您的位置: 首页 > 2025年2月 第40卷 第2期 > 文字全文
2023年7月 第38卷 第7期11
目录

先天性静止性夜盲疾病谱及其基因型—表型研究现状与进展

Congenital stationary night blindness: an update and review of the disease spectrum and genotype-phenotype correlations

来源期刊: 眼科学报 | 2025年2月 第40卷 第2期 144-154 发布时间:2025-2-28 收稿时间:2025/2/13 15:04:58 阅读量:363
作者:
关键词:
先天性静止性夜盲Riggs型先天性静止性夜盲 Schubert-Bornshein型先天性静止性夜盲白点状眼底小口病视网膜电图基因型-表型关联发病机制
congenital stationary night blindness (CSNB) riggs-type CSNB schubert-bornschein fundus albipunctatus oguchi disease pathophysiology electroretinography genotype-phenotype correlations
DOI:
10.12419/24111001
收稿时间:
2024-11-11 
修订日期:
2024-12-10 
接收日期:
2024-12-24 
CSNB是一组高度异质的遗传性视网膜疾病(inherited retinal disease, IRD),主要由视网膜光感受器细胞和双极细胞间的信号传导障碍引发。其主要临床特征为静止性夜盲和暗适应功能障碍,常伴有早发性近视、眼球震颤、斜视和远视等症状,ERG在CSNB的诊断、分型及治疗指导中起着至关重要的作用。尽管CSNB发病率低,属于罕见病,但其真实发病率可能被低估,部分原因在于其症状轻微、眼底表现多不明显,且临床常忽视视网膜功能检查,导致较高的漏诊和误诊率。随着分子遗传学技术的进步,大量研究揭示了CSNB不同基因缺陷的致病机制,特别是与早发近视的关联机制,这些研究同也增加了对视网膜信号传导和近视发病机制的理解。然而,CSNB的基因治疗仍处于早期阶段。本综述旨在全面探讨CSNB的疾病谱,包括不同类型患者的临床表现、影像学和功能学表型特征,以及相关遗传学致病机制,并总结基因型与表型的关联。同时,综述最新研究成果与未来发展方向,旨在提高国内学者对CSNB的认识,为临床诊断和治疗提供参考,并为后续研究提供新思路。
Congenital Stationary Night Blindness (CSNB) represents a group of highly heterogeneous inherited retinal diseases (IRDs) primarily caused by impaired signal transmission between photoreceptor cells and bipolar cells in the retina. The main clinical features include stationary night blindness and dark adaptation dysfunction, often accompanied by early-onset myopia, nystagmus, strabismus, and hyperopia. Electroretinography (ERG) plays a crucial role in the diagnosis, classification, and therapeutic management of CSNB. Although CSNB is classified as a rare disease due to its low incidence, its true prevalence is likely underestimated, partly because of its mild symptoms, inconspicuous fundus manifestations, and frequent oversight of retinal function tests in clinical practice, leading to high rates of underdiagnosis and misdiagnosis. With advances in molecular genetics, extensive research has elucidated the pathogenic mechanisms of various genetic defects in CSNB, particularly those associated with early-onset myopia. These studies have also enhanced our understanding of retinal signal transduction and the pathogenesis of myopia. However, gene therapy for CSNB remains in its early stages. This review aims to comprehensively explore the disease spectrum of CSNB, including clinical manifestations, imaging and functional phenotypic characteristics across different subtypes, and associated genetic pathogenic mechanisms. We also summarize genotype-phenotype correlations, review the latest research advancements, and discuss future directions. By doing so, this review seeks to improve the understanding of CSNB among domestic researchers, provide guidance for clinical diagnosis and treatment, and offer new insights for future research.

