probes for spectroscopic
dopamine detection in human serum[ J]. J Mater Chem B, 2023, 11(5):
1029-1043. DOI: 10.1039/D2TB02188A.
31、Wei W, Xu C, Wu L, et al. Non-enzymatic-browning-reaction: a
versatile route for production of nitrogen-doped carbon dots with
tunable multicolor luminescent display[ J]. Sci Rep, 2014, 4: 3564.
DOI: 10.1038/srep03564.Wei W, Xu C, Wu L, et al. Non-enzymatic-browning-reaction: a
versatile route for production of nitrogen-doped carbon dots with
tunable multicolor luminescent display[ J]. Sci Rep, 2014, 4: 3564.
DOI: 10.1038/srep03564.
32、Ge J, Jia Q, Liu W, et al. Red-emissive carbon dots for fluorescent,
photoacoustic, and thermal theranostics in living mice[ J]. Adv Mater,
2015, 27(28): 4169-4177. DOI: 10.1002/adma.201500323.Ge J, Jia Q, Liu W, et al. Red-emissive carbon dots for fluorescent,
photoacoustic, and thermal theranostics in living mice[ J]. Adv Mater,
2015, 27(28): 4169-4177. DOI: 10.1002/adma.201500323.
33、Wang W, Damm C, Walter J, et al. Photobleaching and stabilization of
carbon nanodots produced by solvothermal synthesis[ J]. Phys Chem
Chem Phys, 2016, 18(1): 466-475. DOI: 10.1039/C5CP04942C.Wang W, Damm C, Walter J, et al. Photobleaching and stabilization of
carbon nanodots produced by solvothermal synthesis[ J]. Phys Chem
Chem Phys, 2016, 18(1): 466-475. DOI: 10.1039/C5CP04942C.
34、Chen W, Shen J, Wang Z, et al. Turning waste into wealth: facile and
green synthesis of carbon nanodots from pollutants and applications to
bioimaging[ J]. Chem Sci, 2021, 12(35): 11722-11729. DOI: 10.1039/
d1sc02837e.Chen W, Shen J, Wang Z, et al. Turning waste into wealth: facile and
green synthesis of carbon nanodots from pollutants and applications to
bioimaging[ J]. Chem Sci, 2021, 12(35): 11722-11729. DOI: 10.1039/
d1sc02837e.
35、Tabish TA, Scotton CJ, Ferguson DC, et al. Biocompatibility and
toxicity of graphene quantum dots for potential application in
photodynamic therapy[ J]. Nanomedicine, 2018, 13(15): 1923-1937.
DOI: 10.2217/nnm-2018-0018.Tabish TA, Scotton CJ, Ferguson DC, et al. Biocompatibility and
toxicity of graphene quantum dots for potential application in
photodynamic therapy[ J]. Nanomedicine, 2018, 13(15): 1923-1937.
DOI: 10.2217/nnm-2018-0018.
36、Karako%C3%A7ak%20BB%2C%20Liang%20J%2C%20Kavadiya%20S%2C%20et%20al.%20Optimizing%20the%20synthesis%20of%20red-emissive%20nitrogen-doped%20carbon%20dots%20for%20use%20in%20bioimaging%5B%20J%5D.%20%0AACS%20Appl%20Nano%20Mater%2C%202018%2C%201(7)%3A%203682-3692.%20DOI%3A%2010.1021%2Facsanm.%20%0A8b00799.Karako%C3%A7ak%20BB%2C%20Liang%20J%2C%20Kavadiya%20S%2C%20et%20al.%20Optimizing%20the%20synthesis%20of%20red-emissive%20nitrogen-doped%20carbon%20dots%20for%20use%20in%20bioimaging%5B%20J%5D.%20%0AACS%20Appl%20Nano%20Mater%2C%202018%2C%201(7)%3A%203682-3692.%20DOI%3A%2010.1021%2Facsanm.%20%0A8b00799.
37、Jian HJ, Wu RS, Lin TY, et al. Super-cationic carbon quantum dots
synthesized from spermidine as an eye drop formulation for topical
treatment of bacterial keratitis[ J]. ACS Nano, 2017, 11(7): 6703-6716.
