您的位置: 首页 > 2024年12月 第39卷 第12期 > 文字全文
2023年7月 第38卷 第7期11
目录

脉络膜在近视发展中的调控作用及其机制

The regulatory role and mechanism of choroid in the development of myopia

来源期刊: 眼科学报 | 2024年12月 第39卷 第12期 657-665 发布时间:2024-12-28 收稿时间:2025/1/8 15:31:25 阅读量:172
作者:
关键词:
近视脉络膜厚度脉络膜血流神经调控光学相干断层扫描血管成像
myopia choroidal thickness choroidal blood flow neuroregulation OCTA
DOI:
10.12419/24072301
收稿时间:
2024-08-08 
修订日期:
2024-08-30 
接收日期:
2024-09-30 
近年来,随着现代社会生活节奏的加快以及电子产品的普及,近视逐渐呈现低龄化、高发病率的趋势,成为不容忽视的公共卫生问题。动物和人类研究均发现,在近视的发展过程中,脉络膜表现出变薄的现象,并伴有血流量减少,这些变化与近视度数增加和眼轴增长呈正相关。研究表明,脉络膜厚度的变化不仅发生在近视初期,而是在近视进展阶段持续发生。此外,脉络膜血流量的调节也与近视的发生和发展密切相关,可能通过神经机制及生长因子的作用影响眼球的生长。光学相干断层扫描血管成像(optical coherence tomography angiography, OCTA)技术在探索近视进程中的脉络膜变化和血管功能方面展现了巨大的潜力。它能够提供无创性的脉络膜结构和血流信息,对于理解脉络膜在近视调控中的作用至关重要。未来的研究应当结合先进的OCTA技术,进一步探讨脉络膜在不同阶段近视中的具体变化及其背后的机制,特别是脉络膜血流调节与眼球生长之间的关系。深化对脉络膜在近视调控中作用的理解,将有助于开发有效的预防和控制措施,为近视防控策略提供理论依据。
In recent years, with the acceleration of the pace of life in modern society and the popularization of electronic products, myopia has gradually affected younger individuals and has a higher incidence rate, becoming a public health problem that cannot be ignored. Both animal and human studies have found that during the development of myopia, the choroid exhibits thinning and is accompanied by reduced blood perfusion. These changes are positively correlated with increased myopia and axial growth. Studies have shown that changes in choroidal thickness not only occur in the early stages of myopia, but also continue to occur in the progression stage of myopia. In addition, the regulation of choroidal blood flow is also closely related to the occurrence and development of myopia, which may affect the growth of the eyeball through the action of neural mechanisms and growth factors. Optical coherence tomography angiography (OCTA) technology has shown great potential in exploring choroidal changes and vascular function in the progression of myopia. It can provide non-invasive information on choroidal structure and blood flow, which is crucial for understanding the role of the choroid in the regulation of myopia. Future research should combine advanced OCTA technology to further explore the specific changes in the choroid in different stages of myopia and the underlying mechanisms, especially the relationship between choroidal blood flow regulation and eyeball growth. A better understanding of the role of choroid in myopia regulation will aid in developing effective prevention and control measures, providing a solid theoretical foundation for myopia prevention strategies.

文章亮点

1. 关键发现

 • 本文综述了脉络膜在近视发展中的调控作用,阐述了脉络膜可能通过其神经调节机制及生长因子的作用影响眼球的生长来调控近视的发展。光学相干断层扫描血管成像 (optical coherence tomography angiography, OCTA) 技术展现了其在探索近视进程中脉络膜变化和血管功能方面的巨大潜力,对于理解脉络膜在近视调控中的作用至关重要。

2. 已知与发现

 • 在近视发展过程中,脉络膜不仅持续变薄且伴有血流量减少,这些变化与近视度数增加和眼轴增长正相关。脉络膜厚度变化、血流调控的机制复杂,包括神经调控作用以及多种生长因子的影响。脉络膜不同血管层对近视信号刺激的调节可能存在差异。

3. 意义与改变

 • 本文深化了对脉络膜在近视调控中作用的理解,强调了脉络膜血流调节与眼球生长之间的关系,这可能是未来近视防控研究的关键方向之一。

       近视已成为全球关注的公共健康问题[1]。近视,尤其是高度近视显著增加了白内障、青光眼、视网膜脱离、黄斑变性等疾病的风险,给家庭和社会带来严重的经济负担[2]。越来越多的证据表明在近视发病机制中存在着“信号级联理论”,即视觉信号从视网膜传递到视网膜色素上皮(retinal pigment epithelium, RPE),然后到脉络膜,最后参与巩膜重塑和眼球生长[3]。脉络膜位于Bruch膜和巩膜之间,不仅为眼球提供了丰富的血供,作为“信号级联理论”的中间环节,其在视觉调节 、营养供应和生长调控等方面扮演着重要角色。近年来,诸多研究揭示了脉络膜参与调控近视发生、发展。脉络膜厚度变化、血流量的调节均与近视进展密切相关。然而,其具体调控机制尚不完全清楚。
       本文将系统综述脉络膜在近视发生、发展过程中的调控作用,重点讨论脉络膜的形态学改变、血流调控、神经机制及其分泌的生长因子在近视防控中的潜在应用。同时,结合最新的动物模型研究和临床观察,为未来研究提供新的视角和思路。

1 脉络膜的解剖和功能

       脉络膜是眼球内层结构之一,位于Bruch膜和巩膜之间,主要通过其丰富的血流(尤其是毛细血管层)向外层视网膜供应氧气和营养。在组织学上通常被分为五层,从视网膜侧开始,依次为Bruch膜、脉络膜毛细血管层、中血管层(Sattler层)、大血管层(Haller层)和脉络膜上层[4]。除了丰富的血管外,脉络膜还含有多种非血管驻留细胞,包括黑素细胞、成纤维细胞、非血管平滑肌细胞、常驻免疫活性细胞,由胶原纤维和结缔组织支撑构成完整的脉络膜系统[5]
       哺乳动物的脉络膜血供来自长后睫状动脉和短后睫状动脉,这些动脉是从颈内动脉分支而来的眼动脉的末梢分支。而在鸟类中,脉络膜血供起源于颈内动脉眼外支的眼颞动脉,眼颞动脉沿着眼睛的颞侧、后极和鼻侧走行,并在整个走行过程中发出脉络膜动脉[6]
       脉络膜的神经支配非常丰富,主要包含副交感神经和交感神经系统。其中,副交感神经主要来自翼腭神经节和睫状神经节,这些神经纤维主要是胆碱能纤维,富含一氧化氮(nitric oxide, NO)、血管活性肠肽(vasoactive intestinal polypeptide, VIP)、胆碱乙酰转移酶(choline acetyltransferase, ChAT)。交感神经主要来自颈上神经节的去甲肾上腺素神经元,这些神经元能够介导血管收缩。脉络膜还受到来自三叉神经节的感觉神经的调控,能对局部机械、热和化学刺激做出反应[7–9]。近年研究指出,脉络膜在近视发生、发展中的作用至关重要[5]

