1、Zeitz C, Robson AG, Audo I. Congenital stationary night blindness:
an analysis and update of genotype-phenotype correlations and
pathogenic mechanisms[ J]. Prog Retin Eye Res, 2015, 45: 58-110.
DOI:10.1016/j.preteyeres.2014.09.001.Zeitz C, Robson AG, Audo I. Congenital stationary night blindness:
an analysis and update of genotype-phenotype correlations and
pathogenic mechanisms[ J]. Prog Retin Eye Res, 2015, 45: 58-110.
DOI:10.1016/j.preteyeres.2014.09.001.
2、国际临床视觉电生理学会. 视觉电生理诊断流程指南[ J]. 中华眼科杂志,2020,56(7):492-508. DOI:10.3760/cma.j.cn112142-
20200217-00077.
International Society for Clinical Electrophysiology of Vision.
Guidelines for the Diagnostic Procedure of Visual Electrophysiology
[ J]. Chin J Ophthalmol, 2020, 56(7): 492-508. DOI: 10.3760/cma.
j.cn112142-20200217-00077. International Society for Clinical Electrophysiology of Vision.
Guidelines for the Diagnostic Procedure of Visual Electrophysiology
[ J]. Chin J Ophthalmol, 2020, 56(7): 492-508. DOI: 10.3760/cma.
j.cn112142-20200217-00077.
3、Shalom S, Ben-Yosef T, Sher I, et al. Nationwide prevalence of inherited
retinal diseases in the Israeli population[ J]. JAMA Ophthalmol, 2024,
142(7): 609-616. DOI:10.1001/jamaophthalmol.2024.1461.Shalom S, Ben-Yosef T, Sher I, et al. Nationwide prevalence of inherited
retinal diseases in the Israeli population[ J]. JAMA Ophthalmol, 2024,
142(7): 609-616. DOI:10.1001/jamaophthalmol.2024.1461.
4、AlTalbishi A, Zelinger L, Zeitz C, et al. TRPM1 mutations are the
most common cause of autosomal recessive congenital stationary night
blindness (CSNB) in the Palestinian and Israeli populations[ J]. Sci
Rep, 2019, 9(1): 12047. DOI:10.1038/s41598-019-46811-7.AlTalbishi A, Zelinger L, Zeitz C, et al. TRPM1 mutations are the
most common cause of autosomal recessive congenital stationary night
blindness (CSNB) in the Palestinian and Israeli populations[ J]. Sci
Rep, 2019, 9(1): 12047. DOI:10.1038/s41598-019-46811-7.
5、Huang L, Bai X, Xie Y, et al. Clinical and genetic studies for a cohort of
patients with congenital stationary night blindness[ J]. Orphanet J Rare
Dis, 2024, 19(1): 101. DOI:10.1186/s13023-024-03091-3.Huang L, Bai X, Xie Y, et al. Clinical and genetic studies for a cohort of
patients with congenital stationary night blindness[ J]. Orphanet J Rare
Dis, 2024, 19(1): 101. DOI:10.1186/s13023-024-03091-3.
6、Almutairi F, Almeshari N, Ahmad K, et al. Congenital stationary night
blindness: an update and review of the disease spectrum in Saudi
Arabia[ J]. Acta Ophthalmol, 2021, 99(6): 581-591. DOI:10.1111/
aos.14693.Almutairi F, Almeshari N, Ahmad K, et al. Congenital stationary night
blindness: an update and review of the disease spectrum in Saudi
Arabia[ J]. Acta Ophthalmol, 2021, 99(6): 581-591. DOI:10.1111/
aos.14693.
7、Katta M, de Guimaraes TAC, Fujinami-Yokokawa Y, et al. Congenital
stationary night blindness: structure, function and genotype-phenotype
correlations in a cohort of 122 patients[ J]. Ophthalmol Retina, 2024,
8(9): 932-941. DOI:10.1016/j.oret.2024.03.017.Katta M, de Guimaraes TAC, Fujinami-Yokokawa Y, et al. Congenital
stationary night blindness: structure, function and genotype-phenotype
correlations in a cohort of 122 patients[ J]. Ophthalmol Retina, 2024,
8(9): 932-941. DOI:10.1016/j.oret.2024.03.017.
8、李蕙, 刘丽英, 徐海燕, 等. 先天性静止性夜盲患者的临床特征
[ J]. 中华医学杂志, 2012, 92(39): 2756-2759. DOI: 10.3760/cma.
j.issn.0376-2491.2012.39.006.
Li H, Liu LY, Xu HY, et al. Clinical features of congenital stationary
night blindness[ J]. Natl Med J China, 2012, 92(39): 2756-2759. DOI:
10.3760/cma.j.issn.0376-2491.2012.39.006.Li H, Liu LY, Xu HY, et al. Clinical features of congenital stationary
night blindness[ J]. Natl Med J China, 2012, 92(39): 2756-2759. DOI:
10.3760/cma.j.issn.0376-2491.2012.39.006.