DOI: 10.1021/acsnano.7b01023.Jian HJ, Wu RS, Lin TY, et al. Super-cationic carbon quantum dots
synthesized from spermidine as an eye drop formulation for topical
treatment of bacterial keratitis[ J]. ACS Nano, 2017, 11(7): 6703-6716.
DOI: 10.1021/acsnano.7b01023.
38、 Huang X, Zhang F, Zhu L, et al. Effect of injection routes on the
biodistribution, clearance, and tumor uptake of carbon dots[ J]. ACS
Nano, 2013, 7(7): 5684-5693. DOI: 10.1021/nn401911k. Huang X, Zhang F, Zhu L, et al. Effect of injection routes on the
biodistribution, clearance, and tumor uptake of carbon dots[ J]. ACS
Nano, 2013, 7(7): 5684-5693. DOI: 10.1021/nn401911k.
39、Lee C, Kwon W, Beack S, et al. Biodegradable nitrogen-doped carbon
nanodots for non-invasive photoacoustic imaging and photothermal
therapy[ J]. Theranostics, 2016, 6(12): 2196-2208. DOI: 10.7150/
thno.16923.Lee C, Kwon W, Beack S, et al. Biodegradable nitrogen-doped carbon
nanodots for non-invasive photoacoustic imaging and photothermal
therapy[ J]. Theranostics, 2016, 6(12): 2196-2208. DOI: 10.7150/
thno.16923.
40、Huang X, Zhang F, Zhu L, et al. Effect of injection routes on the
biodistribution, clearance, and tumor uptake of carbon dots[ J]. ACS
Nano, 2013, 7(7): 5684-5693. DOI: 10.1021/nn401911k.Huang X, Zhang F, Zhu L, et al. Effect of injection routes on the
biodistribution, clearance, and tumor uptake of carbon dots[ J]. ACS
Nano, 2013, 7(7): 5684-5693. DOI: 10.1021/nn401911k.
41、Tong L, Wang X, Chen Z, et al. One-step fabrication of functional
carbon dots with 90% fluorescence quantum yield for long-term
lysosome imaging[ J]. Anal Chem, 2020, 92(9): 6430-6436. DOI:
10.1021/acs.analchem.9b05553.Tong L, Wang X, Chen Z, et al. One-step fabrication of functional
carbon dots with 90% fluorescence quantum yield for long-term
lysosome imaging[ J]. Anal Chem, 2020, 92(9): 6430-6436. DOI:
10.1021/acs.analchem.9b05553.
42、Chen H, Geng X, Ning Q, et al. Biophilic positive carbon dot exerts
antifungal activity and augments corneal permeation for fungal
keratitis[ J]. Nano Lett, 2024, 24(13): 4044-4053. DOI: 10.1021/acs.
nanolett.4c01042.Chen H, Geng X, Ning Q, et al. Biophilic positive carbon dot exerts
antifungal activity and augments corneal permeation for fungal
keratitis[ J]. Nano Lett, 2024, 24(13): 4044-4053. DOI: 10.1021/acs.
nanolett.4c01042.
43、Wang Q, Dong J, Du M, et al. Chitosan-rapamycin carbon dots alleviate
glaucomatous retinal injury by inducing autophagy to promote M2
microglial polarization[ J]. Int J Nanomedicine, 2024, 19: 2265-2284.
DOI: 10.2147/IJN.S440025.Wang Q, Dong J, Du M, et al. Chitosan-rapamycin carbon dots alleviate
glaucomatous retinal injury by inducing autophagy to promote M2
microglial polarization[ J]. Int J Nanomedicine, 2024, 19: 2265-2284.
DOI: 10.2147/IJN.S440025.
44、Shoval A, Markus A, Zhou Z, et al. Anti-VEGF-Aptamer modified
C-dots-a hybrid nanocomposite for topical treatment of ocular
vascular disorders[ J]. Small, 2019, 15(40): e1902776. DOI: 10.1002/
smll.201902776.Shoval A, Markus A, Zhou Z, et al. Anti-VEGF-Aptamer modified
C-dots-a hybrid nanocomposite for topical treatment of ocular
vascular disorders[ J]. Small, 2019, 15(40): e1902776. DOI: 10.1002/
smll.201902776.
45、Ilhan H, Erdem B, Ozkasapoglu S, et al. Fluorescent and biocompatible
nitrogen and sulfur Co-doped carbon nanodot as an ocular fundus
angiography imaging agent[ J]. J Fluoresc, 2023, 33(5): 1917-1925.