2 近视过程中脉络膜厚度的变化

       在20世纪90年代,雏鸡最早被报道脉络膜厚度会因离焦现象而发生变化。对于近视离焦,雏鸡的脉络膜会增厚以响应离焦变化,而对于远视离焦,脉络膜则变薄[10–12]。在形觉剥夺性近视中,也观察到脉络膜变薄的现象。这说明脉络膜厚度的调节并不只涉及对离焦信号做出响应。之后的研究在豚鼠、狨猴、猕猴等动物中也观察到这种近视发展过程中脉络膜厚度变化,但是变化量均小于在雏鸡中观察到的[5]
       近些年来,临床上也开展了大量近视相关的脉络膜研究。研究结果发现,近视相关的脉络膜变薄与屈光不正的程度显著相关,并且近视患者的脉络膜变薄在黄斑中心凹区比中心凹外的区域更明显[13–15]。一项针对学龄期近视儿童的两年随访研究结果显示,随着近视度数和眼轴长度的增加,脉络膜厚度不断下降,并且脉络膜的显著变薄主要见于近视进展较快的个体中[16]。同样的结果也体现在高度近视中,高度近视眼的中心凹脉络膜厚度非常薄,并且随着年龄和眼轴长度增加进一步变薄[17–19]。基于以上结果,在近视发展和眼轴增长过程中,脉络膜变薄似乎主动参与其中,在近视发病机制中发挥作用。
       此外,一些药物和激素也能影响脉络膜厚度的改变。例如,使用阿托品滴眼液及全身使用β受体阻滞剂能够使脉络增厚,而环喷托酯和去氧肾上腺素的使用会使脉络膜变薄[20]。胰高血糖素水平和胰岛素也被报道参与正视化调控,并且这种作用与脉络膜厚度调节有关。玻璃体腔注射外源性胰高血糖素延缓眼轴增长,并使脉络膜增厚。而胰岛素作用则与之相反,其刺激眼球生长和促使脉络膜变薄[21]
       这些发现,让我们了解了近视进展过程中脉络膜厚度的调节,但其具体机制仍需探索,并且增厚和变薄反应可能存在不同的机制。Wallman等[12]发现,在去除形觉剥夺或在近视离焦的情况下,雏鸡的脉络膜显著增厚,并且脉络膜中蛋白多糖的数量显著高于近视眼。这表明脉络膜中的渗透活性分子的数量可以调节脉络膜厚度。其次,脉络膜血管通透性的变化也可能影响脉络膜厚度。在某些病理条件下,如炎症或缺氧,会使血管通透性增加,可能导致液体渗漏进入脉络膜,使脉络膜暂时性增厚。而在长期病理状态下,如高度近视,脉络膜血管通透性变化可能导致脉络膜的营养供应减少,引起脉络膜组织的萎缩和变薄[22]。还有观点认为,RPE 可能通过调节视网膜和脉络膜之间的离子液体交换来调节脉络膜厚度[23]。也有人推测,非血管平滑肌通过适当收缩或舒张来调节脉络膜厚度变化,即认为与脉络膜的血流调节有关[24]。关于脉络膜血流变化如何通过血管直径的变化进而调节脉络膜厚度值得我们进一步探讨。

3 近视过程中脉络膜血流的变化

       脉络膜是哺乳动物和鸟类体内高度血管化的结构,能够快速改变血流。二十余年前,研究者用激光多普勒血流仪检测到形觉剥夺后的雏鸡脉络膜血流量显著减少,而去除剥夺因素后,脉络膜血流量增加[25]。光学相干断层扫描(optical coherence tomography, OCT)技术的进步逐渐揭开了近视进展过程中脉络膜脉管系统变化的面纱。Zhang等[26]在3种豚鼠近视模型中(自发、形觉剥夺、离焦诱导),发现与非近视组相比,3种近视模型的脉络膜厚度和血流量都减少。并且脉络膜厚度和血流量的变化呈正相关。
       一项人类横断面研究发现,屈光参差的成人中近视度数更高眼的脉络膜血管分布和脉络膜毛细血管血流灌注参数低于近视度数更低眼,并且这些参数与近视的严重程度以及脉络膜变薄呈正相关[15]。随后在高度近视中,研究者发现后极部脉络膜毛细血管层的平均血流缺损百分比与眼轴长度呈正相关,而这种现象在中央凹周围区域中更为显著[27]。还有研究显示,脉络膜显著变薄与脉络膜血管和基质成分的缺失有关,且这些脉络膜形态和血管变化主要与眼轴长度相关,而与屈光度的相关性不显著[28]
       脉络膜血流量变化和近视之间的因果关系的仍在探索。先前的研究发现,在近视诱导期间,巩膜缺氧诱导因子-1α信号通路被激活,而抗缺氧治疗抑制了实验近视的发展,表明巩膜缺氧是近视发展过程中巩膜重塑的关键因素[29]。豚鼠眼内注射哌唑嗪(一种α肾上腺素能拮抗剂)可增加脉络膜的血流量,还可抑制形觉剥夺性近视眼轴生长,并导致巩膜缺氧[30]。阿托品、阿扑吗啡和光照等抗近视治疗,除了抑制近视的发展外,也可增加脉络膜的血流量,减少巩膜缺氧[30]。在豚鼠中,与未治疗眼相比,离断颞侧睫状动脉和去氧肾上腺素干预减少了脉络膜血流量,引起近视漂移,并且这两种干预措施都会导致巩膜缺氧并增加α-平滑肌肌动蛋白(α-smooth muscle actin, α-SMA)的表达[31]。此外,注射喹吡罗会促进近视的发展,增加与形觉剥夺性近视相关的脉络膜厚度和减少血流量,并加重巩膜缺氧水平[31]。总之,这些观察结果表明脉络膜血流量减少、巩膜缺氧和近视之间可能存在联系。
       Yu等[32]还在近视豚鼠中发现脉络膜毛细血管层血管密度显著下降,而中大血管层的血管密度比较却无统计学意义,他们认为这可能和血流动力学中的流体剪切力有关。流体剪切力是由于血管内皮与血液直接接触产生的摩擦力,越大的血管剪切力越大,而越小的血管剪切力越小,对血流的变化可能更敏感。这表明在近视发展过程中,脉络膜的血流动力学特性也可能发生变化。这些研究结果给我们一个提示:不同血管层对近视信号刺激的调节可能存在差异,更靠近视网膜的脉络膜毛细血管层似乎对近视引起的各种生理变化更敏感。这背后的复杂机制需要进一步深入研究来阐明。
       脉络膜血流量减少可能是近视进展的一个标志,提示了血流调节在近视发病中的潜在作用。这种血流减少可能通过神经机制及生长因子的作用影响眼球的生长。

4 近视过程中脉络膜的神经调控作用

       脉络膜主要受交感神经、副交感神经和三叉神经纤维的支配,见表1。实验和临床研究表明,脉络膜的神经调控对正视化具有重要影响,多种神经递质可能参与此过程。脉络膜副交感神经纤维可以释放NO、VIP、乙酰胆碱(acetylcholine, Ach)等[7, 33]。NO是体内重要的细胞间信使,可由NO合酶(nitric oxide synthase, NOS)催化生成。在眼球生长发育中,NO参与了脉络膜厚度和血流的调节[34-35]。使用NOS抑制剂后,可以抑制由近视离焦引起的脉络膜厚度增加,并且使眼轴增长[36]。同时,阻断NO合成也会增加眼轴增长,这可能与脉络膜厚度相关[37]。在豚鼠中,发现使用NO后,形觉剥夺性豚鼠脉络膜厚度和血流增加,并且延缓屈光度和眼轴的增长[32]。NOS有三种构型,即诱导型NOS(inducible NOS, iNOS),内皮细胞性NOS (enduothelial NOS, eNOS)和神经细胞性NOS(neuronal NOS, nNOS)。nNOS和eNOS可能通过使非血管平滑肌舒张和增加血管通透性以增加脉络膜厚度和血流[38-39]

