您的位置: 首页 > 文字全文
2023年7月 第38卷 第7期11
目录

正常眼的脉络膜血管系统研究进展

Research progress on choroidal vascular system in healthy eyes

来源期刊: 眼科学报 | 365-373 发布时间:2024-07-28 收稿时间:2024/9/20 16:54:41 阅读量:37
作者:
关键词:
正常眼脉络膜涡静脉后极部涡静脉
healthy eyes choroid vortex vein posterior vortex vein
DOI:
10.12419/24071001
收稿时间:
2024-06-04 
修订日期:
2024-06-28 
接收日期:
2024-07-13 
脉络膜是视网膜的主要血供来源,脉络膜血管系统为眼内最大、最重要的血管系统,在给外层视网膜供血方面起着至关重要的作用。脉络膜是一个动态、多功能性结构,其生理性特性受多种因素影响。这些因素包括年龄、性别、解剖位置、眼轴长度、昼夜节律与饮酒等。脉络膜涡静脉根据解剖学位置可分为眼内、巩膜内和眼外三大部分,又进一步分为脉络膜静脉、壶腹前部、壶腹、壶腹后部、巩膜入口、巩膜内通道、巩膜出口和巩膜外涡静脉八个区域。在正常眼中,涡静脉的类型不仅限于传统认知中出口位于赤道部近睫状体平坦部的涡静脉,研究发现还存在出口位于后极部的后极部涡静脉。根据涡静脉的形态及解剖特点,涡静脉又分为四类:缺失型涡静脉、不完整型涡静脉、完整型涡静脉、完整型涡静脉伴壶腹。文章旨在阐述正常人眼的脉络膜血流及涡静脉解剖基础,以深入了解正常状态下的脉络膜特征,这不仅有助于辨别脉络膜的病理性变化,且对脉络膜相关眼部疾病的诊断与鉴别诊断有重要价值。
The choroid is the primary source of blood supply for the retina. As the largest and most important vascular system within the eye, the choroidal vasculature plays a crucial role in providing blood to the outer retina. The choroid is a dynamic, multifunctional structure whose physiological characteristics are influenced by a variety of factors. These factors include age, gender, anatomical location, axial length of the eye, circadian rhythm, and alcohol consumption, among others. Choroidal vortex veins can be anatomically divided into three main parts: intraocular, scleral, and extraocular. Furthermore, they can be subdivided into eight distinct regions: choroidal veins, pre-ampulla, ampulla, post-ampulla, scleral entrance, intrascleral canal, scleral exit, and extrascleral vortex vein. In the healthy eye, the types of vortex veins are not limited to the traditionally recognized veins with exits near the ciliary body pars plana in the equatorial region. Recent research has revealed the existence of posterior vortex veins with exits in the posterior pole of the eye. Based on the morphology and anatomical characteristics of vortex veins, they can be further classified into four types:absent vortex veins, incomplete vortex veins, complete vortex veins, complete vortex veins with ampulla. This paper aims to elucidate the blood flow and vortex veins anatomical foundation of the choroid in normal human eyes. Understanding these characteristics in a healthy state will aid in identifying pathological changes in the choroid, which is of significant value for the diagnosis and differential diagnosis of ocular diseases.

文章亮点

1. 关键发现

• 脉络膜是一个动态、多功能性结构,其生理性特性受多种因素影响。这些因素包括年龄、性别、解剖位置、眼轴长度、昼夜节律与饮酒等。
• 脉络膜涡静脉具有精细的解剖特征和层次:根据其在眼球的位置,分为眼内、巩膜内和眼外三个主要部分;根据其解剖学位置,又进一步分为脉络膜静脉、壶腹前部、壶腹、壶腹后部、巩膜入口、巩膜内通道、巩膜出口和巩膜外涡静脉八个区域。
• 在正常眼中,涡静脉的类型不仅限于传统认知中出口位于赤道部近睫状体平坦部的涡静脉,研究发现还存在出口位于后极部的后极部涡静脉。

2. 已知与发现

• 脉络膜是动态变化的组织,其血流及厚度受多种因素影响,会导致生理性变化。
• 脉络膜血管系统解剖结构复杂,最新研究发现的后极部涡静脉,进一步揭示了这一复杂性,也拓宽了现有眼球静脉回流系统的认知。

3. 意义与改变

• 明确正常人眼的脉络膜血流及涡静脉解剖基础,不仅有助于辨别脉络膜的病理性变化,且对脉络膜相关眼部疾病的诊断与鉴别诊断有重要价值。
       
       脉络膜是眼内富含血管与色素的葡萄膜组织,位于视网膜与巩膜之间。脉络膜是视网膜的主要血供来源,以高流速为视网膜供给约90%的氧气,维持光感受器细胞的高代谢活动[1]。正常的脉络膜结构与功能对维持视力和眼部健康至关重要。因此,健康状态下脉络膜的结构特征值得深入研究与探讨。本文结合笔者的最新研究成果,对正常眼中脉络膜血管系统的研究进展进行梳理和总结。

1 正常眼的脉络膜组织

       脉络膜位于视网膜及巩膜之间,构成葡萄膜的后段[2-3]。虹膜、睫状体、脉络膜三个部分共同组成了葡萄膜。脉络膜由视神经向前延伸至锯齿缘[1,4]。脉络膜主要由血管和基质组成。在组织学上,脉络膜被分为5层,从巩膜侧开始依次为:脉络膜上腔、Haller层、Sattler层、脉络膜毛细血管层、Bruch膜[5]。Haller层为脉络膜大血管层,主要由血管直径较大的动静脉和血管之间混杂的基质构成,而基质由神经和多种细胞组成,包括大量黑色素细胞、纤维细胞、非血管平滑肌细胞、肥大细胞、巨噬细胞和淋巴细胞等[1]。Sattler层为脉络膜中血管层,由血管直径中等的脉络膜动静脉组成,滋养脉络膜毛细血管层。脉络膜毛细血管层由毛细血管网组成,呈小叶分布。根据Hayreh等提出的脉络膜毛细血管小叶理论得知,每个小叶由位于小叶中心的脉络膜小动脉供血,并通过位于小叶周边的静脉引流[6–9]。而在脉络膜的不同区域,脉络膜毛细血管小叶的形状和大小有所不同:在后极部呈蜂窝状、赤道部呈多边形、周边部呈细长形[10]