DOI: 10.1007/s10895-023-03200-8.Ilhan H, Erdem B, Ozkasapoglu S, et al. Fluorescent and biocompatible
nitrogen and sulfur Co-doped carbon nanodot as an ocular fundus
angiography imaging agent[ J]. J Fluoresc, 2023, 33(5): 1917-1925.
DOI: 10.1007/s10895-023-03200-8.
46、Schneider R, Wolpert C, Guilloteau H, et al. The exposure of bacteria
to CdTe-core quantum dots: the importance of surface chemistry
on cytotoxicity[ J]. Nanotechnology, 2009, 20(22): 225101. DOI:
10.1088/0957-4484/20/22/225101.Schneider R, Wolpert C, Guilloteau H, et al. The exposure of bacteria
to CdTe-core quantum dots: the importance of surface chemistry
on cytotoxicity[ J]. Nanotechnology, 2009, 20(22): 225101. DOI:
10.1088/0957-4484/20/22/225101.
47、Zhao Y, Chen Z, Chen Y, et al. Synergy of non-antibiotic drugs and
pyrimidinethiol on gold nanoparticles against superbugs[ J]. J Am
Chem Soc, 2013, 135(35): 12940-12943. DOI: 10.1021/ja4058635.Zhao Y, Chen Z, Chen Y, et al. Synergy of non-antibiotic drugs and
pyrimidinethiol on gold nanoparticles against superbugs[ J]. J Am
Chem Soc, 2013, 135(35): 12940-12943. DOI: 10.1021/ja4058635.
48、Li P, Poon YF, Li W, et al. A polycationic antimicrobial and
biocompatible hydrogel with microbe membrane suctioningability[ J].
Nat Mater, 2011, 10(2): 149-156. DOI: 10.1038/nmat2915.Li P, Poon YF, Li W, et al. A polycationic antimicrobial and
biocompatible hydrogel with microbe membrane suctioningability[ J].
Nat Mater, 2011, 10(2): 149-156. DOI: 10.1038/nmat2915.
49、Bing W, Sun H, Yan Z, et al. Programmed bacteria death induced by
carbon dots with different surface charge[ J]. Small, 2016, 12(34):
4713-4718. DOI: 10.1002/smll.201600294.Bing W, Sun H, Yan Z, et al. Programmed bacteria death induced by
carbon dots with different surface charge[ J]. Small, 2016, 12(34):
4713-4718. DOI: 10.1002/smll.201600294.
50、Wang Y, Kadiyala U, Qu Z, et al. Anti-biofilm activity of graphene
quantum dots via self-assembly with bacterial amyloid proteins[ J].
ACS Nano, 2019, 13(4): 4278-4289. DOI: 10.1021/acsnano.8b09403.Wang Y, Kadiyala U, Qu Z, et al. Anti-biofilm activity of graphene
quantum dots via self-assembly with bacterial amyloid proteins[ J].
ACS Nano, 2019, 13(4): 4278-4289. DOI: 10.1021/acsnano.8b09403.
51、Wang L, Li Y, Wang Y, et al. Chlorine-doped graphene quantum
dots with enhanced anti- and pro-oxidant properties[ J]. ACS Appl
Mater Interfaces, 2019, 11(24): 21822-21829. DOI: 10.1021/
acsami.9b03194.Wang L, Li Y, Wang Y, et al. Chlorine-doped graphene quantum
dots with enhanced anti- and pro-oxidant properties[ J]. ACS Appl
Mater Interfaces, 2019, 11(24): 21822-21829. DOI: 10.1021/
acsami.9b03194.
52、Meziani MJ, Dong X, Zhu L, et al. Visible-light-activated bactericidal
functions of carbon “quantum” dots[ J]. ACS Appl Mater Interfaces,
2016, 8(17): 10761-10766. DOI: 10.1021/acsami.6b01765.Meziani MJ, Dong X, Zhu L, et al. Visible-light-activated bactericidal
functions of carbon “quantum” dots[ J]. ACS Appl Mater Interfaces,
2016, 8(17): 10761-10766. DOI: 10.1021/acsami.6b01765.