表 1 脉络膜的神经支配
Table 1

神经元类型

神经元起源

神经活性物质

存在的物种

副交感神经元

翼腭神经节

Ach、NO 、VIP

哺乳动物、鸟类

副交感神经元

睫状神经节

Ach、NO、生长抑素

鸟类

交感神经元

颈上神经节

NE

哺乳动物、鸟类

感觉神经元

三叉神经节

P 物质、CGRP

哺乳动物、鸟类

固有脉络膜神经元

/

NO 、VIP

灵长类动物、树鼩、鸟类

Ach:乙酰胆碱,NO:一氧化氮,VIP:血管活性肠肽,NE:去甲肾上腺素,CGRP:降钙素基因相关肽
       VIP是一种多功能的神经肽,在调节心血管系统、消化系统功能以及免疫反应等多种生理过程中发挥作用[40]。VIP也是一种血管扩张剂,可以通过松弛血管平滑肌使血管扩张来增加脉络膜血流量[40]。有研究表明,副交感神经释放VIP可能促进NO的生成与释放,实现脉络膜血管舒张的效果[41]。除了直接影响平滑肌外,VIP还可能改善或维持内皮细胞的功能状态,有助于保持脉络膜微循环环境[42]
       Ach受体广泛存在于眼内组织中。其中,脉络膜上分布的主要是M3和M5型受体[43]。Ach能够直接作用于血管平滑肌细胞上的M3受体,导致平滑肌松弛和血管扩张,从而增加局部血流量[44]。阿托品是一种非选择性M受体拮抗剂,已被证明可以有效抑制近视进展。在此过程中,阿托品虽然并没有显著使脉络膜增厚,但是似乎扮演着抑制脉络膜变薄的角色[45-46]。Ach系统参与脉络膜调控的具体机制仍有待阐明。
       除了副交感神经的调控外,交感神经纤维可以激活脉络膜中的α-肾上腺素能受体,引起脉络膜血管收缩,从而减少血流量[47]。三叉神经纤维可以通过释放神经肽(如P 物质和降钙素基因相关肽)调节脉络膜血管功能,并在炎症反应中发挥作用。这些神经肽可以引起血管扩张,增加脉络膜血流量[8]。图1展示了不同神经递质对脉络膜厚度和血流的调控作用。
图 1 神经递质对脉络膜的调控作用
Figure 1 Imaging 
NO:一氧化氮,VIP:血管活性肠肽,Ach:乙酰胆碱,substance-P:P物质,CGRP:降钙素基因相关肽。
       在灵长类动物[48-49]、树鼩[50]和鸟类[51]的眼球中,还存在着一类特有的脉络膜神经元,即固有脉络膜神经元(intrinsic choroidal neurons, ICN)。但这类神经元在大鼠、兔子和猫中几乎检测不到[50]。在人类中,每只眼睛大约有2 000个ICN,且主要集中在中央凹区域和颞侧,向周边逐渐减少。而其他物种中,ICN的数量从500~6 000不等[51]。几乎所有的ICN对nNOS和VIP呈阳性反应[7, 50]。尽管ICN的发现已久,其确切功能尚未完全清楚。鉴于ICN止于动脉肌肉壁,且能够释放NO,使血管扩张,它们可能在调节脉络膜血流量方面发挥关键作用[50, 52]。另外,由于ICN与脉络膜非血管平滑肌细胞紧密相邻,它们可能参与调控脉络膜厚度的变化,以响应视网膜离焦状态[53]

5 近视过程中脉络膜中的生长因子变化

       脉络膜还具有合成多种生长因子的能力,这些生长因子在脉络膜血管网络构建及维护过程中起着至关重要的作用。例如,脉络膜内皮细胞和基质细胞能够合成转化生长因子-β(transforming growth factor-β, TGF-β)[54]、血管内皮生长因子(vascular endothelial growth factor, VEGF)等[55]。TGF-β可以通过调控成纤维细胞的合成和降解胶原蛋白参与细胞外基质重塑(extracellular matrix remodeling, ECM),视网膜、脉络膜和巩膜中均能检测到TGF-β的表达[56]。在近视的发展过程中,观察到脉络膜中的TGF-β存在差异性表达,但是不同物种中的结果存在一些差异。在大鼠形觉剥夺性近视[57]和雏鸡离焦性近视模型中[58],发现与正常对照组相比,脉络膜中的TGF-β蛋白和基因表达下降。而在豚鼠离焦性近视模型中,TGF-β蛋白和基因表达增加,抑制TGF-β表达后可以协同COLI和α-SMA等蛋白抑制脉络膜纤维化,进而使脉络膜增厚并延缓近视进展[59]。在脉络膜新生血管疾病模型中,发现TGF-β诱导脉络膜血管周细胞向肌成纤维细胞转化。并通过Smad2/3和Akt/mTOR(mammalian target of rapamycin, 哺乳动物雷帕霉素靶蛋白)途径影响细胞增殖、迁移及细胞外基质成分的产生,参与形成新生血管[60-61]。这有可能是TGF-β调节脉络膜厚度和脉络膜血流量的关键机制。
       VEGF是一种重要的血管生成因子,它在血管生成过程中调节增殖和组装内皮细胞。向雏鸡玻璃体腔内注射抗VEGF药物贝伐单抗可以抑制形觉剥夺性近视的进展和形觉剥夺恢复期间的脉络膜增厚[62]。VEGF主要通过与其受体(vascular endothelial growth factor receptors, VEGFRs)结合来启动下游信号级联反应。其中最经典的过程是VEGF-A 激活血管内皮细胞中的 VEGF 受体2 (VEGFR-2),从而刺激血管生成并增加血管通透性,这可能导致脉络膜血流量增加和脉络膜增厚[63]。还有研究表明,TGF-β和VEGF存在协同作用,TGF-β可以通过调节VEGF的表达和活性,调节脉络膜血管生成和血流量(见图2)[64]
图 2 VEGF和TGF-β对脉络膜的调控作用
Figure 2 Fundus 
VEGF:血管内皮生长因子 ,TGF-β:转化生长因子-β,ECM:细胞外基质重塑。
       此外,脉络膜还可以合成基质金属蛋白酶(matrix metalloproteinase, MMP) MMP-1、MMP-2 和 MMP-3[65]。MMP参与维持脉络膜复杂脉管系统,并且其分泌蛋白作用可以使其作用于邻近组织,能够降解巩膜胶原。当胶原含量减少时,巩膜的生物力学性能随之减弱,使得眼球更容易发生形变,这一过程与近视眼轴增长密切相关。充分了解脉络膜分泌的生长因子和蛋白质的具体作用靶点和分子机制对于开发近视防治的新方法具有重要意义。