2 正常眼的脉络膜血流

       脉络膜的血供主要来自动脉的睫状动脉分支,如睫状后短动脉(分为视盘旁型和远端型,分别供应视盘、后极部和中周部脉络膜)和睫状后长动脉(分为内侧和外侧,供应周边部脉络膜和虹膜、睫状体) [11]。其中睫状后短动脉的视盘旁型动脉发出分支在视盘周围相互吻合形成Zinn-Haller环;睫状后长动脉的内外侧两支又各自分两支在虹膜形成虹膜大环[12]。睫状动脉的各分支继而细分成脉络膜动脉,垂直进入脉络膜,形成呈小叶分布的脉络膜毛细血管(脉络膜动脉向毛细血管转变十分迅速,未见全身其他部位的微动脉等分级) [10]。这些脉络膜毛细血管的血液经脉络膜小叶周围的静脉引流,在脉络膜内走行很短的距离斜行流出,并与邻近的小静脉汇合,继而汇合为较大的脉络膜静脉(choroidal vein, ChV)。这些ChV再通过巩膜出口将血液引流出眼,最终与眼静脉汇合。
       从脉络膜到涡静脉的整个引流途径被定义为涡静脉系统[13]。涡静脉系统作为脉络膜循环的主要引流通道,承担着将血液从脉络膜和其他葡萄膜组织回流至全身循环的关键任务。它不仅负责脉络膜血液的引流,而且在眼前部的血液循环中扮演着重要角色[14]

2.1 脉络膜血流的生理性变化

       脉络膜是一个动态、多功能性结构,其血流和厚度直接或间接地受到各种生理和视觉刺激的调节。深入理解正常生理状态下脉络膜血流和厚度的变化规律,是及时识别和准确评估脉络膜病理性改变的关键。
       脉络膜血流的生理性变化可以通过脉络膜厚度(choroidal thickness, CT)的变化间接反映。这些变化主要受以下因素影响:1)年龄,人类出生时,黄斑区CT大约为200.00μ m,成年后逐渐变薄,到90岁时降低至80.00μ m左右[15]。人类年龄每增长10岁,CT大约减少14.00~15.60μ m[16-17]。然而,Ding等[18]研究表明,60岁以下正常健康者的中心凹下脉络膜厚度(subfovealchoroidal thickness, SFCT)与年龄无明显相关,但是60岁以上受试者的SFCT与年龄呈负相关。2)性别,男性的黄斑区CT明显比女性更厚[15,17,19]。3)解剖位置,在健康成人个体中,脉络膜最厚处为黄斑区,平均最大厚度约272.00μ m[20]。Ding等[18]在2012年报道我国健康人的SFCT为(261.93±88.42)μ m。黄斑区内的上方CT较厚,然后是颞侧和下方,最薄的是鼻侧[17-18,21]。4)眼轴长度(axial length, AL)。CT随AL的增长而降低[22]。5)昼夜节律,脉络膜在傍晚时增厚,在午夜前后达到最大厚度,而在清晨开始变薄,直至中午前后降至最薄[23-24]。然而,CT厚度的相关研究主要集中在黄斑区,其他脉络膜区域的相关生理现象仍亟待进一步探索。
       近期,我们应用扫描范围为24 mm×20 mm的广角光学相干断层扫描血管成像(wide-field optical coherence tomography angiography, WF-OCTA)技术,评估了正常眼脉络膜体积的日节律变化[25]。结果显示,整体脉络膜的体积、厚度、血管体积和基质体积均呈现出显著的日节律变化,最低值出现在12:00,而峰值则在22:00。这一发现进一步证实了脉络膜血流的昼夜节律特性。研究还发现,脉络膜体积的变化更多与血管成分而非基质相关,强调了血流在脉络膜生理变化中的重要作用。此外,我们另一项研究探讨了大量饮酒对脉络膜血流的急性影响[26]。结果表明,饮用烈酒或葡萄酒后,脉络膜微血管参数发生显著变化,而视网膜血管参数无明显差异。具体而言,饮酒后0.5、1、2和3 h,脉络膜体积和脉络膜血管体积均显著下降,其中以饮用后1 h最为明显。这一发现揭示了急性过量饮酒可导致眼部局部小血管收缩和毛细血管舒张,从而影响脉络膜血流。
       这些研究成果不仅深化了我们对脉络膜血流生理性变化的理解,也为相关眼部疾病的诊断和治疗提供了重要参考。通过观察脉络膜厚度和血流的变化,我们可以更好地评估眼部健康状况,为临床实践提供有力支持。

3 正常眼的脉络膜涡静脉系统

       根据解剖位置,涡静脉系统可分为三大部分:眼内、巩膜内和眼外。虽然涡静脉系统的解剖结构存在个体差异,但根据其解剖位置,又可将其进一步分8个特定的区域:ChV、壶腹前部、壶腹、壶腹后部、巩膜入口、巩膜内通道、巩膜出口和巩膜外涡静脉[13](图1)。在眼内部分,不同象限的ChV汇集成数个扩大的前庭区域,这一区域被称为壶腹部,之后这些静脉流入巩膜[27]。壶腹部长约1.0 mm,宽约0.9 mm[13]。壶腹部上游的脉络膜汇合区域称为壶腹前部。壶腹部下游区域称为壶腹后部,血液进入壶腹部后接着流入巩膜部分。在巩膜区域,ChV进入由巩膜入口、巩膜内通道和巩膜出口区域组成的巩膜通道。巩膜通道的总长度根据穿过巩膜的角度而变化。眼外部分为巩膜外涡静脉,沿眼球后方走行,连接眶内较大的静脉[28-29]
图1 正常眼的脉络膜涡静脉系统解剖示意图
Figure 1 Anatomical diagram of the choroidal vortex vein system in a healthy eye

3.1 脉络膜静脉形态特征

       ChV引流不同象限的血液(颞上象限、颞下象限、鼻上象限、鼻下象限),在后极部形成分水带。颞上象限、鼻上象限与颞下象限、鼻下象限涡静脉之间的无静脉血管区水平穿过视盘、黄斑区,被称为水平分水带,颞上象限、颞下象限与鼻上象限、鼻下象限涡静脉之间的无静脉血管区垂直穿过视盘,被称为垂直分水带[6]。然而,并非所有正常眼都遵循相同的分水带分布模式。Keisuke等[30]的研究显示,50.0%(18/36只眼)ChV在黄斑区呈现出不对称的脉络膜引流,而颞上象限为主要的引流区域,占67.0%(12/18只眼)。并且年轻及老年健康人群的主要引流区域均为颞上象限,表明该现象与年龄无关。Savastano等[31]应用光学相干断层扫描血管成像(optical coherence tomography angiography, OCTA)平面(en face)图像对于154只正常眼进行观察,将黄斑区分水带区域的脉络膜血管形态分为以下五类:颞侧人字形、从下面分支形、侧斜形、双弓状、网状。实际上,由于该研究是基于en face OCTA的小范围图像资料,其中的从下面分支形及侧斜形两种模式的涡静脉走行很可能均为颞下象限涡静脉引流所致,因此借助范围更广的眼底成像影像设备评估脉络膜血管至关重要。