53、Fang Y, Zhuo L, Yuan H, et al. Construction of graphene quantum
dot-based dissolving microneedle patches for the treatment of
bacterial keratitis[ J]. Int J Pharm, 2023, 639: 122945. DOI: 10.1016/
j.ijpharm.2023.122945.Fang Y, Zhuo L, Yuan H, et al. Construction of graphene quantum
dot-based dissolving microneedle patches for the treatment of
bacterial keratitis[ J]. Int J Pharm, 2023, 639: 122945. DOI: 10.1016/
j.ijpharm.2023.122945.
54、Shereema RM, Sruthi TV, Sameer Kumar VB, et al. Angiogenic
profiling of synthesized carbon quantum dots[ J]. Biochemistry, 2015,
54(41): 6352-6356. DOI: 10.1021/acs.biochem.5b00781.Shereema RM, Sruthi TV, Sameer Kumar VB, et al. Angiogenic
profiling of synthesized carbon quantum dots[ J]. Biochemistry, 2015,
54(41): 6352-6356. DOI: 10.1021/acs.biochem.5b00781.
55、Zhao N, Gui X, Fang Q, et al. Graphene quantum dots rescue
angiogenic retinopathy via blocking STAT3/Periostin/ERK
signaling[ J]. J Nanobiotechnology, 2022, 20(1): 174. DOI: 10.1186/
s12951-022-01362-4.Zhao N, Gui X, Fang Q, et al. Graphene quantum dots rescue
angiogenic retinopathy via blocking STAT3/Periostin/ERK
signaling[ J]. J Nanobiotechnology, 2022, 20(1): 174. DOI: 10.1186/
s12951-022-01362-4.
56、Wang L, Pan H, Gu D, et al. A novel carbon dots/thermo-sensitive in
situ gel for a composite ocular drug delivery system: characterization,
ex-vivo imaging, and in vivo evaluation[ J]. Int J Mol Sci, 2021, 22(18):
9934. DOI: 10.3390/ijms22189934.Wang L, Pan H, Gu D, et al. A novel carbon dots/thermo-sensitive in
situ gel for a composite ocular drug delivery system: characterization,
ex-vivo imaging, and in vivo evaluation[ J]. Int J Mol Sci, 2021, 22(18):
9934. DOI: 10.3390/ijms22189934.
57、Anand A , Jian HJ, Huang HH, et al. Anti-angiogenic carbon
nanovesicles loaded with bevacizumab for the treatment of age-related
macular degeneration[ J]. Carbon, 2023. 201: 362-370.Anand A , Jian HJ, Huang HH, et al. Anti-angiogenic carbon
nanovesicles loaded with bevacizumab for the treatment of age-related
macular degeneration[ J]. Carbon, 2023. 201: 362-370.
58、FDA approves hereditary blindness gene therapy[ J]. Nat Biotechnol,
2018, 36(1): 6. DOI: 10.1038/nbt0118-6a.FDA approves hereditary blindness gene therapy[ J]. Nat Biotechnol,
2018, 36(1): 6. DOI: 10.1038/nbt0118-6a.
59、Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform
for gene therapy delivery[ J]. Nat Rev Drug Discov, 2019, 18(5): 358-
378. DOI: 10.1038/s41573-019-0012-9.Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform
for gene therapy delivery[ J]. Nat Rev Drug Discov, 2019, 18(5): 358-
378. DOI: 10.1038/s41573-019-0012-9.
60、Hasanzadeh A, Radmanesh F, Kiani J, et al. Photoluminescent
functionalized carbon dots for CRISPR deliver y: synthesis,
optimization and cellular investigation[ J]. Nanotechnology, 2019,
30(13): 135101. DOI: 10.1088/1361-6528/aafbf9.Hasanzadeh A, Radmanesh F, Kiani J, et al. Photoluminescent
functionalized carbon dots for CRISPR deliver y: synthesis,
optimization and cellular investigation[ J]. Nanotechnology, 2019,
30(13): 135101. DOI: 10.1088/1361-6528/aafbf9.
61、Zhou J, Deng W, Wang Y, et al. Cationic carbon quantum dots
derived from alginate for gene delivery: one-step synthesis and
cellular uptake[ J]. Acta Biomater, 2016, 42: 209-219. DOI: 10.1016/
j.actbio.2016.06.021.Zhou J, Deng W, Wang Y, et al. Cationic carbon quantum dots
derived from alginate for gene delivery: one-step synthesis and
cellular uptake[ J]. Acta Biomater, 2016, 42: 209-219. DOI: 10.1016/
j.actbio.2016.06.021.