9、Marmor MF, Zeitz C. Riggs-type dominant congenital stationary
night blindness: ERG findings, a new GNAT1 mutation and a systemic
association[ J]. Doc Ophthalmol, 2018, 137(1): 57-62. DOI:10.1007/
s10633-018-9651-0.Marmor MF, Zeitz C. Riggs-type dominant congenital stationary
night blindness: ERG findings, a new GNAT1 mutation and a systemic
association[ J]. Doc Ophthalmol, 2018, 137(1): 57-62. DOI:10.1007/
s10633-018-9651-0.
10、Miyake Y. Congenital Stationary Night Blindness With Negative
Electroretinogram[ J].Archives of Ophthalmology, 1986, 104(7):1013.
DOI:10.1001/archopht.1986.01050190071042.Miyake Y. Congenital Stationary Night Blindness With Negative
Electroretinogram[ J].Archives of Ophthalmology, 1986, 104(7):1013.
DOI:10.1001/archopht.1986.01050190071042.
11、Miyake Y. Establishment of the concept of new clinical entities:
complete and incomplete form of congenital stationar y night
blindness[ J]. Nippon Ganka Gakkai Zasshi, 2002, 106(12):
737-755;discussion756.Miyake Y. Establishment of the concept of new clinical entities:
complete and incomplete form of congenital stationar y night
blindness[ J]. Nippon Ganka Gakkai Zasshi, 2002, 106(12):
737-755;discussion756.
12、Riemslag FCC. Visually impaired children: “coming to better
terms”[ J]. Doc Ophthalmol, 2009, 119(1): 1-7. DOI:10.1007/s10633-008-9161-6.Riemslag FCC. Visually impaired children: “coming to better
terms”[ J]. Doc Ophthalmol, 2009, 119(1): 1-7. DOI:10.1007/s10633-008-9161-6.
13、Cohen DC, Sumaroka A, Paulos JA, et al. Anti-TRPM1 autoantibodypositive unilateral melanoma associated retinopathy (MAR) triggered
by immunotherapy recapitulates functional and structural details
of TRPM1-associated congenital stationary night blindness[ J].
Am J Ophthalmol Case Rep, 2024, 36: 102098. DOI:10.1016/
j.ajoc.2024.102098.Cohen DC, Sumaroka A, Paulos JA, et al. Anti-TRPM1 autoantibodypositive unilateral melanoma associated retinopathy (MAR) triggered
by immunotherapy recapitulates functional and structural details
of TRPM1-associated congenital stationary night blindness[ J].
Am J Ophthalmol Case Rep, 2024, 36: 102098. DOI:10.1016/
j.ajoc.2024.102098.
14、Ninomiya W, Mizobuchi K, Hayashi T, et al. Electroretinographic
abnormalities associated with pregabalin: a case report[ J]. Doc
Ophthalmol, 2020, 140(3): 279-287. DOI:10.1007/s10633-019-
09743-1.Ninomiya W, Mizobuchi K, Hayashi T, et al. Electroretinographic
abnormalities associated with pregabalin: a case report[ J]. Doc
Ophthalmol, 2020, 140(3): 279-287. DOI:10.1007/s10633-019-
09743-1.
15、Bijveld MMC, Florijn RJ, Bergen AAB, et al. Genotype and phenotype
of 101 Dutch patients with congenital stationary night blindness[ J].
Ophthalmology, 2013, 120(10): 2072-2081. DOI:10.1016/
j.ophtha.2013.03.002.Bijveld MMC, Florijn RJ, Bergen AAB, et al. Genotype and phenotype
of 101 Dutch patients with congenital stationary night blindness[ J].
Ophthalmology, 2013, 120(10): 2072-2081. DOI:10.1016/
j.ophtha.2013.03.002.
16、Pieh C, Simonsz-Toth B, Gottlob I. Nystagmus characteristics in
congenital stationary night blindness (CSNB)[ J]. Br J Ophthalmol,
2008, 92(2): 236-240. DOI:10.1136/bjo.2007.126342.Pieh C, Simonsz-Toth B, Gottlob I. Nystagmus characteristics in
congenital stationary night blindness (CSNB)[ J]. Br J Ophthalmol,
2008, 92(2): 236-240. DOI:10.1136/bjo.2007.126342.
17、Zeitz C, Roger JE, Audo I, et al. Shedding light on myopia by studying
complete congenital stationary night blindness[ J]. Prog Retin Eye Res,
2023, 93: 101155. DOI:10.1016/j.preteyeres.2022.101155.Zeitz C, Roger JE, Audo I, et al. Shedding light on myopia by studying
complete congenital stationary night blindness[ J]. Prog Retin Eye Res,
2023, 93: 101155. DOI:10.1016/j.preteyeres.2022.101155.