3.2 涡静脉分布特征

       传统观念认为,每只正常人眼有 4 条涡静脉[11,32-33]。Lim等[34]对于人体尸眼的巩膜出口数量进行了研究,结果表明70%正常眼的涡静脉巩膜出口的平均数量在4.0个及以上(范围:3~8个)。Funatsu等[35]应用超广角(ultra wide fide, UWF)眼底彩照图像对正常眼涡静脉壶腹进行评估,显示每眼平均涡静脉壶腹数为8.0条,每个象限的平均涡静脉数从多到少依次为鼻上象限(2.2条)、颞下象限(2.1条)、鼻下象限(2.0条)、颞上象限(1.8条)。Verma等[36]应用超广角吲哚菁绿血管造影(ultra-widefield indocyanine green angiography, UWF-ICGA)发现每眼的平均涡静脉数以8.0条最多见(范围为3-13条)。Rutnin等[27]在200个正常眼底的1 710条涡静脉研究中发现:每眼的平均涡静脉数也以每眼8.0条涡静脉最多(范围为4~15条),与前述研究结果一致;但每个象限的涡静脉数范围为1~6条,且每个象限的平均涡静脉数从多到少依次为颞下象限(2.4条)、颞上象限(2.2条)、鼻上象限(2.0条)、鼻下象限(2.0条),与Funatsu等[35]研究结果不同。另有研究发现每眼平均涡静脉数在男性正常受试者(8.4条)中明显多于在女性(7.8条)中[35]

3.3 赤道部涡静脉与后极部涡静脉

       长期以来,研究者们普遍认为正常眼中涡静脉的出口仅位于接近睫状体平坦部的位置。故而认为脉络膜所有涡静脉的巩膜出口边缘四个象限组成一个虚拟圆形的重要解剖标志——赤道部,赤道部以内(后)包括后极部及中周部,赤道部以外(前)为周边部[27]。然而,除了巩膜出口位于赤道部的涡静脉,有研究者报道了少数病例的患眼中涡静脉出口位于后极部,即后极部涡静脉(posterior vortex vein, PVV)。文献报道的合并PVV的眼部疾病包括眼皮肤白化病、高度近视和13-三体综合征患者的先天性青光眼等[37–42]。我们也在局灶性脉络膜凹陷患眼中观察到巩膜出口位于黄斑区的PVV[43]。Moriyama等[44]于2017年报道了26.5%(80/302只眼)的高度近视眼中出现PVV:该研究发现伴有后巩膜葡萄肿的高度近视眼比无后巩膜葡萄肿的高度近视眼更容易出现PVV;并且报告28.0%的PVV位于视盘旁、17.0%位于黄斑区、6.0%位于葡萄肿边缘、21.0%位于黄斑区萎缩灶边缘或视盘萎缩弧边缘,28.0%位于后极部其他部位。该团队对高度近视眼中的PVV进行长期随访,并于2023年报道33.1%的PVV出现变化:其中87.8%PVV血管变细,39.0%PVV引流途径发生改变[45]。然而,PVV是否存在于正常眼尚不清楚。
       在临床实践中,我们观察到WF-OCTA能够有效显示患有各种眼疾的患者眼中的PVV,吲哚菁绿(indocyanine green, ICG)染料注射后1 min的UWF-ICGA静脉期即可观察到这一点,见图2。WF-OCTA这种非侵入性、高分辨率的成像技术能够在未散瞳的情况下清晰展示正常眼中的PVV,无需进行侵入性的ICGA检查[46]
       为了探讨PVV在正常眼中的分布情况,我们应用WF-OCTA评估了PVV在包括屈光不正的正常健康者眼中的发生比率[46]。研究结果显示,16.1%(82/510只眼)的正常眼存在PVV(图3)。随着屈光状态的不同,PVV的发生比率逐渐升高,正视组、低中度近视组和高度近视组PVV的发生比率分别为10.3%(22/213只眼)、16.6%(31/187只眼)和26.4%(29/110只眼)。但PVV的发生比率在同一屈光状态的不同年龄亚组之间比较差异无统计学意义。平均每眼PVV数量为1.7±1.1(范围:1~6个),主要位于视盘旁(78.0%,64/82),而黄斑区(6.1%,5/82)和后极部其他部位(15.9%,13/82)较少见。PVV好发于高度近视眼的视盘旁,其发生比率与屈光状态相关,而与年龄无关。我们的研究揭示涡静脉也可以发生在正常眼的后极部,特别是在正视眼中,丰富了之前认为涡静脉出口主要位于赤道部、PVV仅存在于眼部疾病患眼中的观点。
图2 ICGA静脉期与en fance WF-OCTA检测PVV的比较
Figure 2 Comparison of PVV detection using ICGA venous phase and en face WF-OCTA 
(A~E2)点状内层脉络膜病变患眼,视盘旁有两条PVV。(A)应用ICGA静脉期检测到视盘旁的两条PVV。(B)应用24 mm×20 mm en face WF-OCTA在脉络膜大血管层检测到视盘旁的两条PVV。(C)WF-OCTA图像显示与B图相同扫描的脉络膜大血管层,两条水平线(橙色和蓝色箭头)穿过PVV(绿色三角)的出口点。(D)黄色高亮显示出C图中的两条视盘旁PVV。(E1)C图的水平WF-OCT扫描图像(橙色箭头),对应于该眼总共1 280次WF-OCT扫描中的第646次扫描,清晰地显示一条PVV穿过巩膜(绿色三角)并离开眼球。(E2)C图的水平WF-OCT扫描图像(蓝色箭头),对应于该眼总共1 280次WF-OCT扫描中的第596次扫描,清晰地显示另一条PVV穿过巩膜(绿色三角)并离开眼球。(F~J2)急性区域性隐匿性外层视网膜病变患眼,视盘旁有一条PVV。(F)ICGA静脉期检测到视盘旁1条PVV。(G)应用24 mm×20 mm en face WF-OCTA在脉络膜大血管层检测到视盘旁的1条PVV。(H)WF-OCTA图像显示与G图相同扫描的脉络膜大血管层,两条水平线(橙色和蓝色箭头)穿过PVV(绿色三角)的出口点。(I)黄色高亮显示出H图中的1条视盘旁PVV。( J1)H图的水平WF-OCT图像(橙色箭头),对应于该眼总共1280次WF-OCT扫描中的第833次扫描,清晰地显示一条PVV穿过巩膜(绿色箭头)并离开眼球。( J2)H的水平WF-OCT图像(蓝色箭头),对应于该眼总共1280次WF-OCT扫描中的第638次扫描,清晰地显示一条PVV穿过巩膜(绿色三角)并离开眼球。(K~O2)息肉状脉络膜血管病变患眼,视盘旁有两条PVV。(K)应用ICGA静脉期检测到视盘旁的两条PVV。(L)应用24 mm×20 mm en face WFOCTA在脉络膜大血管层检测到视盘旁的两条PVV。(M)WF-OCTA图像显示与L图相同扫描的脉络膜大血管层。(N)黄色高亮显示M图中的2条视盘旁PVV。(O1)M图的水平WF-OCT图像(橙色箭头),对应于该眼总共1280次WF-OCT扫描中的第594次扫描,清晰地显示一条PVV穿过巩膜(绿色箭头)并离开眼球。(O2)M图的水平WF-OCT图像(蓝色箭头),对应于该眼总共1 280次WF-OCT扫描中的第567次扫描,清晰地显示另一条PVV穿过巩膜(绿色箭头)并离开眼球。该图来自作者本人已发表的论文[46]
A-E2. Two PVVs located around the optic disc in an eye with punctate inner choroidopathy. A. Detection of two PVVs around the optic disc using ICGA venous phase. B. Detection of two PVVs around the optic disc using 24mm × 20 mm en face WF-OCTA in the large-vessel choroidal layer. C. WF-OCTA image showing the large-vessel choroidal layer in the same scan as B, with two horizontal lines (orange and blue arrows) crossing the exit points of PVVs (green arrowheads). D. Yellow highlight indicating the presence of two PVVs around the optic disc in C. E1. Horizontal WF-OCT image of C (orange arrow) corresponds to the 646th scan out of a total of 1280 WF-OCT scans, clearly demonstrating the exit of one PVV penetrating the sclera (green arrowhead) and leaving the eyeball. E2. Horizontal WF-OCT image of C (blue arrow) corresponds to the 596th scan out of a total of 1 280 WF-OCT scans, clearly illustrating the exit of another PVV penetrating the sclera (green arrowhead) and leaving the eyeball. F-J2. One PVV located around the optic disc in an eye with acute zonal occult outer retinopathy. F. Detection of one PVV around the optic disc using ICGA venous phase. G. Detection of one PVV around the optic disc using 24mm × 20 mm en face WF-OCTA in the large-vessel choroidal layer. H. WF-OCTA image showing the large-vessel choroidal layer in the same scan as F. I. Yellow highlight indicating the presence of one PVV around the optic disc in G. J1. Horizontal WF-OCT image of H (orange arrow) corresponds to the 833th scan out of a total of 1280 WF-OCT scans, clearly demonstrating the exit of one PVV penetrating the sclera (green arrowhead) and leaving the eyeball. J2. Horizontal WF-OCT image of H (blue arrow) corresponds to the 638th scan out of a total of 1280 WF-OCT scans, clearly demonstrating the exit of one PVV penetrating the sclera (green arrowhead) and leaving the eyeball. K-O2. Two PVVs located around the optic disc in an eye with polypoidal choroidal vasculopathy. K. Detection of two PVVs around the optic disc using ICGA venous phase. L. Detection of two PVVs around the optic disc using 24mm × 20 mm en face WF-OCTA in the large-vessel choroidal layer. M. WF-OCTA image showing the large-vessel choroidal layer in the same scan as J. N. Yellow highlight indicating the presence of two PVVs around the optic disc in K. O1. Horizontal WF-OCT image of M (orange arrow) corresponds to the 594th scan out of a total of 1280 WF-OCT scans, clearly demonstrating the exit of one PVV penetrating the sclera (green arrowhead) and leaving the eyeball. O2. Horizontal WF-OCT image of M (blue arrow) corresponds to the 567th scan out of a total of 1280 WF-OCT scans, clearly illustrating the exit of another PVV penetrating the sclera (green arrowhead) and leaving the eyeball. The figure is from the author's own published paper.[46]