62、 Chen J, Li F, Zhao B, et al. Gene transfection efficiency improvement
w i th l ip i d conjugated cat io nic car bo n dots [ J] . ACS A ppl
Mater Interfaces, 2024, 16(21): 27087-27101. DOI: 10.1021/
acsami.4c02614. Chen J, Li F, Zhao B, et al. Gene transfection efficiency improvement
w i th l ip i d conjugated cat io nic car bo n dots [ J] . ACS A ppl
Mater Interfaces, 2024, 16(21): 27087-27101. DOI: 10.1021/
acsami.4c02614.
63、 Huang YC, Lai JZ, Luo CL, et al. A fluorescent vector of carbon
dot to deliver Rab13 and Rab14 plasmids for promoting neurite
outgrowth[ J]. ACS Appl Bio Mater, 2023, 6(9): 3739-3749. DOI:
10.1021/acsabm.3c00418. Huang YC, Lai JZ, Luo CL, et al. A fluorescent vector of carbon
dot to deliver Rab13 and Rab14 plasmids for promoting neurite
outgrowth[ J]. ACS Appl Bio Mater, 2023, 6(9): 3739-3749. DOI:
10.1021/acsabm.3c00418.
64、Yang TC, Chang CY, Yarmishyn AA, et al. Carboxylated nanodiamondmediated CRISPR-Cas9 delivery of human retinoschisis mutation into
human iPSCs and mouse retina[ J]. Acta Biomater, 2020, 101: 484-494.
DOI: 10.1016/j.actbio.2019.10.037.Yang TC, Chang CY, Yarmishyn AA, et al. Carboxylated nanodiamondmediated CRISPR-Cas9 delivery of human retinoschisis mutation into
human iPSCs and mouse retina[ J]. Acta Biomater, 2020, 101: 484-494.
DOI: 10.1016/j.actbio.2019.10.037.
65、Ma Y, Gao W, Zhang Y, et al. Biomimetic MOF nanoparticles delivery
of C-dot nanozyme and CRISPR/Cas9 system for site-specific
treatment of ulcerative colitis[ J]. ACS Appl Mater Interfaces, 2022,
14(5): 6358-6369. DOI: 10.1021/acsami.1c21700.Ma Y, Gao W, Zhang Y, et al. Biomimetic MOF nanoparticles delivery
of C-dot nanozyme and CRISPR/Cas9 system for site-specific
treatment of ulcerative colitis[ J]. ACS Appl Mater Interfaces, 2022,
14(5): 6358-6369. DOI: 10.1021/acsami.1c21700.
66、Zhang Y, Yan P, Tang H, et al. Rapid detection of tear lactoferrin
for diagnosis of dry eyes by using fluorescence polarization-based
aptasensor[ J]. Sci Rep, 2023, 13(1): 15179. DOI: 10.1038/s41598-
023-42484-5.Zhang Y, Yan P, Tang H, et al. Rapid detection of tear lactoferrin
for diagnosis of dry eyes by using fluorescence polarization-based
aptasensor[ J]. Sci Rep, 2023, 13(1): 15179. DOI: 10.1038/s41598-
023-42484-5.
67、Wei W, Cao H, Shen D, et al. Antioxidant Carbon Dots Nanozyme
Loaded in Thermosensitive in situ Hydrogel System for Efficient Dry
Eye Disease Treatment[ J]. Int J Nanomedicine, 2024, 19: 4045-4060.
DOI: 10.2147/IJN.S456613.Wei W, Cao H, Shen D, et al. Antioxidant Carbon Dots Nanozyme
Loaded in Thermosensitive in situ Hydrogel System for Efficient Dry
Eye Disease Treatment[ J]. Int J Nanomedicine, 2024, 19: 4045-4060.
DOI: 10.2147/IJN.S456613.