18、Poels MMF, de Wit GC, Bijveld MMC, et al. Natural course of
refractive error in congenital stationary night blindness: implications
for myopia treatment[ J]. Invest Ophthalmol Vis Sci, 2024, 65(14): 9.
DOI:10.1167/iovs.65.14.9.Poels MMF, de Wit GC, Bijveld MMC, et al. Natural course of
refractive error in congenital stationary night blindness: implications
for myopia treatment[ J]. Invest Ophthalmol Vis Sci, 2024, 65(14): 9.
DOI:10.1167/iovs.65.14.9.
19、Kozuka T, Chaya T, Tamalu F, et al. The TRPM1 channel is required
for development of the rod ON bipolar cell-AII amacrine cell pathway
in the retinal circuit[ J]. J Neurosci, 2017, 37(41): 9889-9900.
DOI:10.1523/JNEUROSCI.0824-17.2017.Kozuka T, Chaya T, Tamalu F, et al. The TRPM1 channel is required
for development of the rod ON bipolar cell-AII amacrine cell pathway
in the retinal circuit[ J]. J Neurosci, 2017, 37(41): 9889-9900.
DOI:10.1523/JNEUROSCI.0824-17.2017.
20、Zhou X, Pardue MT, Michael Iuvone P, et al. Dopamine signaling and
myopia development: what are the key challenges[ J]. Prog Retin Eye
Res, 2017, 61: 60-71. DOI:10.1016/j.preteyeres.2017.06.003.Zhou X, Pardue MT, Michael Iuvone P, et al. Dopamine signaling and
myopia development: what are the key challenges[ J]. Prog Retin Eye
Res, 2017, 61: 60-71. DOI:10.1016/j.preteyeres.2017.06.003.
21、Parodi MB, Arrigo A, Rajabian F, et al. Multimodal imaging in
Schubert-Bornschein congenital stationary night blindness[ J].
Ophthalmic Genet, 2023, 44(4): 408-413. DOI:10.1080/13816810.20
22.2135108.Parodi MB, Arrigo A, Rajabian F, et al. Multimodal imaging in
Schubert-Bornschein congenital stationary night blindness[ J].
Ophthalmic Genet, 2023, 44(4): 408-413. DOI:10.1080/13816810.20
22.2135108.
22、Yu M, Hao W, Wang M, et al. Characterizing retinal sensitivity and
structure in congenital stationary night blindness: a combined
microperimetry and OCT study[ J]. Invest Ophthalmol Vis Sci, 2024,
65(6): 35. DOI:10.1167/iovs.65.6.35.Yu M, Hao W, Wang M, et al. Characterizing retinal sensitivity and
structure in congenital stationary night blindness: a combined
microperimetry and OCT study[ J]. Invest Ophthalmol Vis Sci, 2024,
65(6): 35. DOI:10.1167/iovs.65.6.35.
23、Miyake Y, Yagasaki K, Horiguchi M, et al. Congenital stationary night
blindness with negative electroretinogram. A new classification[ J].
Arch Ophthalmol, 1986, 104(7): 1013-1020. DOI:10.1001/archopht.1986.01050190071042.Miyake Y, Yagasaki K, Horiguchi M, et al. Congenital stationary night
blindness with negative electroretinogram. A new classification[ J].
Arch Ophthalmol, 1986, 104(7): 1013-1020. DOI:10.1001/archopht.1986.01050190071042.
24、Dumitrescu AV, Pfeifer WL, Arhens M, et al. CACNA1F-related
synaptic dysfunction: challenges diagnosing congenital stationary night
blindness presenting without night blindness[ J]. Can J Ophthalmol,
2024, 59(6): e808-e818. DOI:10.1016/j.jcjo.2023.11.022.Dumitrescu AV, Pfeifer WL, Arhens M, et al. CACNA1F-related
synaptic dysfunction: challenges diagnosing congenital stationary night
blindness presenting without night blindness[ J]. Can J Ophthalmol,
2024, 59(6): e808-e818. DOI:10.1016/j.jcjo.2023.11.022.
25、Bijveld MMC, van Genderen MM, Hoeben FP, et al. Assessment of
night vision problems in patients with congenital stationary night
blindness[ J]. PLoS One, 2013, 8(5): e62927. DOI:10.1371/journal.
pone.0062927.Bijveld MMC, van Genderen MM, Hoeben FP, et al. Assessment of
night vision problems in patients with congenital stationary night
blindness[ J]. PLoS One, 2013, 8(5): e62927. DOI:10.1371/journal.
pone.0062927.