6 脉络膜的光学生物测量及临床应用

       由于脉络膜结构和血流变化在近视发展过程中的重要作用,脉络膜成像与形态学研究已经成为近视研究领域的热点[14]。但是,脉络膜的解剖十分复杂,所以对成像技术提出了巨大的挑战。目前,OCT是脉络膜生物测量的核心技术之一。OCT基于光的低相干干涉原理获取眼部组织结构图像,它能够提供高分辨率的横截面图像,用于测量视网膜和脉络膜厚度。在过去的三十余年里,OCT技术的演变从最初的时域OCT,到后续的频域OCT,直至现今的增强深度成像OCT(enhanced depth imaging OCT, EDI-OCT)以及自适应光学OCT(adaptive optics OCT),这一系列革新显著提升了脉络膜成像分辨率和成像速度,使脉络膜的结构细节得以更精细地展现。OCTA是OCT技术的一个重要进展,是专门用于评估血管结构和血流灌注的非侵入性眼科成像技术,近年来逐渐受到关注。它的优点是能够在几秒钟内捕捉到高分辨率和高穿透深度的图像。此外,OCTA可以检测出血管内红细胞运动所产生的信号,无需染料注射就能可视化视网膜和脉络膜血管系统,并提供详细的参数,对研究血管相关疾病有重要价值[66]。OCTA技术的进步使与近视相关的脉络膜细节性变化被发现,加深了人们对近视发生、发展过程中脉络膜相关机制的了解。
       尽管OCTA带来了诸多优势,但该技术仍面临一些问题和挑战。首先是由于眼球的微小运动,如眼跳、呼吸和脉搏等,会在OCTA图像中产生伪影,影响成像质量[67]。并且深层组织的信号也可能向上投射,造成伪影。其次,OCTA涉及多层图像的分割、血流信号的提取,依赖于准确的分层算法。而现在大多数OCTA自动分层算法在面对病变区域或异常形态的脉络膜时,容易出现误差。尤其是动物实验中,面对不同的物种,自动分层的算法分析更加难以实施,只能依靠有经验的工作人员进行手动分层。而手动分层完全依赖于操作者的经验和判断,难免造成误差。再者,目前市面上的商用OCTA种类繁多,不同OCTA设备和软件之间缺乏统一的测量标准和成像标准,年龄、性别、药物、昼夜节律等都可能影响脉络膜的测量[68],这导致定量分析结果难以比较。同时,血管密度和其他参数的量化方法也尚未完全标准化,影响了研究和临床实践中的数据一致性。

7 总结和展望

       本研究综述了脉络膜在近视发生和进展中的潜在机制及其调控作用,尤其是脉络膜厚度、血流量及其相关的微血管改变的研究进展。研究结果表明脉络膜变薄的程度与近视程度相关。脉络膜血流量的变化也与近视有关。这些结果表明脉络膜结构和脉管系统的变化是近视的标志性特征之一。但是,在眼球的生长调节中,脉络膜厚度和脉络膜血流是两个独立的因素,还是互为因果?目前尚缺乏明确的解答。
       OCTA作为一种无创的、定量化的影像技术,能够评估脉络膜血管结构和血流灌注,为近视的早期诊断和进展评估提供了重要的依据。未来的研究应进一步优化OCTA技术,以便更好地满足不同类型近视患者的需求,尤其是在高度近视与轻度近视中的个体化应用。例如针对高度近视患者,在未来可以开发针对性更强的算法,以克服由于眼轴过长带来的成像失真问题,并提高对脉络膜微血管变化的识别能力。而对于轻度近视患者,进一步研究OCTA在预测近视进展方面的潜力,将有助于早期识别并进行干预。
       此外,OCTA技术在临床中的广泛应用还需要与其他影像和功能性检查手段结合,形成多模态评估体系,以提高其诊断和预测近视相关并发症的敏感性和特异性。例如结合眼轴长度、角膜曲率及视网膜层结构的综合评估,将有助于提供更全面的视功能状况描述,从而为个性化治疗方案的制定提供科学依据。
       总之,未来OCTA的进一步发展和其在近视研究中的应用前景广阔,不仅在于其对近视进展的定量评估,还在于其可能为个性化治疗提供依据,特别是在高度近视的并发症预防和干预方面,具有重要的临床转化潜力,为开发新的近视防治策略提供理论依据。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议 (Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。