图3 不同类型PVV的正常眼的en face WF-OCTA和WF-OCTA图像
Figure 3 En face WF-OCTA and WF-OCTA images of healthy eyes with different types of PVVs
(A~C)正常眼的视盘旁PVV。(A)应用24 mm×20 mm en face WF-OCTA在脉络膜大血管层检测到视盘旁PVV。(B)WF-OCTA图像显示与A图相同扫描的脉络膜大血管层。(C)黄色高亮显示出B图的视盘旁PVV。(D~F)另一只正常眼的黄斑区PVV。(D)应用24 mm×20 mm en face WF-OCTA在脉络膜大血管层检测到黄斑区PVV。(E) WF-OCTA图像显示与D图相同扫描的脉络膜大血管层。(F)黄色高亮显示出E图的黄斑区PVV。(G~I)另一只正常眼的后极部其他部位PVV。(G)应用24 mm×20 mm en face WF-OCTA在脉络膜大血管层检测到后极部其他部位PVV。(H)WF-OCTA图像显示与G图相同扫描的脉络膜大血管层。(I)黄色高亮显示出H图的后极部其他部位PVV。该图来自作者本人已发表的论文[46]
A-C. PVV located around the optic disc in a healthy eye. A. Detection of PVV around the optic disc using 24mm × 20 mm en face WF-OCTA in the large-vessel choroidal layer. B. WF-OCTA image showing the large-vessel choroidal layer in the same scan as A. C. Yellow highlight indicating the presence of PVV around the optic disc in B. D-F. PVV located at the macula area in another healthy eye. D. Detection of PVV at the macula area using 24 × 20 mm en face WF-OCTA in the large-vessel choroidal layer. E. WF-OCTA image showing the large-vessel choroidal layer in the same scan as D. F. Yellow highlight indicating the presence of PVV at the macula area in E. G-I. PVV located at other areas of the posterior pole in another healthy eye. G. Detection of PVV at other areas of the posterior pole using 24mm × 20 mm en face WF-OCTA in the large-vessel choroidal layer. H. WF-OCTA image showing the large-vessel choroidal layer in the same scan as G. I. Yellow highlight indicating the presence of PVV at other areas of the posterior pole in H. The figure is from the author's own published paper.[46]