68、Nurunnabi M, Khatun Z, Reeck GR , et al. Photoluminescent
graphene nanoparticles for cancer phototherapy and imaging[ J]. ACS
Appl Mater Interfaces, 2014, 6(15): 12413-12421. DOI: 10.1021/
am504071z.Nurunnabi M, Khatun Z, Reeck GR , et al. Photoluminescent
graphene nanoparticles for cancer phototherapy and imaging[ J]. ACS
Appl Mater Interfaces, 2014, 6(15): 12413-12421. DOI: 10.1021/
am504071z.
69、Bao X, Yuan Y, Chen J, et al. In vivo theranostics with near-infraredemitting carbon dots-highly efficient photothermal therapy based on
passive targeting after intravenous administration[ J]. Light Sci Appl,
2018, 7: 91. DOI: 10.1038/s41377-018-0090-1.Bao X, Yuan Y, Chen J, et al. In vivo theranostics with near-infraredemitting carbon dots-highly efficient photothermal therapy based on
passive targeting after intravenous administration[ J]. Light Sci Appl,
2018, 7: 91. DOI: 10.1038/s41377-018-0090-1.
70、Barras A, Sauvage F, de Hoon I, et al. Carbon quantum dots as a dual
platform for the inhibition and light-based destruction of collagen
fibers: implications for the treatment of eye floaters[ J]. Nanoscale
Horiz, 2021, 6(6): 449-461. DOI: 10.1039/D1NH00157D.Barras A, Sauvage F, de Hoon I, et al. Carbon quantum dots as a dual
platform for the inhibition and light-based destruction of collagen
fibers: implications for the treatment of eye floaters[ J]. Nanoscale
Horiz, 2021, 6(6): 449-461. DOI: 10.1039/D1NH00157D.
71、Qu D, Miao X, Wang X, et al. Se & N Co-doped carbon dots for highperformance fluorescence imaging agent of angiography[ J]. J Mater
Chem B, 2017, 5(25): 4988-4992. DOI: 10.1039/C7TB00875A.
[LinkOut]Qu D, Miao X, Wang X, et al. Se & N Co-doped carbon dots for highperformance fluorescence imaging agent of angiography[ J]. J Mater
Chem B, 2017, 5(25): 4988-4992. DOI: 10.1039/C7TB00875A.
[LinkOut]
72、Zhou Y, Sun H, Wang F, et al. How functional groups influence the
ROS generation and cytotoxicity of graphene quantum dots[ J]. Chem
Commun, 2017, 53(76): 10588-10591. DOI: 10.1039/c7cc04831a.Zhou Y, Sun H, Wang F, et al. How functional groups influence the
ROS generation and cytotoxicity of graphene quantum dots[ J]. Chem
Commun, 2017, 53(76): 10588-10591. DOI: 10.1039/c7cc04831a.
73、Wang%20D%2C%20Zhu%20L%2C%20Chen%20JF%2C%20et%20al.%20Can%20graphene%20quantum%20dots%20cause%20%0ADNA%20damage%20in%20cells%3F%5B%20J%5D.%20Nanoscale%2C%202015%2C%207(21)%3A%209894-9901.%20DOI%3A%20%0A10.1039%2Fc5nr01734c.Wang%20D%2C%20Zhu%20L%2C%20Chen%20JF%2C%20et%20al.%20Can%20graphene%20quantum%20dots%20cause%20%0ADNA%20damage%20in%20cells%3F%5B%20J%5D.%20Nanoscale%2C%202015%2C%207(21)%3A%209894-9901.%20DOI%3A%20%0A10.1039%2Fc5nr01734c.
74、Wallace DC. Mitochondria and cancer[ J]. Nat Rev Cancer, 2012,
12(10): 685-698. DOI: 10.1038/nrc3365.Wallace DC. Mitochondria and cancer[ J]. Nat Rev Cancer, 2012,
12(10): 685-698. DOI: 10.1038/nrc3365.
75、Ding Y, Yu J, Chen X, et al. Dose-dependent carbon-dot-induced ROS
promote uveal melanoma cell tumorigenicity via activation of mTOR
signaling and glutamine metabolism[ J]. Adv Sci, 2021, 8(8): 2002404.
DOI: 10.1002/advs.202002404.Ding Y, Yu J, Chen X, et al. Dose-dependent carbon-dot-induced ROS
promote uveal melanoma cell tumorigenicity via activation of mTOR
signaling and glutamine metabolism[ J]. Adv Sci, 2021, 8(8): 2002404.
DOI: 10.1002/advs.202002404.