26、Khan AO. CABP4 mutations do not cause congenital stationary night
blindness[ J]. Ophthalmology, 2014, 121(3): e15. DOI:10.1016/
j.ophtha.2013.11.005.Khan AO. CABP4 mutations do not cause congenital stationary night
blindness[ J]. Ophthalmology, 2014, 121(3): e15. DOI:10.1016/
j.ophtha.2013.11.005.
27、Chen RWS, Greenberg JP, Lazow MA, et al. Autofluorescence imaging
and spectral-domain optical coherence tomography in incomplete
congenital stationary night blindness and comparison with retinitis
pigmentosa[ J]. Am J Ophthalmol, 2012, 153(1): 143-154.e2.
DOI:10.1016/j.ajo.2011.06.018.Chen RWS, Greenberg JP, Lazow MA, et al. Autofluorescence imaging
and spectral-domain optical coherence tomography in incomplete
congenital stationary night blindness and comparison with retinitis
pigmentosa[ J]. Am J Ophthalmol, 2012, 153(1): 143-154.e2.
DOI:10.1016/j.ajo.2011.06.018.
28、Vincent A, Héon E. Outer retinal structural anomaly due to frameshift
mutation in CACNA1F gene[ J]. Eye, 2012, 26(9): 1278-1280.
DOI:10.1038/eye.2012.125.Vincent A, Héon E. Outer retinal structural anomaly due to frameshift
mutation in CACNA1F gene[ J]. Eye, 2012, 26(9): 1278-1280.
DOI:10.1038/eye.2012.125.
29、Hove%20MN%2C%20Kilic-Biyik%20KZ%2C%20Trotter%20A%2C%20et%20al.%20Clinical%20characteristics%2C%20%0Amutation%20spectrum%2C%20and%20prevalence%20of%20%C3%A5land%20eye%20disease%2Fincomplete%20%0Acongenital%20stationar%20y%20night%20blindness%20in%20Denmark%5B%20J%5D.%20Invest%20%0AOphthalmol%20Vis%20Sci%2C%202016%2C%2057(15)%3A%206861-6869.%20DOI%3A10.1167%2Fiovs.16-%0A19445.Hove%20MN%2C%20Kilic-Biyik%20KZ%2C%20Trotter%20A%2C%20et%20al.%20Clinical%20characteristics%2C%20%0Amutation%20spectrum%2C%20and%20prevalence%20of%20%C3%A5land%20eye%20disease%2Fincomplete%20%0Acongenital%20stationar%20y%20night%20blindness%20in%20Denmark%5B%20J%5D.%20Invest%20%0AOphthalmol%20Vis%20Sci%2C%202016%2C%2057(15)%3A%206861-6869.%20DOI%3A10.1167%2Fiovs.16-%0A19445.
30、Lim HY, Joo K. Clinical and genetic characteristics of patients with
peripheral retinal flecks in koreans[ J]. Korean J Ophthalmol, 2024,
38(6): 461-470. DOI:10.3341/kjo.2024.0089.Lim HY, Joo K. Clinical and genetic characteristics of patients with
peripheral retinal flecks in koreans[ J]. Korean J Ophthalmol, 2024,
38(6): 461-470. DOI:10.3341/kjo.2024.0089.
31、Sparrow JR, Parmann R, Tsang SH, et al. Shared features in retinal
disorders with involvement of retinal pigment epithelium[ J]. Invest
Ophthalmol Vis Sci, 2021, 62(7): 15. DOI:10.1167/iovs.62.7.15.Sparrow JR, Parmann R, Tsang SH, et al. Shared features in retinal
disorders with involvement of retinal pigment epithelium[ J]. Invest
Ophthalmol Vis Sci, 2021, 62(7): 15. DOI:10.1167/iovs.62.7.15.
32、Newman H, Perlman I, Pras E, et al. THE TARGET SIGN: a near
infrared feature and multimodal imaging in a pluri-ethnic cohort with
RDH5-related fundus albipunctatus[ J]. Retina, 2022, 42(7): 1364-
1369. DOI:10.1097/IAE.0000000000003466.Newman H, Perlman I, Pras E, et al. THE TARGET SIGN: a near
infrared feature and multimodal imaging in a pluri-ethnic cohort with
RDH5-related fundus albipunctatus[ J]. Retina, 2022, 42(7): 1364-
1369. DOI:10.1097/IAE.0000000000003466.
33、Sergouniotis PI, Sohn EH, Li Z, et al. Phenotypic variability in RDH5
retinopathy (fundus albipunctatus)[ J]. Ophthalmology, 2011, 118(8):
1661-1670. DOI:10.1016/j.ophtha.2010.12.031.Sergouniotis PI, Sohn EH, Li Z, et al. Phenotypic variability in RDH5
retinopathy (fundus albipunctatus)[ J]. Ophthalmology, 2011, 118(8):
1661-1670. DOI:10.1016/j.ophtha.2010.12.031.