1、Li SM, Wei S, Atchison DA, et al. Annual incidences and progressions of myopia and high myopia in Chinese schoolchildren based on a 5-year cohort study[ J]. Invest Ophthalmol Vis Sci, 2022, 63(1): 8. DOI: 10.1167/iovs.63.1.8.Li SM, Wei S, Atchison DA, et al. Annual incidences and progressions of myopia and high myopia in Chinese schoolchildren based on a 5-year cohort study[ J]. Invest Ophthalmol Vis Sci, 2022, 63(1): 8. DOI: 10.1167/iovs.63.1.8.
2、Yang J, Ouyang X, Fu H, et al. Advances in biomedical study of the myopia-related signaling pathways and mechanisms[ J]. Biomed Pharmacother, 2022, 145: 112472. DOI: 10.1016/j.biopha.2021.112472.Yang J, Ouyang X, Fu H, et al. Advances in biomedical study of the myopia-related signaling pathways and mechanisms[ J]. Biomed Pharmacother, 2022, 145: 112472. DOI: 10.1016/j.biopha.2021.112472.
3、Thomson K, Kelly T, Karouta C, et al. Insights into the mechanism by which atropine inhibits myopia: evidence against cholinergic hyperactivity and modulation of dopamine release[ J]. Br J Pharmacol, 2021, 178(22): 4501-4517. DOI: 10.1111/bph.15629.Thomson K, Kelly T, Karouta C, et al. Insights into the mechanism by which atropine inhibits myopia: evidence against cholinergic hyperactivity and modulation of dopamine release[ J]. Br J Pharmacol, 2021, 178(22): 4501-4517. DOI: 10.1111/bph.15629.
4、Worthen DM. Histology of the human eye[ J]. Arch Ophthalmol, 1972, 88(2): 234. DOI: 10.1001/archopht.1972.01000030236034.Worthen DM. Histology of the human eye[ J]. Arch Ophthalmol, 1972, 88(2): 234. DOI: 10.1001/archopht.1972.01000030236034.
5、Nickla DL, Wallman J. The multifunctional choroid[ J]. Prog Retin Eye Res, 2010, 29(2): 144-168. DOI: 10.1016/j.preteyeres.2009.12.002.Nickla DL, Wallman J. The multifunctional choroid[ J]. Prog Retin Eye Res, 2010, 29(2): 144-168. DOI: 10.1016/j.preteyeres.2009.12.002.
6、Reiner A, Fitzgerald MEC, Del Mar N, et al. Neural control of choroidal blood flow[ J]. Prog Retin Eye Res, 2018, 64: 96-130. DOI: 10.1016/ j.preteyeres.2017.12.001.Reiner A, Fitzgerald MEC, Del Mar N, et al. Neural control of choroidal blood flow[ J]. Prog Retin Eye Res, 2018, 64: 96-130. DOI: 10.1016/ j.preteyeres.2017.12.001.
7、Cuthbertson S, Jackson B, Toledo C, et al. Innervation of orbital and choroidal blood vessels by the pterygopalatine ganglion in pigeons[ J]. J Comp Neurol, 1997, 386(3): 422-442.Cuthbertson S, Jackson B, Toledo C, et al. Innervation of orbital and choroidal blood vessels by the pterygopalatine ganglion in pigeons[ J]. J Comp Neurol, 1997, 386(3): 422-442.
8、Shih YF, Fitzgerald ME, Cuthbertson SL, et al. Influence of ophthalmic nerve fibers on choroidal blood flow and myopic eye growth in chicks[ J]. Exp Eye Res, 1999, 69(1): 9-20. DOI: 10.1006/exer.1999.0692.Shih YF, Fitzgerald ME, Cuthbertson SL, et al. Influence of ophthalmic nerve fibers on choroidal blood flow and myopic eye growth in chicks[ J]. Exp Eye Res, 1999, 69(1): 9-20. DOI: 10.1006/exer.1999.0692.
9、Schr%C3%B6dl%20F%2C%20Brehmer%20A%2C%20Neuhuber%20WL%2C%20et%20al.%20The%20autonomic%20facial%20nerve%20%0Apathway%20in%20birds%3A%20atracing%20study%20in%20chickens%5B%20J%5D.%20Invest%20Ophthalmol%20Vis%20%0ASci%2C%202006%2C%2047(8)%3A%203225-3233.%20DOI%3A%2010.1167%2Fiovs.05-1279.Schr%C3%B6dl%20F%2C%20Brehmer%20A%2C%20Neuhuber%20WL%2C%20et%20al.%20The%20autonomic%20facial%20nerve%20%0Apathway%20in%20birds%3A%20atracing%20study%20in%20chickens%5B%20J%5D.%20Invest%20Ophthalmol%20Vis%20%0ASci%2C%202006%2C%2047(8)%3A%203225-3233.%20DOI%3A%2010.1167%2Fiovs.05-1279.
10、Ramrattan RS, vander Schaft TL, Mooy CM, et al. Morphometric analysis of Bruch's membrane, the choriocapillaris, and the choroid in aging[ J]. InvestOphthalmolVisSci, 1994, 35(6): 2857-2864.Ramrattan RS, vander Schaft TL, Mooy CM, et al. Morphometric analysis of Bruch's membrane, the choriocapillaris, and the choroid in aging[ J]. InvestOphthalmolVisSci, 1994, 35(6): 2857-2864.
11、Wildsoet C, Wallman J. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks[ J]. Vision Res, 1995, 35(9): 1175-1194. DOI: 10.1016/0042-6989(94)00233-c.Wildsoet C, Wallman J. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks[ J]. Vision Res, 1995, 35(9): 1175-1194. DOI: 10.1016/0042-6989(94)00233-c.
12、Wallman J, Wildsoet C, Xu A, et al. Moving the retina: choroidal modulation of refractive state[ J]. Vision Res, 1995, 35(1): 37-50. DOI: 10.1016/0042-6989(94)e0049-q.Wallman J, Wildsoet C, Xu A, et al. Moving the retina: choroidal modulation of refractive state[ J]. Vision Res, 1995, 35(1): 37-50. DOI: 10.1016/0042-6989(94)e0049-q.
13、Tan CSH, Cheong KX. Macular choroidal thicknesses in healthy adults: relationship with ocular and demographic factors[ J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6452-6458. DOI: 10.1167/iovs.13-13771.Tan CSH, Cheong KX. Macular choroidal thicknesses in healthy adults: relationship with ocular and demographic factors[ J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6452-6458. DOI: 10.1167/iovs.13-13771.
14、Read SA, Fuss JA, Vincent SJ, et al. Choroidal changes in human myopia: insights from optical coherence tomography imaging[ J]. Clin Exp Optom, 2019, 102(3): 270-285. DOI: 10.1111/cxo.12862.Read SA, Fuss JA, Vincent SJ, et al. Choroidal changes in human myopia: insights from optical coherence tomography imaging[ J]. Clin Exp Optom, 2019, 102(3): 270-285. DOI: 10.1111/cxo.12862.
15、Wu H, Zhang G, Shen M, et al. Assessment of choroidal vascularity and choriocapillaris blood perfusion in anisomyopic adults by SS-OCT/OCTA[ J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 8. DOI: 10.1167/ iovs.62.1.8.Wu H, Zhang G, Shen M, et al. Assessment of choroidal vascularity and choriocapillaris blood perfusion in anisomyopic adults by SS-OCT/OCTA[ J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 8. DOI: 10.1167/ iovs.62.1.8.
16、Xu M, Yu X, Wan M, et al. Two-year longitudinal change in choroidal and retinal thickness in school-aged myopic children: exploratory analysis of clinical trials for myopia progression[ J]. Eye Vis, 2022, 9(1): 5. DOI: 10.1186/s40662-022-00276-4.Xu M, Yu X, Wan M, et al. Two-year longitudinal change in choroidal and retinal thickness in school-aged myopic children: exploratory analysis of clinical trials for myopia progression[ J]. Eye Vis, 2022, 9(1): 5. DOI: 10.1186/s40662-022-00276-4.
17、Fledelius HC, Jacobsen N, Li XQ, et al. Choroidal thickness at age 66 years in the Danish high myopia study cohort 1948 compared with follow-up data on visual acuity over 40 years: a clinical update adding spectral domain optical coherence tomography[ J]. Acta Ophthalmol, 2018, 96(1): 46-50. DOI: 10.1111/aos.13659.Fledelius HC, Jacobsen N, Li XQ, et al. Choroidal thickness at age 66 years in the Danish high myopia study cohort 1948 compared with follow-up data on visual acuity over 40 years: a clinical update adding spectral domain optical coherence tomography[ J]. Acta Ophthalmol, 2018, 96(1): 46-50. DOI: 10.1111/aos.13659.