3.4 涡静脉分类

       Rutnin等率先对涡静脉进行了分类,他们对200个正常眼底的1 710条涡静脉进行研究,在排除了232条不清晰的涡静脉后,分析了其余的1478条涡静脉,根据涡静脉的形态及解剖特点将其分为四类[27]:①缺失型涡静脉:ChV分支直接回流至巩膜出眼,从眼底视野中消失,在进入巩膜前没有汇合形成一条明显的涡静脉;②不完整型涡静脉:ChV分支部分汇合回流经巩膜出眼,即涡静脉在其分支尚未完全汇合之前从巩膜入口流出,导致部分分支独立地从同一巩膜入口流出脉络膜;③完整型涡静脉:ChV分支在进入巩膜入口前,其所有分支已汇合成一个统一的结构,但未观察到壶腹结构的存在,即完整型涡静脉;④完整型涡静脉伴壶腹:ChV分支汇合成一个统一的结构后,在进入巩膜之前形成一个扩张的壶腹结构。该研究显示正常人眼的涡静脉分布特点为43.3%(640/1 478条)为完整型涡静脉,43.6%(644/1478条)为完整型涡静脉伴壶腹,12.0%(177/1 478条)为缺失型涡静脉,只有1.1%(17/1 478条)为不完整型涡静脉。该分类表明正常人眼存在涡静脉分布的复杂性和多样性。
       脉络膜涡静脉系统的研究揭示了眼部脉络膜血管系统解剖结构的复杂性与个体差异。深入了解涡静脉的形态、分布及其变化,不仅能够丰富我们对眼部解剖的认知,也为临床诊断和治疗提供了新的视角。

4 总结与展望

       脉络膜血管系统是眼内最大、最重要的血管系统,在为外层视网膜供血方面起着至关重要的作用。深入了解正常状态下的脉络膜特征,才能及时辨别脉络膜血管的病理性变化。随着医学影像技术的飞速发展,尤其是广角眼底影像技术的进步,使我们能够更为精准地观察脉络膜的结构和功能状态。脉络膜在健康和疾病状态下的广角影像结构变化是一个值得不断探索的领域。
       我们的研究证实,非侵入性WF-OCTA检查能有效确定涡静脉巩膜出口,为探讨涡静脉分布特征和揭示疾病机制提供了可靠工具。然而,目前的脉络膜血管系统研究多局限于横断面研究,缺乏长期追踪观察。未来研究需要增加纵向研究,以全面观察脉络膜血管系统随时间的变化。在研究方向上,WF-OCTA技术有望推动涡静脉分布模式研究、分类特征探讨、病理机制探索和治疗效果评估等多个方面的进展。这对于揭示各种脉络膜相关眼部疾病的发病机制和制定有效治疗策略具有重要意义,有望为眼科临床实践带来新的突破。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议 ( Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。