34、Haraguchi Y, Chiang TK, Yu M. Application of electrophysiology
in non-macular inherited retinal dystrophies[ J]. J Clin Med, 2023,
12(21): 6953. DOI:10.3390/jcm12216953.Haraguchi Y, Chiang TK, Yu M. Application of electrophysiology
in non-macular inherited retinal dystrophies[ J]. J Clin Med, 2023,
12(21): 6953. DOI:10.3390/jcm12216953.
35、Sobol EK, Deobhakta A, Wilkins CS, et al. Fundus albipunctatus
photoreceptor microstructure revealed using adaptive optics scanning light ophthalmoscopy[ J]. Am J Ophthalmol Case Rep, 2021, 22:
101090. DOI:10.1016/j.ajoc.2021.101090.Sobol EK, Deobhakta A, Wilkins CS, et al. Fundus albipunctatus
photoreceptor microstructure revealed using adaptive optics scanning light ophthalmoscopy[ J]. Am J Ophthalmol Case Rep, 2021, 22:
101090. DOI:10.1016/j.ajoc.2021.101090.
36、Nishiguchi KM, Oguchi Y, Nakazawa T. Progression from classical
oguchi disease to retinitis pigmentosa after 50 years[ J]. Ophthalmology,
2020, 127(1): 51. DOI:10.1016/j.ophtha.2019.09.015.Nishiguchi KM, Oguchi Y, Nakazawa T. Progression from classical
oguchi disease to retinitis pigmentosa after 50 years[ J]. Ophthalmology,
2020, 127(1): 51. DOI:10.1016/j.ophtha.2019.09.015.
37、Sergouniotis PI, Davidson AE, Sehmi K, et al. Mizuo-Nakamura
phenomenon in Oguchi disease due to a homozygous nonsense
mutation in the SAG gene[ J]. Eye, 2011, 25(8): 1098-1101.
DOI:10.1038/eye.2011.88.Sergouniotis PI, Davidson AE, Sehmi K, et al. Mizuo-Nakamura
phenomenon in Oguchi disease due to a homozygous nonsense
mutation in the SAG gene[ J]. Eye, 2011, 25(8): 1098-1101.
DOI:10.1038/eye.2011.88.
38、Miyake Y, Horiguchi M, Suzuki S, et al. Electrophysiological findings in
patients with oguchi's disease[ J]. Jpn J Ophthalmol, 1996, 40(4): 511-
519.Miyake Y, Horiguchi M, Suzuki S, et al. Electrophysiological findings in
patients with oguchi's disease[ J]. Jpn J Ophthalmol, 1996, 40(4): 511-
519.
39、Yamanaka M. Histologic study of Oguchi's disease. Its relationship to
pigmentary degeneration of the retina[ J]. Am J Ophthalmol, 1969,
68(1): 19-26. DOI:10.1016/0002-9394(69)94930-7.Yamanaka M. Histologic study of Oguchi's disease. Its relationship to
pigmentary degeneration of the retina[ J]. Am J Ophthalmol, 1969,
68(1): 19-26. DOI:10.1016/0002-9394(69)94930-7.
40、Liu X, Gao L, Wang G, et al. Oguchi disease caused by a homozygous
novel SAG splicing alteration associated with the multiple evanescent
white dot sy ndrome: A 15-month follow-up[ J].Documenta
Ophthalmologica, 2020, 141(3).DOI:10.1007/s10633-020-09766-z.Liu X, Gao L, Wang G, et al. Oguchi disease caused by a homozygous
novel SAG splicing alteration associated with the multiple evanescent
white dot sy ndrome: A 15-month follow-up[ J].Documenta
Ophthalmologica, 2020, 141(3).DOI:10.1007/s10633-020-09766-z.
41、Pilotto E, Trevisson E, Nacci EB, et al. Two novel compound
heterozygous SAG mutations in an Italian patient with Oguchi disease:
a genetic and multimodal retinal imaging study[ J]. Eur J Ophthalmol,
2022, 32(6): NP1-NP5. DOI:10.1177/11206721211027422.Pilotto E, Trevisson E, Nacci EB, et al. Two novel compound
heterozygous SAG mutations in an Italian patient with Oguchi disease:
a genetic and multimodal retinal imaging study[ J]. Eur J Ophthalmol,
2022, 32(6): NP1-NP5. DOI:10.1177/11206721211027422.