18、Liu B, Wang Y, Li T, et al. Correlation of subfoveal choroidal thickness with axial length, refractive error, and age in adult highly myopic eyes[ J]. BMC Ophthalmol, 2018, 18(1): 127. DOI: 10.1186/s12886-018-0791-5.Liu B, Wang Y, Li T, et al. Correlation of subfoveal choroidal thickness with axial length, refractive error, and age in adult highly myopic eyes[ J]. BMC Ophthalmol, 2018, 18(1): 127. DOI: 10.1186/s12886-018-0791-5.
19、Zhou LX, Shao L, Xu L, et al. The relationship between scleral staphyloma and choroidal thinning in highly myopic eyes: the Beijing Eye Study[ J]. SciRep, 2017, 7(1): 9825. DOI: 10.1038/s41598-017- 10660-z.Zhou LX, Shao L, Xu L, et al. The relationship between scleral staphyloma and choroidal thinning in highly myopic eyes: the Beijing Eye Study[ J]. SciRep, 2017, 7(1): 9825. DOI: 10.1038/s41598-017- 10660-z.
20、Yeung SC, Park JY, Park D, et al. The effect of systemic and topical ophthalmic medications on choroidal thickness: a review[ J]. BrJClinPharmacol, 2022, 88(6): 2673-2685. DOI: 10.1111/bcp.15237.Yeung SC, Park JY, Park D, et al. The effect of systemic and topical ophthalmic medications on choroidal thickness: a review[ J]. BrJClinPharmacol, 2022, 88(6): 2673-2685. DOI: 10.1111/bcp.15237.
21、Zhu X, Wallman J. Opposite effects of glucagon and insulin on compensation for spectacle lenses in chicks[ J]. InvestOphthalmolVisSci, 2009, 50(1): 24-36. DOI: 10.1167/iovs.08-1708.Zhu X, Wallman J. Opposite effects of glucagon and insulin on compensation for spectacle lenses in chicks[ J]. InvestOphthalmolVisSci, 2009, 50(1): 24-36. DOI: 10.1167/iovs.08-1708.
22、Teberik K, Kaya M. Retinal and choroidal thickness in patients with high myopia without maculopathy[ J]. Pak J Med Sci, 2017, 33(6): 1438- 1443. DOI: 10.12669/pjms.336.13726.Teberik K, Kaya M. Retinal and choroidal thickness in patients with high myopia without maculopathy[ J]. Pak J Med Sci, 2017, 33(6): 1438- 1443. DOI: 10.12669/pjms.336.13726.
23、Rymer J, Wildsoet CF. The role of the retinal pigment epithelium in eye growth regulation and myopia: a review[ J]. Vis Neurosci, 2005, 22(3): 251-261. DOI: 10.1017/S0952523805223015.Rymer J, Wildsoet CF. The role of the retinal pigment epithelium in eye growth regulation and myopia: a review[ J]. Vis Neurosci, 2005, 22(3): 251-261. DOI: 10.1017/S0952523805223015.
24、Pendrak K, Papastergiou GI, Lin T, et al. Choroidal vascular permeability in visually regulated eye growth[ J]. Exp Eye Res, 2000, 70(5): 629-637. DOI: 10.1006/exer.2000.0825.Pendrak K, Papastergiou GI, Lin T, et al. Choroidal vascular permeability in visually regulated eye growth[ J]. Exp Eye Res, 2000, 70(5): 629-637. DOI: 10.1006/exer.2000.0825.
25、Fitzgerald MEC, Wildsoet CF, Reiner A. Temporal relationship of choroidal blood flow and thickness changes during recovery from form deprivation myopia in chicks[ J]. Exp Eye Res, 2002, 74(5): 561-570. DOI: 10.1006/exer.2002.1142.Fitzgerald MEC, Wildsoet CF, Reiner A. Temporal relationship of choroidal blood flow and thickness changes during recovery from form deprivation myopia in chicks[ J]. Exp Eye Res, 2002, 74(5): 561-570. DOI: 10.1006/exer.2002.1142.
26、Zhang S, Zhang G, Zhou X, et al. Changes in choroidal thickness a n d c h o ro i d a l b l o o d p e r f u s i o n i n g u i n ea p i g my o p i a [ J] . InvestOphthalmolVisSci, 2019, 60(8): 3074-3083. DOI: 10.1167/ iovs.18-26397.Zhang S, Zhang G, Zhou X, et al. Changes in choroidal thickness a n d c h o ro i d a l b l o o d p e r f u s i o n i n g u i n ea p i g my o p i a [ J] . InvestOphthalmolVisSci, 2019, 60(8): 3074-3083. DOI: 10.1167/ iovs.18-26397.
27、Cheng W, Song Y, Gao X, et al. Axial length and choriocapillaris flow deficits in non-pathological high myopia[ J]. Am J Ophthalmol, 2022, 244: 68-78. DOI: 10.1016/j.ajo.2022.08.005.Cheng W, Song Y, Gao X, et al. Axial length and choriocapillaris flow deficits in non-pathological high myopia[ J]. Am J Ophthalmol, 2022, 244: 68-78. DOI: 10.1016/j.ajo.2022.08.005.
28、Liu L, Zhu C, Yuan Y, et al. Three-dimensional choroidal vascularity index in high myopia using swept-source optical coherence tomography[ J]. Curr Eye Res, 2022, 47(3): 484-492. DOI: 10.1080/02713683.2021.2006236.Liu L, Zhu C, Yuan Y, et al. Three-dimensional choroidal vascularity index in high myopia using swept-source optical coherence tomography[ J]. Curr Eye Res, 2022, 47(3): 484-492. DOI: 10.1080/02713683.2021.2006236.
29、Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control[ J]. Proc Natl Acad Sci USA, 2018, 115(30): E7091-E7100. DOI: 10.1073/pnas.1721443115.Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control[ J]. Proc Natl Acad Sci USA, 2018, 115(30): E7091-E7100. DOI: 10.1073/pnas.1721443115.
30、Zhou X, Zhang S, Zhang G, et al. Increased choroidal blood perfusion can inhibit form deprivation myopia in guinea pigs[ J]. Invest Ophthalmol Vis Sci, 2020, 61(13): 25. DOI: 10.1167/iovs.61.13.25.Zhou X, Zhang S, Zhang G, et al. Increased choroidal blood perfusion can inhibit form deprivation myopia in guinea pigs[ J]. Invest Ophthalmol Vis Sci, 2020, 61(13): 25. DOI: 10.1167/iovs.61.13.25.
31、Zhou X, Zhang S, Yang F, et al. Decreased choroidal blood perfusion induces myopia in guinea pigs[ J]. Invest Ophthalmol Vis Sci, 2021, 62(15): 30. DOI: 10.1167/iovs.62.15.30.Zhou X, Zhang S, Yang F, et al. Decreased choroidal blood perfusion induces myopia in guinea pigs[ J]. Invest Ophthalmol Vis Sci, 2021, 62(15): 30. DOI: 10.1167/iovs.62.15.30.
32、Yu T, Xie X, Wei H, et al. Choroidal changes in lens-induced myopia in guinea pigs[ J]. Microvasc Res, 2021, 138: 104213. DOI: 10.1016/ j.mvr.2021.104213.Yu T, Xie X, Wei H, et al. Choroidal changes in lens-induced myopia in guinea pigs[ J]. Microvasc Res, 2021, 138: 104213. DOI: 10.1016/ j.mvr.2021.104213.
33、Yamamoto R, Bredt DS, Snyder SH, et al. The localization of nitric oxide synthase in the rat eye and related cranial Ganglia[ J]. Neuroscience, 1993, 54(1): 189-200. DOI: 10.1016/0306-4522(93)90393-t.Yamamoto R, Bredt DS, Snyder SH, et al. The localization of nitric oxide synthase in the rat eye and related cranial Ganglia[ J]. Neuroscience, 1993, 54(1): 189-200. DOI: 10.1016/0306-4522(93)90393-t.
34、Qi X, Ricart K, Ahmed KA, et al. Supplemental nitrite increases choroidal neovascularization in mice[ J]. Nitric Oxide, 2021, 117: 7-15. DOI: 10.1016/j.niox.2021.09.005.Qi X, Ricart K, Ahmed KA, et al. Supplemental nitrite increases choroidal neovascularization in mice[ J]. Nitric Oxide, 2021, 117: 7-15. DOI: 10.1016/j.niox.2021.09.005.
35、Erdinest N, London N, Ovadia H, et al. Nitric oxide interaction with the eye[ J]. Vision, 2021, 5(2): 29. DOI: 10.3390/vision5020029.Erdinest N, London N, Ovadia H, et al. Nitric oxide interaction with the eye[ J]. Vision, 2021, 5(2): 29. DOI: 10.3390/vision5020029.