1、Nickla DL, Wallman J. The multifunctional choroid[ J]. Prog Retin Eye Res, 2010, 29(2): 144-168. DOI: 10.1016/j.preteyeres.2009.12.002.Nickla DL, Wallman J. The multifunctional choroid[ J]. Prog Retin Eye Res, 2010, 29(2): 144-168. DOI: 10.1016/j.preteyeres.2009.12.002.
2、Agrawal R, Ding J, Sen P, et al. Exploring choroidal angioarchitecture in health and disease using choroidal vascularity index[ J]. Prog Retin Eye Res, 2020, 77: 100829. DOI: 10.1016/j.preteyeres.2020.100829.Agrawal R, Ding J, Sen P, et al. Exploring choroidal angioarchitecture in health and disease using choroidal vascularity index[ J]. Prog Retin Eye Res, 2020, 77: 100829. DOI: 10.1016/j.preteyeres.2020.100829.
3、Brinks J, van Dijk EHC, Klaassen I, et al. Exploring the choroidal vascular labyrinth and its molecular and structural roles in health and disease[ J]. Prog Retin Eye Res, 2022, 87: 100994. DOI: 10.1016/ j.preteyeres.2021.100994.Brinks J, van Dijk EHC, Klaassen I, et al. Exploring the choroidal vascular labyrinth and its molecular and structural roles in health and disease[ J]. Prog Retin Eye Res, 2022, 87: 100994. DOI: 10.1016/ j.preteyeres.2021.100994.
4、Jonas JB, Spaide RF, Ostrin LA, et al. IMI-nonpathological human ocular tissue changes with axial myopia[ J]. Invest Ophthalmol Vis Sci, 2023, 64(6): 5. DOI: 10.1167/iovs.64.6.5.Jonas JB, Spaide RF, Ostrin LA, et al. IMI-nonpathological human ocular tissue changes with axial myopia[ J]. Invest Ophthalmol Vis Sci, 2023, 64(6): 5. DOI: 10.1167/iovs.64.6.5.
5、Kur J, Newman EA , Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease[ J]. Prog Retin Eye Res, 2012, 31(5): 377-406. DOI: 10.1016/j.preteyeres.2012.04.004.Kur J, Newman EA , Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease[ J]. Prog Retin Eye Res, 2012, 31(5): 377-406. DOI: 10.1016/j.preteyeres.2012.04.004.
6、Hayreh SS. Segmental nature of the choroidal vasculature[ J]. Br J Ophthalmol, 1975, 59(11): 631-648. DOI: 10.1136/bjo.59.11.631.Hayreh SS. Segmental nature of the choroidal vasculature[ J]. Br J Ophthalmol, 1975, 59(11): 631-648. DOI: 10.1136/bjo.59.11.631.
7、Hayreh SS, Hayreh SB. Uveal vascular bed in health and disease: uveal vascular bed anatomy. Paper 1 of 2[ J]. Eye, 2023, 37(13): 2590-2616. DOI: 10.1038/s41433-023-02416-z.Hayreh SS, Hayreh SB. Uveal vascular bed in health and disease: uveal vascular bed anatomy. Paper 1 of 2[ J]. Eye, 2023, 37(13): 2590-2616. DOI: 10.1038/s41433-023-02416-z.
8、Hayreh SS, Hayreh SB. Uveal vascular bed in health and disease: lesions produced by occlusion of the uveal vascular bed and acute uveal ischaemic lesions seen clinically. Paper 2 of 2[ J]. Eye, 2023, 37: 2617- 2648. DOI: 10.1038/s41433-023-02417-y.Hayreh SS, Hayreh SB. Uveal vascular bed in health and disease: lesions produced by occlusion of the uveal vascular bed and acute uveal ischaemic lesions seen clinically. Paper 2 of 2[ J]. Eye, 2023, 37: 2617- 2648. DOI: 10.1038/s41433-023-02417-y.
9、Hanyuda N, Akiyama H, Shimoda Y, et al. Different filling patterns of the choriocapillaris in fluorescein and indocyanine green angiography in primate eyes under elevated intraocular pressure[ J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5856-5861. DOI: 10.1167/iovs.17- 22223.Hanyuda N, Akiyama H, Shimoda Y, et al. Different filling patterns of the choriocapillaris in fluorescein and indocyanine green angiography in primate eyes under elevated intraocular pressure[ J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5856-5861. DOI: 10.1167/iovs.17- 22223.
10、Lejoyeux R, Benillouche J, Ong J, et al. Choriocapillaris: fundamentals and advancements[ J]. Prog Retin Eye Res, 2022, 87: 100997. DOI: 10.1016/j.preteyeres.2021.100997.Lejoyeux R, Benillouche J, Ong J, et al. Choriocapillaris: fundamentals and advancements[ J]. Prog Retin Eye Res, 2022, 87: 100997. DOI: 10.1016/j.preteyeres.2021.100997.
11、Hayreh SS. In vivo choroidal circulation and its watershed zones[ J]. Eye, 1990, 4( Pt 2): 273-289. DOI: 10.1038/eye.1990.39.Hayreh SS. In vivo choroidal circulation and its watershed zones[ J]. Eye, 1990, 4( Pt 2): 273-289. DOI: 10.1038/eye.1990.39.
12、刘文,文峰. 临床眼底病:内科卷[M]. 北京: 人民卫生出版社, 2015.
Liu W, Wen F. Clinical Fundus Disease - Internal Medicine Volume[M]. Beijing: People’s Medical Publishing House, 2015.
刘文,文峰. 临床眼底病:内科卷[M]. 北京: 人民卫生出版社, 2015. Liu W, Wen F. Clinical Fundus Disease - Internal Medicine Volume[M]. Beijing: People’s Medical Publishing House, 2015.
13、Yu DY, Yu PK , Cringle SJ, et al. Functional and morphological characteristics of the retinal and choroidal vasculature[ J]. Prog Retin Eye Res, 2014, 40: 53-93. DOI: 10.1016/j.preteyeres.2014.02.001.Yu DY, Yu PK , Cringle SJ, et al. Functional and morphological characteristics of the retinal and choroidal vasculature[ J]. Prog Retin Eye Res, 2014, 40: 53-93. DOI: 10.1016/j.preteyeres.2014.02.001.
14、Yu PK, Tan PE, Cringle SJ, et al. Phenotypic heterogeneity in the endothelium of the human vortex vein system[ J]. Exp Eye Res, 2013, 115: 144-152. DOI: 10.1016/j.exer.2013.07.006.Yu PK, Tan PE, Cringle SJ, et al. Phenotypic heterogeneity in the endothelium of the human vortex vein system[ J]. Exp Eye Res, 2013, 115: 144-152. DOI: 10.1016/j.exer.2013.07.006.
15、Mihara N, Sonoda S, Terasaki H, et al. Sex- and age-dependent widefield choroidal thickness differences in healthy eyes[ J]. J Clin Med, 2023, 12(4): 1505. DOI: 10.3390/jcm12041505.Mihara N, Sonoda S, Terasaki H, et al. Sex- and age-dependent widefield choroidal thickness differences in healthy eyes[ J]. J Clin Med, 2023, 12(4): 1505. DOI: 10.3390/jcm12041505.
16、Ikuno Y, Kawaguchi K, Nouchi T, et al. Choroidal thickness in healthy Japanese subjects[ J]. Invest Ophthalmol Vis Sci, 2010, 51(4): 2173- 2176. DOI: 10.1167/iovs.09-4383.Ikuno Y, Kawaguchi K, Nouchi T, et al. Choroidal thickness in healthy Japanese subjects[ J]. Invest Ophthalmol Vis Sci, 2010, 51(4): 2173- 2176. DOI: 10.1167/iovs.09-4383.