42、Kato Y, Tsunoda K, Fujinami K, et al. Association of retinal artery and
other inner retinal structures with distribution of tapetal-like reflex in
oguchi's disease[ J]. Invest Ophthalmol Vis Sci, 2015, 56(4): 2162-
2172. DOI:10.1167/iovs.14-16198.Kato Y, Tsunoda K, Fujinami K, et al. Association of retinal artery and
other inner retinal structures with distribution of tapetal-like reflex in
oguchi's disease[ J]. Invest Ophthalmol Vis Sci, 2015, 56(4): 2162-
2172. DOI:10.1167/iovs.14-16198.
43、Godara P, Cooper RF, Sergouniotis PI, et al. Assessing retinal
structure in complete congenital stationary night blindness and
Oguchi disease[ J]. Am J Ophthalmol, 2012, 154(6): 987-1001.e1.
DOI:10.1016/j.ajo.2012.06.003.Godara P, Cooper RF, Sergouniotis PI, et al. Assessing retinal
structure in complete congenital stationary night blindness and
Oguchi disease[ J]. Am J Ophthalmol, 2012, 154(6): 987-1001.e1.
DOI:10.1016/j.ajo.2012.06.003.
44、Akhtar HN, Nicholson L, Ockrim Z, et al. Loss of sheen in Oguchi
disease following short wavelength exposure[ J]. Eye, 2024, 38(16):
3197-3199. DOI:10.1038/s41433-024-03237-4.Akhtar HN, Nicholson L, Ockrim Z, et al. Loss of sheen in Oguchi
disease following short wavelength exposure[ J]. Eye, 2024, 38(16):
3197-3199. DOI:10.1038/s41433-024-03237-4.
45、Robson AG, Mengher LS, Tan MH, et al. An unusual fundus phenotype
of inner retinal sheen in X-linked retinoschisis[ J]. Eye, 2009, 23(9):
1876-1878. DOI:10.1038/eye.2008.358.Robson AG, Mengher LS, Tan MH, et al. An unusual fundus phenotype
of inner retinal sheen in X-linked retinoschisis[ J]. Eye, 2009, 23(9):
1876-1878. DOI:10.1038/eye.2008.358.
46、de Jong PT, Zrenner E, van Meel GJ, et al. Mizuo phenomenon in
X-linked retinoschisis. pathogenesis of the mizuo phenomenon[ J].
Arch Ophthalmol, 1991, 109(8): 1104-1108. DOI:10.1001/
archopht.1991.01080080064029.de Jong PT, Zrenner E, van Meel GJ, et al. Mizuo phenomenon in
X-linked retinoschisis. pathogenesis of the mizuo phenomenon[ J].
Arch Ophthalmol, 1991, 109(8): 1104-1108. DOI:10.1001/
archopht.1991.01080080064029.
47、Weleber RG. Infantile and childhood retinal blindness: a molecular
perspective (the franceschetti lecture)[ J]. Ophthalmic Genet, 2002, 23(2): 71-97. DOI:10.1076/opge.23.2.71.2214.Weleber RG. Infantile and childhood retinal blindness: a molecular
perspective (the franceschetti lecture)[ J]. Ophthalmic Genet, 2002, 23(2): 71-97. DOI:10.1076/opge.23.2.71.2214.
48、Smirnov VM, Robert MP, Condroyer C, et al. Association of missense
variants in VSX2 with a peculiar form of congenital stationary night
blindness affecting all bipolar cells[ J]. JAMA Ophthalmol, 2022,
140(12): 1163-1173. DOI:10.1001/jamaophthalmol.2022.4146.Smirnov VM, Robert MP, Condroyer C, et al. Association of missense
variants in VSX2 with a peculiar form of congenital stationary night
blindness affecting all bipolar cells[ J]. JAMA Ophthalmol, 2022,
140(12): 1163-1173. DOI:10.1001/jamaophthalmol.2022.4146.
49、Mechaussier S, Almoallem B, Zeitz C, et al. Loss of function of
RIMS2 causes a syndromic congenital cone-rod synaptic disease with
neurodevelopmental and pancreatic involvement[ J]. Am J Hum Genet,
2020, 106(6): 859-871. DOI:10.1016/j.ajhg.2020.04.018.Mechaussier S, Almoallem B, Zeitz C, et al. Loss of function of
RIMS2 causes a syndromic congenital cone-rod synaptic disease with
neurodevelopmental and pancreatic involvement[ J]. Am J Hum Genet,
2020, 106(6): 859-871. DOI:10.1016/j.ajhg.2020.04.018.
50、Vincent A, Audo I, Tavares E, et al. Biallelic mutations in GNB3
cause a unique form of autosomal-recessive congenital stationary
night blindness[ J]. Am J Hum Genet, 2016, 98(5): 1011-1019.
DOI:10.1016/j.ajhg.2016.03.021.Vincent A, Audo I, Tavares E, et al. Biallelic mutations in GNB3
cause a unique form of autosomal-recessive congenital stationary
night blindness[ J]. Am J Hum Genet, 2016, 98(5): 1011-1019.
DOI:10.1016/j.ajhg.2016.03.021.