36、Nickla DL, Wilken E, Lytle G, et al. Inhibiting the transient choroidal thickening response using the nitric oxide synthase inhibitor l-NAME prevents the ameliorative effects of visual experience on ocular growth in two different visual paradigms[ J]. Exp Eye Res, 2006, 83(2): 456-464. DOI: 10.1016/j.exer.2006.01.029.Nickla DL, Wilken E, Lytle G, et al. Inhibiting the transient choroidal thickening response using the nitric oxide synthase inhibitor l-NAME prevents the ameliorative effects of visual experience on ocular growth in two different visual paradigms[ J]. Exp Eye Res, 2006, 83(2): 456-464. DOI: 10.1016/j.exer.2006.01.029.
37、Nickla DL, Wildsoet CF. The effect of the nonspecific nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester on the choroidal compensatory response to myopic defocus in chickens[ J]. Optom Vis Sci, 2004, 81(2): 111-118. DOI: 10.1097/00006324-200402000-00009.Nickla DL, Wildsoet CF. The effect of the nonspecific nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester on the choroidal compensatory response to myopic defocus in chickens[ J]. Optom Vis Sci, 2004, 81(2): 111-118. DOI: 10.1097/00006324-200402000-00009.
38、Merkley MB, Soriano D, Jones KL, et al. The effects of nitric oxide on choroidal gene expression[ J]. bioRxiv, 2023: 2023.06.16.545343. DOI: 10.1101/2023.06.16.545343.Merkley MB, Soriano D, Jones KL, et al. The effects of nitric oxide on choroidal gene expression[ J]. bioRxiv, 2023: 2023.06.16.545343. DOI: 10.1101/2023.06.16.545343.
39、CarrBJ, Stell WK. Nitric oxide (NO) mediates the inhibition of formdeprivation myopia by atropine in chicks[ J]. Sci Rep, 2016, 6(1): 9. DOI: 10.1038/s41598-016-0002-7.CarrBJ, Stell WK. Nitric oxide (NO) mediates the inhibition of formdeprivation myopia by atropine in chicks[ J]. Sci Rep, 2016, 6(1): 9. DOI: 10.1038/s41598-016-0002-7.
40、Privalov E, Zenkel M, Schloetzer-Schrehardt U, et al. Pressure-dependent elevation of vasoactive intestinal peptide level in chicken choroid[ J]. Biology, 2023, 12(4): 495. DOI: 10.3390/biology12040495.Privalov E, Zenkel M, Schloetzer-Schrehardt U, et al. Pressure-dependent elevation of vasoactive intestinal peptide level in chicken choroid[ J]. Biology, 2023, 12(4): 495. DOI: 10.3390/biology12040495.
41、Nilsson SF. The significance of nitric oxide for parasympathetic vasodilation in the eye and other orbital tissues in the cat[ J]. Exp Eye Res, 2000, 70(1): 61-72. DOI: 10.1006/exer.1999.0752.Nilsson SF. The significance of nitric oxide for parasympathetic vasodilation in the eye and other orbital tissues in the cat[ J]. Exp Eye Res, 2000, 70(1): 61-72. DOI: 10.1006/exer.1999.0752.
42、Maugeri G, D'Amico AG, Saccone S, et al. PACAP and VIP inhibit HIF-1α-mediated VEGF expression in a model of diabetic macular edema[ J]. J Cell Physiol, 2017, 232(5): 1209-1215. DOI: 10.1002/ jcp.25616.Maugeri G, D'Amico AG, Saccone S, et al. PACAP and VIP inhibit HIF-1α-mediated VEGF expression in a model of diabetic macular edema[ J]. J Cell Physiol, 2017, 232(5): 1209-1215. DOI: 10.1002/ jcp.25616.
43、Liu Q, Wu J, Wang X, et al. Changes in muscarinic acetylcholine receptor expression in form deprivation myopia in guinea pigs[ J]. Mol Vis, 2007, 13: 1234-1244.Liu Q, Wu J, Wang X, et al. Changes in muscarinic acetylcholine receptor expression in form deprivation myopia in guinea pigs[ J]. Mol Vis, 2007, 13: 1234-1244.
44、Walch L, Brink C, Norel X. The muscarinic receptor subtypes in human blood vessels[ J]. Therapie, 2001, 56(3): 223-226.Walch L, Brink C, Norel X. The muscarinic receptor subtypes in human blood vessels[ J]. Therapie, 2001, 56(3): 223-226.
45、Lee SS, Lingham G, Clark A, et al. Choroidal changes during and after discontinuing long-term 0.01% atropine treatment for myopia control[ J]. Invest Ophthalmol Vis Sci, 2024, 65(10): 21. DOI: 10.1167/ iovs.65.10.21.Lee SS, Lingham G, Clark A, et al. Choroidal changes during and after discontinuing long-term 0.01% atropine treatment for myopia control[ J]. Invest Ophthalmol Vis Sci, 2024, 65(10): 21. DOI: 10.1167/ iovs.65.10.21.
46、Liu H, Chen D, Yang Z, et al. Atropine affects the outer retina during inhibiting form deprivation myopia in guinea pigs[ J]. Curr Eye Res, 2022, 47(4): 614-623. DOI: 10.1080/02713683.2021.2009515.Liu H, Chen D, Yang Z, et al. Atropine affects the outer retina during inhibiting form deprivation myopia in guinea pigs[ J]. Curr Eye Res, 2022, 47(4): 614-623. DOI: 10.1080/02713683.2021.2009515.
47、Stone RA, Kuwayama Y, Laties AM. Regulatory peptides in the eye[ J]. Experientia, 1987, 43(7): 791-800. DOI: 10.1007/BF01945357.Stone RA, Kuwayama Y, Laties AM. Regulatory peptides in the eye[ J]. Experientia, 1987, 43(7): 791-800. DOI: 10.1007/BF01945357.
48、May CA, Neuhuber W, Lütjen-Drecoll E. Immunohistochemical classification and functional morphology of human choroidal ganglion cells[ J]. Invest Ophthalmol Vis Sci, 2004, 45(2): 361-367. DOI: 10.1167/iovs.03-0624.May CA, Neuhuber W, Lütjen-Drecoll E. Immunohistochemical classification and functional morphology of human choroidal ganglion cells[ J]. Invest Ophthalmol Vis Sci, 2004, 45(2): 361-367. DOI: 10.1167/iovs.03-0624.
49、Schr%C3%B6dl%20F%2C%20de%20Laet%20A%2C%20Tassignon%20MJ%2C%20et%20al.%20Intrinsic%20choroidal%20neurons%20%0Ain%20the%20human%20eye%3A%20projections%2C%20targets%2C%20and%20basic%20electrophysiological%20%0Adata%5B%20J%5D.%20InvestOphthalmolVisSci%2C%202003%2C%2044(9)%3A%203705-3712.%20DOI%3A%20%0A10.1167%2Fiovs.03-0232.Schr%C3%B6dl%20F%2C%20de%20Laet%20A%2C%20Tassignon%20MJ%2C%20et%20al.%20Intrinsic%20choroidal%20neurons%20%0Ain%20the%20human%20eye%3A%20projections%2C%20targets%2C%20and%20basic%20electrophysiological%20%0Adata%5B%20J%5D.%20InvestOphthalmolVisSci%2C%202003%2C%2044(9)%3A%203705-3712.%20DOI%3A%20%0A10.1167%2Fiovs.03-0232.
50、Flügel C, Tamm ER, Mayer B, et al. Species differences in choroidal vasodilative innervation: evidence for specific intrinsic nitrergic and VIPpositive neurons in the human eye[ J]. InvestOphthalmolVisSci, 1994, 35(2): 592-599.Flügel C, Tamm ER, Mayer B, et al. Species differences in choroidal vasodilative innervation: evidence for specific intrinsic nitrergic and VIPpositive neurons in the human eye[ J]. InvestOphthalmolVisSci, 1994, 35(2): 592-599.
51、Schroedl F, de Stefano ME, Reese S, et al. Comparative anatomy of nitrergic intrinsic choroidal neurons (ICN) in various avian species[ J]. Exp Eye Res, 2004, 78(2): 187-196. DOI: 10.1016/j.exer.2003.11.007.Schroedl F, de Stefano ME, Reese S, et al. Comparative anatomy of nitrergic intrinsic choroidal neurons (ICN) in various avian species[ J]. Exp Eye Res, 2004, 78(2): 187-196. DOI: 10.1016/j.exer.2003.11.007.
52、Meriney SD, Pilar G. Cholinergic innervation of the smooth muscle cells in the choroid coat of the chick eye and its development[ J]. J Neurosci, 1987, 7(12): 3827-3839. DOI: 10.1523/JNEUROSCI.07- 12- 03827.1987.Meriney SD, Pilar G. Cholinergic innervation of the smooth muscle cells in the choroid coat of the chick eye and its development[ J]. J Neurosci, 1987, 7(12): 3827-3839. DOI: 10.1523/JNEUROSCI.07- 12- 03827.1987.