17、Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes[ J]. Am J Ophthalmol, 2009, 147(5): 811-815. DOI: 10.1016/j.ajo.2008.12.008.Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes[ J]. Am J Ophthalmol, 2009, 147(5): 811-815. DOI: 10.1016/j.ajo.2008.12.008.
18、Ding X, Li J, Zeng J, et al. Choroidal thickness in healthy Chinese subjects[ J]. Invest Ophthalmol Vis Sci, 2011, 52(13): 9555-9560. DOI: 10.1167/iovs.11-8076.Ding X, Li J, Zeng J, et al. Choroidal thickness in healthy Chinese subjects[ J]. Invest Ophthalmol Vis Sci, 2011, 52(13): 9555-9560. DOI: 10.1167/iovs.11-8076.
19、Lee SW, Yu SY, Seo KH, et al. Diurnal variation in choroidal thickness in relation to sex, axial length, and baseline choroidal thickness in healthy Korean subjects[ J]. Retina, 2014, 34(2): 385-393. DOI: 10.1097/IAE.0b013e3182993f29.Lee SW, Yu SY, Seo KH, et al. Diurnal variation in choroidal thickness in relation to sex, axial length, and baseline choroidal thickness in healthy Korean subjects[ J]. Retina, 2014, 34(2): 385-393. DOI: 10.1097/IAE.0b013e3182993f29.
20、Manjunath V, Taha M, Fujimoto JG, et al. Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography[ J]. Am J Ophthalmol, 2010, 150(3): 325-329.e1. DOI: 10.1016/j.ajo.2010.04.018.Manjunath V, Taha M, Fujimoto JG, et al. Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography[ J]. Am J Ophthalmol, 2010, 150(3): 325-329.e1. DOI: 10.1016/j.ajo.2010.04.018.
21、Alanazi M, Caroline P, Alshamrani A, et al. Regional distribution of choroidal thickness and diurnal variation in choroidal thickness and axial length in young adults[ J]. Clin Ophthalmol, 2021, 15: 4573-4584. DOI: 10.2147/OPTH.S334619.Alanazi M, Caroline P, Alshamrani A, et al. Regional distribution of choroidal thickness and diurnal variation in choroidal thickness and axial length in young adults[ J]. Clin Ophthalmol, 2021, 15: 4573-4584. DOI: 10.2147/OPTH.S334619.
22、Chakraborty R, Read SA, Collins MJ. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics[ J]. Invest Ophthalmol Vis Sci, 2011, 52(8): 5121-5129. DOI: 10.1167/ iovs.11-7364.Chakraborty R, Read SA, Collins MJ. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics[ J]. Invest Ophthalmol Vis Sci, 2011, 52(8): 5121-5129. DOI: 10.1167/ iovs.11-7364.
23、Papastergiou GI, Schmid GF, Riva CE, et al. Ocular axial length and choroidal thickness in newly hatched chicks and one-year-old chickens fluctuate in a diurnal pattern that is influenced by visual experience and intraocular pressure changes[ J]. Exp Eye Res, 1998, 66(2): 195-205. DOI: 10.1006/exer.1997.0421.Papastergiou GI, Schmid GF, Riva CE, et al. Ocular axial length and choroidal thickness in newly hatched chicks and one-year-old chickens fluctuate in a diurnal pattern that is influenced by visual experience and intraocular pressure changes[ J]. Exp Eye Res, 1998, 66(2): 195-205. DOI: 10.1006/exer.1997.0421.
24、Nickla DL, Wildsoet C, Wallman J. Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes[ J]. Exp Eye Res, 1998, 66(2): 163-181. DOI: 10.1006/exer.1997.0420.Nickla DL, Wildsoet C, Wallman J. Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes[ J]. Exp Eye Res, 1998, 66(2): 163-181. DOI: 10.1006/exer.1997.0420.
25、He G, Zhang X, Zhuang X, et al. Diurnal variation in choroidal parameters among healthy subjects using wide-field swept-source optical coherence tomography angiography[ J]. Transl Vis Sci Technol, 2024, 13(5): 16. DOI: 10.1167/tvst.13.5.16.He G, Zhang X, Zhuang X, et al. Diurnal variation in choroidal parameters among healthy subjects using wide-field swept-source optical coherence tomography angiography[ J]. Transl Vis Sci Technol, 2024, 13(5): 16. DOI: 10.1167/tvst.13.5.16.
26、Zhuang X, He G, Zeng Y, et al. Quantitative evaluation of choroidal and retinal microvasculature post-alcohol consumption: a pilot study[ J]. Microvasc Res, 2024, 152: 104629. DOI: 10.1016/j.mvr.2023.104629.Zhuang X, He G, Zeng Y, et al. Quantitative evaluation of choroidal and retinal microvasculature post-alcohol consumption: a pilot study[ J]. Microvasc Res, 2024, 152: 104629. DOI: 10.1016/j.mvr.2023.104629.
27、Rutnin U. Fundus appearance in normal eyes. I. The choroid[ J]. Am J Ophthalmol, 1967, 64(5): 821-839. DOI: 10.1016/0002- 9394(67)92225-8.Rutnin U. Fundus appearance in normal eyes. I. The choroid[ J]. Am J Ophthalmol, 1967, 64(5): 821-839. DOI: 10.1016/0002- 9394(67)92225-8.
28、Kutoglu T, Yalcin B, Kocabiyik N, et al. Vortex veins: anatomic investigations on human eyes[ J]. Clin Anat, 2005, 18(4): 269-273. DOI: 10.1002/ca.20092.Kutoglu T, Yalcin B, Kocabiyik N, et al. Vortex veins: anatomic investigations on human eyes[ J]. Clin Anat, 2005, 18(4): 269-273. DOI: 10.1002/ca.20092.
29、Spaide RF, Gemmy Cheung CM, Matsumoto H, et al. Venous overload choroidopathy: a hypothetical framework for central serous chorioretinopathy and allied disorders[ J]. Prog Retin Eye Res, 2022, 86: 100973. DOI: 10.1016/j.preteyeres.2021.100973.Spaide RF, Gemmy Cheung CM, Matsumoto H, et al. Venous overload choroidopathy: a hypothetical framework for central serous chorioretinopathy and allied disorders[ J]. Prog Retin Eye Res, 2022, 86: 100973. DOI: 10.1016/j.preteyeres.2021.100973.
30、Mori K, Gehlbach PL, Yoneya S, et al. Asymmetry of choroidal venous vascular patterns in the human eye[ J]. Ophthalmology, 2004, 111(3): 507-512. DOI: 10.1016/j.ophtha.2003.06.009.Mori K, Gehlbach PL, Yoneya S, et al. Asymmetry of choroidal venous vascular patterns in the human eye[ J]. Ophthalmology, 2004, 111(3): 507-512. DOI: 10.1016/j.ophtha.2003.06.009.
31、Savastano MC, Rispoli M, Savastano A, et al. En face optical coherence tomography for visualization of the choroid[ J]. Ophthalmic Surg Lasers Imaging Retina, 2015, 46(5): 561-565. DOI: 10.3928/23258160- 20150521-07.Savastano MC, Rispoli M, Savastano A, et al. En face optical coherence tomography for visualization of the choroid[ J]. Ophthalmic Surg Lasers Imaging Retina, 2015, 46(5): 561-565. DOI: 10.3928/23258160- 20150521-07.