51、Peshenko IV, Olshevskaya EV, Dizhoor AM. GUCY2D mutations in
retinal guanylyl cyclase 1 provide biochemical reasons for dominant
cone-rod dystrophy but not for stationary night blindness[ J].
J Biol Chem, 2020, 295(52): 18301-18315. DOI:10.1074/jbc.
RA120.015553.Peshenko IV, Olshevskaya EV, Dizhoor AM. GUCY2D mutations in
retinal guanylyl cyclase 1 provide biochemical reasons for dominant
cone-rod dystrophy but not for stationary night blindness[ J].
J Biol Chem, 2020, 295(52): 18301-18315. DOI:10.1074/jbc.
RA120.015553.
52、Hayashi T, Hosono K, Kurata K, et al. Coexistence of GNAT1 and
ABCA4 variants associated with Nougaret-type congenital stationary
night blindness and childhood-onset cone-rod dystrophy[ J]. Doc
Ophthalmol, 2020, 140(2): 147-157. DOI:10.1007/s10633-019-
09727-1.Hayashi T, Hosono K, Kurata K, et al. Coexistence of GNAT1 and
ABCA4 variants associated with Nougaret-type congenital stationary
night blindness and childhood-onset cone-rod dystrophy[ J]. Doc
Ophthalmol, 2020, 140(2): 147-157. DOI:10.1007/s10633-019-
09727-1.
53、Schatz P, Preising M, Lorenz B, et al. Fundus albipunctatus associated
with compound heterozygous mutations in RPE65[ J]. Ophthalmology,
2011, 118(5): 888-894. DOI:10.1016/j.ophtha.2010.09.005.Schatz P, Preising M, Lorenz B, et al. Fundus albipunctatus associated
with compound heterozygous mutations in RPE65[ J]. Ophthalmology,
2011, 118(5): 888-894. DOI:10.1016/j.ophtha.2010.09.005.
54、Yamamoto H, Simon A, Eriksson U, et al. Mutations in the gene
encoding 11-cis retinol dehydrogenase cause delayed dark adaptation
and fundus albipunctatus[ J]. Nat Genet, 1999, 22(2): 188-191.
DOI:10.1038/9707.Yamamoto H, Simon A, Eriksson U, et al. Mutations in the gene
encoding 11-cis retinol dehydrogenase cause delayed dark adaptation
and fundus albipunctatus[ J]. Nat Genet, 1999, 22(2): 188-191.
DOI:10.1038/9707.
55、Yang G, Liu Z, Xie S, et al. Genetic and phenotypic characteristics of
four Chinese families with fundus albipunctatus[ J]. Sci Rep, 2017, 7:
46285. DOI:10.1038/srep46285.Yang G, Liu Z, Xie S, et al. Genetic and phenotypic characteristics of
four Chinese families with fundus albipunctatus[ J]. Sci Rep, 2017, 7:
46285. DOI:10.1038/srep46285.
56、Ramtohul P, Denis D. RPE65-mutation associated fundus albipunctatus
with cone dystrophy[ J]. Ophthalmol Retina, 2019, 3(6): 535.
DOI:10.1016/j.oret.2019.02.008.Ramtohul P, Denis D. RPE65-mutation associated fundus albipunctatus
with cone dystrophy[ J]. Ophthalmol Retina, 2019, 3(6): 535.
DOI:10.1016/j.oret.2019.02.008.
57、Hipp%20S%2C%20Zobor%20G%2C%20Gl%C3%B6ckle%20N%2C%20et%20al.%20Phenotype%20variations%20of%20retinal%20%0Adystrophies%20caused%20by%20mutations%20in%20the%20RLBP1%20gene%5B%20J%5D.%20Acta%20%0AOphthalmol%2C%202015%2C%2093(4)%3A%20e281-6.%20DOI%3A10.1111%2Faos.12573.Hipp%20S%2C%20Zobor%20G%2C%20Gl%C3%B6ckle%20N%2C%20et%20al.%20Phenotype%20variations%20of%20retinal%20%0Adystrophies%20caused%20by%20mutations%20in%20the%20RLBP1%20gene%5B%20J%5D.%20Acta%20%0AOphthalmol%2C%202015%2C%2093(4)%3A%20e281-6.%20DOI%3A10.1111%2Faos.12573.
58、Li S, Xiao X, Yi Z, et al. RPE65 mutation frequency and phenotypic
variation according to exome sequencing in a tertiary centre for genetic
eye diseases in China[ J]. Acta Ophthalmol, 2020, 98(2): e181-e190.
DOI:10.1111/aos.14181.Li S, Xiao X, Yi Z, et al. RPE65 mutation frequency and phenotypic
variation according to exome sequencing in a tertiary centre for genetic
eye diseases in China[ J]. Acta Ophthalmol, 2020, 98(2): e181-e190.
DOI:10.1111/aos.14181.