53、Poukens V, Glasgow BJ, Demer JL. Nonvascular contractile cells in sclera and choroid of humans and monkeys[ J]. Invest Ophthalmol Vis Sci, 1998, 39(10): 1765-1774.Poukens V, Glasgow BJ, Demer JL. Nonvascular contractile cells in sclera and choroid of humans and monkeys[ J]. Invest Ophthalmol Vis Sci, 1998, 39(10): 1765-1774.
54、Frank RN, Amin RH, Eliott D, et al. Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes[ J]. Am J Ophthalmol, 1996, 122(3): 393-403. DOI: 10.1016/s0002-9394(14)72066-5.Frank RN, Amin RH, Eliott D, et al. Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes[ J]. Am J Ophthalmol, 1996, 122(3): 393-403. DOI: 10.1016/s0002-9394(14)72066-5.
55、Saint-Geniez M, Maldonado AE, D'Amore PA. VEGF expression and receptor activation in the choroid during development and in the adult[ J]. Invest Ophthalmol Vis Sci, 2006, 47(7): 3135-3142. DOI: 10.1167/iovs.05-1229.Saint-Geniez M, Maldonado AE, D'Amore PA. VEGF expression and receptor activation in the choroid during development and in the adult[ J]. Invest Ophthalmol Vis Sci, 2006, 47(7): 3135-3142. DOI: 10.1167/iovs.05-1229.
56、Mathis U, Schaeffel F. Transforming growth factor-beta in the chicken fundal layers: an immunohistochemical study[ J]. Exp Eye Res, 2010, 90(6): 780-790. DOI: 10.1016/j.exer.2010.03.014.Mathis U, Schaeffel F. Transforming growth factor-beta in the chicken fundal layers: an immunohistochemical study[ J]. Exp Eye Res, 2010, 90(6): 780-790. DOI: 10.1016/j.exer.2010.03.014.
57、Suo NC, Lei CL, Zhang YC, et al. Effects of latanoprost on the expression of TGF-β1 and Wnt/β-catenin signaling pathway in the choroid of form-deprivation myopia rats[ J]. Cell Mol Biol, 2020, 66(6): 71-75.Suo NC, Lei CL, Zhang YC, et al. Effects of latanoprost on the expression of TGF-β1 and Wnt/β-catenin signaling pathway in the choroid of form-deprivation myopia rats[ J]. Cell Mol Biol, 2020, 66(6): 71-75.
58、Simon P, Feldkaemper M, Bitzer M, et al. Early transcriptional changes of retinal and choroidal TGF beta-2, RALDH-2, and ZENK following imposed positive and negative defocus in chickens[ J]. Mol Vis, 2004, 10: 588-597.Simon P, Feldkaemper M, Bitzer M, et al. Early transcriptional changes of retinal and choroidal TGF beta-2, RALDH-2, and ZENK following imposed positive and negative defocus in chickens[ J]. Mol Vis, 2004, 10: 588-597.
59、Li T, Bao B, Hao Y, et al. Suppressive effect of nitric oxide synthase (NOS) inhibitor L-NMMA acetate on choroidal fibrosis in experimental myopic guinea pigs through the nitric oxide signaling pathway[ J]. Eur J Pharmacol, 2023, 960: 176111. DOI: 10.1016/j.ejphar.2023.176111.Li T, Bao B, Hao Y, et al. Suppressive effect of nitric oxide synthase (NOS) inhibitor L-NMMA acetate on choroidal fibrosis in experimental myopic guinea pigs through the nitric oxide signaling pathway[ J]. Eur J Pharmacol, 2023, 960: 176111. DOI: 10.1016/j.ejphar.2023.176111.
60、Zhao Z, Zhang Y, Zhang C, et al. TGF-β promotes pericytemyofibroblast transition in subretinal fibrosis through the Smad2/3 and Akt/mTOR pathways[ J]. Exp Mol Med, 2022, 54(5): 673-684. DOI: 10.1038/s12276-022-00778-0.Zhao Z, Zhang Y, Zhang C, et al. TGF-β promotes pericytemyofibroblast transition in subretinal fibrosis through the Smad2/3 and Akt/mTOR pathways[ J]. Exp Mol Med, 2022, 54(5): 673-684. DOI: 10.1038/s12276-022-00778-0.
61、Yang F, Sun Y, Bai Y, et al. Asthma promotes choroidal neovascularization via the transforming growth factor Beta1/smad signalling pathway in a mouse model[ J]. Ophthalmic Res, 2022, 65(1): 14-29. DOI: 10.1159/000510778.Yang F, Sun Y, Bai Y, et al. Asthma promotes choroidal neovascularization via the transforming growth factor Beta1/smad signalling pathway in a mouse model[ J]. Ophthalmic Res, 2022, 65(1): 14-29. DOI: 10.1159/000510778.
62、Mathis U, Ziemssen F, Schaeffel F. Effects of a human VEGF antibody (Bevacizumab) on deprivation myopia and choroidal thickness in the chicken[ J]. Exp Eye Res, 2014, 127: 161-169. DOI: 10.1016/ j.exer.2014.07.022.Mathis U, Ziemssen F, Schaeffel F. Effects of a human VEGF antibody (Bevacizumab) on deprivation myopia and choroidal thickness in the chicken[ J]. Exp Eye Res, 2014, 127: 161-169. DOI: 10.1016/ j.exer.2014.07.022.
63、Uemura A, Fruttiger M, D'Amore PA, et al. VEGFR1 signaling in retinal angiogenesis and microinflammation[ J]. Prog Retin Eye Res, 2021, 84: 100954. DOI: 10.1016/j.preteyeres.2021.100954.Uemura A, Fruttiger M, D'Amore PA, et al. VEGFR1 signaling in retinal angiogenesis and microinflammation[ J]. Prog Retin Eye Res, 2021, 84: 100954. DOI: 10.1016/j.preteyeres.2021.100954.
64、Wang X , Ma W, Han S, et al. TGF-β par ticipates choroid neovascularization through Smad2/3-VEGF/TNF-α signaling in mice with Laser-induced wet age-related macular degeneration[ J]. Sci Rep, 2017, 7(1): 9672. DOI: 10.1038/s41598-017-10124-4.Wang X , Ma W, Han S, et al. TGF-β par ticipates choroid neovascularization through Smad2/3-VEGF/TNF-α signaling in mice with Laser-induced wet age-related macular degeneration[ J]. Sci Rep, 2017, 7(1): 9672. DOI: 10.1038/s41598-017-10124-4.
65、Steen B, Sejersen S, Berglin L, et al. Matrix metalloproteinases and metalloproteinase inhibitors in choroidal neovascular membranes[ J]. InvestOphthalmolVisSci, 1998, 39(11): 2194-2200.Steen B, Sejersen S, Berglin L, et al. Matrix metalloproteinases and metalloproteinase inhibitors in choroidal neovascular membranes[ J]. InvestOphthalmolVisSci, 1998, 39(11): 2194-2200.
66、Reif R, Qin J, An L, et al. Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system[ J]. Int J Biomed Imaging , 2012, 2012: 509783. DOI: 10.1155/2012/509783.Reif R, Qin J, An L, et al. Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system[ J]. Int J Biomed Imaging , 2012, 2012: 509783. DOI: 10.1155/2012/509783.
67、Rocholz R, Corvi F, Weichsel J, et al. OCT Angiography (OCTA) in Retinal Diagnostics [M]//High Resolution Imaging in Microscopy and Ophthalmology[ J]. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics, 2019: 135-160.Rocholz R, Corvi F, Weichsel J, et al. OCT Angiography (OCTA) in Retinal Diagnostics [M]//High Resolution Imaging in Microscopy and Ophthalmology[ J]. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics, 2019: 135-160.
68、Ostrin L A, Harb E, Nickla D L, et al. IMI: the dynamic choroid: new insights, challenges, and potential significance for human myopia [ J]. Invest Ophthalmol Vis Sci, 2023, 64(6): 4. DOI: 10.1167/iovs.64.6.4.Ostrin L A, Harb E, Nickla D L, et al. IMI: the dynamic choroid: new insights, challenges, and potential significance for human myopia [ J]. Invest Ophthalmol Vis Sci, 2023, 64(6): 4. DOI: 10.1167/iovs.64.6.4.
1、国家自然科学基金(82271116),海南省临床医学中心,海南省重点研发计划 (ZDYF2022SHFZ326, LCYX202406) 。
This work was supported by grants from the National Natural Science Foundation of China (82271116), Hainan Province Clinical Medical Center, and Science and Technology Planning Project of Hainan Province (ZDYF2022SHFZ326、LCYX202406).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录