32、Jung JJ, Yu DJG, Ito K, et al. Quantitative assessment of asymmetric choroidal outflow in pachychoroid eyes on ultra-widefield indocyanine green angiography[ J]. Invest Ophthalmol Vis Sci, 2020, 61(8): 50. DOI: 10.1167/iovs.61.8.50.Jung JJ, Yu DJG, Ito K, et al. Quantitative assessment of asymmetric choroidal outflow in pachychoroid eyes on ultra-widefield indocyanine green angiography[ J]. Invest Ophthalmol Vis Sci, 2020, 61(8): 50. DOI: 10.1167/iovs.61.8.50.
33、Hayreh SS, Baines JA. Occlusion of the vortex veins. An experimental study[ J]. Br J Ophthalmol, 1973, 57(4): 217-238. DOI: 10.1136/ bjo.57.4.217.Hayreh SS, Baines JA. Occlusion of the vortex veins. An experimental study[ J]. Br J Ophthalmol, 1973, 57(4): 217-238. DOI: 10.1136/ bjo.57.4.217.
34、Lim MC, Bateman JB, Glasgow BJ. Vortex vein exit sites. Scleral coordinates[ J]. Ophthalmology, 1995, 102(6): 942-946. DOI: 10.1016/s0161-6420(95)30930-x.Lim MC, Bateman JB, Glasgow BJ. Vortex vein exit sites. Scleral coordinates[ J]. Ophthalmology, 1995, 102(6): 942-946. DOI: 10.1016/s0161-6420(95)30930-x.
35、Funatsu R, Terasaki H, Shiihara H, et al. Quantitative evaluations of vortex vein ampullae by adjusted 3D reverse projection model of ultra-widefield fundus images[ J]. Sci Rep, 2021, 11(1): 8916. DOI: 10.1038/s41598-021-88265-w.Funatsu R, Terasaki H, Shiihara H, et al. Quantitative evaluations of vortex vein ampullae by adjusted 3D reverse projection model of ultra-widefield fundus images[ J]. Sci Rep, 2021, 11(1): 8916. DOI: 10.1038/s41598-021-88265-w.
36、Verma A, Maram J, Alagorie AR, et al. Distribution and location of vortex vein ampullae in healthy human eyes as assessed by ultrawidefield indocyanine green angiography[ J]. Ophthalmol Retina, 2020, 4(5): 530-534. DOI: 10.1016/j.oret.2019.11.009.Verma A, Maram J, Alagorie AR, et al. Distribution and location of vortex vein ampullae in healthy human eyes as assessed by ultrawidefield indocyanine green angiography[ J]. Ophthalmol Retina, 2020, 4(5): 530-534. DOI: 10.1016/j.oret.2019.11.009.
37、Ohno-Matsui K, Morishima N, Ito M, et al. Posterior routes of choroidal blood outflow in high myopia[ J]. Retina, 1996, 16(5): 419- 425. DOI: 10.1097/00006982-199616050-00009.Ohno-Matsui K, Morishima N, Ito M, et al. Posterior routes of choroidal blood outflow in high myopia[ J]. Retina, 1996, 16(5): 419- 425. DOI: 10.1097/00006982-199616050-00009.
38、Moriyama M, Ohno-Matsui K, Futagami S, et al. Morphology and longterm changes of choroidal vascular structure in highly myopic eyes with and without posterior staphyloma[ J]. Ophthalmology, 2007, 114(9): 1755-1762. DOI: 10.1016/j.ophtha.2006.11.034.Moriyama M, Ohno-Matsui K, Futagami S, et al. Morphology and longterm changes of choroidal vascular structure in highly myopic eyes with and without posterior staphyloma[ J]. Ophthalmology, 2007, 114(9): 1755-1762. DOI: 10.1016/j.ophtha.2006.11.034.
39、Sekimoto M, Hayasaka S, Watanabe M, et al. Vortex veins in the macula[ J]. Ophthalmologica, 1988, 197(1): 34-35. DOI: 10.1159/000309914.Sekimoto M, Hayasaka S, Watanabe M, et al. Vortex veins in the macula[ J]. Ophthalmologica, 1988, 197(1): 34-35. DOI: 10.1159/000309914.
40、Lobo S, Pradeep N, Rajendran A. Bilateral macular vortex veins in oculocutaneous albinism[ J]. JAMA Ophthalmol, 2022, 140(11): e223926. DOI: 10.1001/jamaophthalmol.2022.3926.Lobo S, Pradeep N, Rajendran A. Bilateral macular vortex veins in oculocutaneous albinism[ J]. JAMA Ophthalmol, 2022, 140(11): e223926. DOI: 10.1001/jamaophthalmol.2022.3926.
41、Lichter PR , Schmickel RD. Posterior vortex vein and congenital glaucoma in a patient with trisomy 13 syndrome[ J]. Am J Ophthalmol, 1975, 80(5): 939-942. DOI: 10.1016/0002-9394(75)90292-5.Lichter PR , Schmickel RD. Posterior vortex vein and congenital glaucoma in a patient with trisomy 13 syndrome[ J]. Am J Ophthalmol, 1975, 80(5): 939-942. DOI: 10.1016/0002-9394(75)90292-5.
42、Ohno-Matsui K, Morishima N, Teramatsu T, et al. The long-term follow-up of a highly myopic patient with a macular vortex vein[ J]. Acta Ophthalmol Scand, 1997, 75(3): 329-332. DOI: 10.1111/j.1600- 0420.1997.tb00789.x.Ohno-Matsui K, Morishima N, Teramatsu T, et al. The long-term follow-up of a highly myopic patient with a macular vortex vein[ J]. Acta Ophthalmol Scand, 1997, 75(3): 329-332. DOI: 10.1111/j.1600- 0420.1997.tb00789.x.
43、He G, Zhang X, Wen F. Subfoveal focal choroidal excavation with macular vortex vein[ J]. Ophthalmol Retina, 2024, 8(1): 9. DOI: 10.1016/j.oret.2023.06.001.He G, Zhang X, Wen F. Subfoveal focal choroidal excavation with macular vortex vein[ J]. Ophthalmol Retina, 2024, 8(1): 9. DOI: 10.1016/j.oret.2023.06.001.
44、Moriyama M, Cao K, Ogata S, et al. Detection of posterior vortex veins in eyes with pathologic myopia by ultra-widefield indocyanine green angiography[ J]. Br J Ophthalmol, 2017, 101(9): 1179-1184. DOI: 10.1136/bjophthalmol-2016-309877.Moriyama M, Cao K, Ogata S, et al. Detection of posterior vortex veins in eyes with pathologic myopia by ultra-widefield indocyanine green angiography[ J]. Br J Ophthalmol, 2017, 101(9): 1179-1184. DOI: 10.1136/bjophthalmol-2016-309877.
45、Lu H, Chen C, Xiong J, et al. Longitudinal changes of posterior vortex veins in highly myopic eyes determined by retrospective analyses of indocyanine green angiograms[ J]. Retina, 2024, 44(3): 438-445. DOI: 10.1097/IAE.0000000000003975.Lu H, Chen C, Xiong J, et al. Longitudinal changes of posterior vortex veins in highly myopic eyes determined by retrospective analyses of indocyanine green angiograms[ J]. Retina, 2024, 44(3): 438-445. DOI: 10.1097/IAE.0000000000003975.
46、He G, Zhang X, Zhuang X, et al. A novel exploration of the choroidal vortex vein system: incidence and characteristics of posterior vortex veins in healthy eyes[ J]. Invest Ophthalmol Vis Sci, 2024, 65(2): 21. DOI: 10.1167/iovs.65.2.21.He G, Zhang X, Zhuang X, et al. A novel exploration of the choroidal vortex vein system: incidence and characteristics of posterior vortex veins in healthy eyes[ J]. Invest Ophthalmol Vis Sci, 2024, 65(2): 21. DOI: 10.1167/iovs.65.2.21.
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录