59、Hull S, Holder GE, Robson AG, et al. Preserved visual function
in retinal dystrophy due to hypomorphic RPE65 mutations[ J].
Br J Ophthalmol, 2016, 100(11): 1499-1505. DOI:10.1136/
bjophthalmol-2015-308019.Hull S, Holder GE, Robson AG, et al. Preserved visual function
in retinal dystrophy due to hypomorphic RPE65 mutations[ J].
Br J Ophthalmol, 2016, 100(11): 1499-1505. DOI:10.1136/
bjophthalmol-2015-308019.
60、Reiff C, Owczarek-Lipska M, Spital G, et al. The mutation p.E113K in
the Schiff base counterion of rhodopsin is associated with two distinct
retinal phenotypes within the same family[ J]. Sci Rep, 2016, 6: 36208.
DOI:10.1038/srep36208.Reiff C, Owczarek-Lipska M, Spital G, et al. The mutation p.E113K in
the Schiff base counterion of rhodopsin is associated with two distinct
retinal phenotypes within the same family[ J]. Sci Rep, 2016, 6: 36208.
DOI:10.1038/srep36208.
61、Tan GMY, Yu D, Wang J, et al. Alternative splicing at C terminus of
Ca(V)1.4 calcium channel modulates calcium-dependent inactivation,
activation potential, and current density[ J]. J Biol Chem, 2012, 287(2):
832-847. DOI:10.1074/jbc.M111.268722.Tan GMY, Yu D, Wang J, et al. Alternative splicing at C terminus of
Ca(V)1.4 calcium channel modulates calcium-dependent inactivation,
activation potential, and current density[ J]. J Biol Chem, 2012, 287(2):
832-847. DOI:10.1074/jbc.M111.268722.
62、Mechaussier S, Almoallem B, Zeitz C, et al. Loss of function of
RIMS2 causes a syndromic congenital cone-rod synaptic disease with
neurodevelopmental and pancreatic involvement[ J]. Am J Hum Genet,
2020, 107(3): 580. DOI:10.1016/j.ajhg.2020.08.004.Mechaussier S, Almoallem B, Zeitz C, et al. Loss of function of
RIMS2 causes a syndromic congenital cone-rod synaptic disease with
neurodevelopmental and pancreatic involvement[ J]. Am J Hum Genet,
2020, 107(3): 580. DOI:10.1016/j.ajhg.2020.08.004.
63、Zeitz C, Jacobson SG, Hamel CP, et al. Whole-exome sequencing
identifies LRIT3 mutations as a cause of autosomal-recessive complete
congenital stationary night blindness[ J]. Am J Hum Genet, 2013,
92(1): 67-75. DOI:10.1016/j.ajhg.2012.10.023.Zeitz C, Jacobson SG, Hamel CP, et al. Whole-exome sequencing
identifies LRIT3 mutations as a cause of autosomal-recessive complete
congenital stationary night blindness[ J]. Am J Hum Genet, 2013,
92(1): 67-75. DOI:10.1016/j.ajhg.2012.10.023.
64、Arno G, Holder GE, Chakarova C, et al. Recessive retinopathy
consequent on mutant G-protein β subunit 3 (GNB3)[ J].
JAMA Ophthalmol, 2016, 134(8): 924-927. DOI:10.1001/
jamaophthalmol.2016.1543.Arno G, Holder GE, Chakarova C, et al. Recessive retinopathy
consequent on mutant G-protein β subunit 3 (GNB3)[ J].
JAMA Ophthalmol, 2016, 134(8): 924-927. DOI:10.1001/
jamaophthalmol.2016.1543.
65、Miyadera K, Santana E, Roszak K, et al. Targeting ON-bipolar cells by
AAV gene therapy stably reverses LRIT3-congenital stationary night
blindness[ J]. Proc Natl Acad Sci USA, 2022, 119(13): e2117038119.
DOI:10.1073/pnas.2117038119.Miyadera K, Santana E, Roszak K, et al. Targeting ON-bipolar cells by
AAV gene therapy stably reverses LRIT3-congenital stationary night
blindness[ J]. Proc Natl Acad Sci USA, 2022, 119(13): e2117038119.
DOI:10.1073/pnas.2117038119.
66、Varin J, Bouzidi N, Dias MMS, et al. Restoration of mGluR6 localization
following AAV-mediated delivery in a mouse model of congenital
stationary night blindness[ J]. Invest Ophthalmol Vis Sci, 2021, 62(3):
24. DOI:10.1167/iovs.62.3.24.Varin J, Bouzidi N, Dias MMS, et al. Restoration of mGluR6 localization
following AAV-mediated delivery in a mouse model of congenital
stationary night blindness[ J]. Invest Ophthalmol Vis Sci, 2021, 62(3):
24. DOI:10.1167/iovs.62.3.24.