文章亮点

1. 关键发现

 • 先天性静止性夜盲 (congenital stationary night blindness, CSNB) 是一组视网膜内信号传导功能障碍所致的遗传性视网膜疾病,因症状轻微且多无显著眼底结构改变,临床易漏诊或误诊。
 • 对于早发型近视伴眼球震颤、畏光和 ( 或 ) 斜视的儿童,眼底检查正常,即使缺乏典型夜盲主诉,也应考虑到 CSNB,并完善视网膜电图 (electroretinography, ERG) 检查以明确诊断。

2. 已知与发现

 • 根据眼底表现和 ERG 特征 CSNB 分为四种类型:Riggs 型、Schubert-Bornshein 型、白点状眼底和小口病。国内以Schubert-Bornschein 型为主,致病基因以 NYX 和 CACNA1F 基因最为常见 ( 两者约占一半以上 ),其次为 TRPM1。
 • 仅不到一半的 CSNB 患者以夜盲为主诉就诊。临床表现以早发性近视最常见 (96.61%),其次为眼球震颤 (62.71%) 与斜视 (52.54%)。
 • 大量体内外研究确定了 CSNB 不同基因缺陷的致病机制,尤其是与早发近视相关的关联机制,为揭示视觉信号传导与近视发生机制提供了新视角。
 • 当前 CSNB 的基因治疗仍处于临床前研究阶段,腺相关病毒 (adeno-associated virus, AAV) 载体已成功靶向递送治疗基因至 CSNB 模型动物的 ON 双极细胞,实现暗视觉功能的部分重建。

3. 意义与改变

 • 探究不同亚型 CSNB 的表型特征及其遗传学致病机制,总结基因型与表型之间的关联,不仅有助于提高对 CSNB 的认识,为临床诊断和治疗提供参考和指导,也为今后的相关研究提供新的思路。

CSNB为一组以静止性夜盲和暗适应功能障碍为特征的遗传性视网膜疾病(inherited retinal disease,IRD),其主要致病机制为光感受器细胞与双极细胞间信号传导障碍,眼底结构多无明显异常,一般无进展性,但在视网膜电图(electroretinogram,ERG)上有特征性表现。按照眼底表现和全视野ERG(full-field ERG,ffERG)特征,CSNB可分为四种类型:1Riggs型,该型主要由视杆细胞中介导光传导级联反应的蛋白功能障碍引发,眼底表现大致正常,ffERG表现为暗反应a波振幅明显下降;2Schubert-Bornshein,以双极细胞信号转导障碍为特征,致病基因主要影响双极细胞突触前后的通道蛋白活性,眼底表现大致正常,ffERG表现为暗反应a波正常,b波振幅下降,b/a振幅比小于1,呈典型的负波形;3白点状眼底(fundus albipunctatus,FA),该病是由于视循环中关键酶的功能缺陷导致视紫红质再生延迟,眼底表现为弥漫分布于视网膜的黄白点,呈黄斑回避,ffERG表现为暗反应a波振幅下降,但延长暗适应时间后,由于视紫红质恢复,a波振幅可恢复正常水平;4小口病(oguchi disease,OD),该病是由视杆细胞中的光转导级联反应负调节蛋白功能障碍致视紫红质蛋白处于异常激活状态,从而影响正常的光转导过程,在明环境下眼底表现为黄白色金属光泽,暗适应后金属光泽消失。ffERG表现类似白点状眼底,不同的是随着暗适应闪光刺激频次增加,暗反应a波振幅又再次出现下降[1-2]

CSNB发病率较低,在全球范围内的流行病学数据有限。不同区域及人种的患病率差距较大。最近一项在以色列全国范围的不同类型IRDs流行病学统计显示该区域的CSNB患病率为1∶18 000[3], 而在先前一项耶路撒冷地区的CSNB统计显示,其患病率不低于1∶6 210[4]。国内尚缺乏相关统计学数据,在国内最近一项CSNB大队列研究结果显示,Schubert-Bornschein 型为最常见类型,最常见突变基因为 NYXCACNA1F基因(约占一半以上),其次为TRPM1,与国外的大规模队列研究结果一致。值得注意的是国内CSNB患者以早发性近视为最常见临床表现,发生率可高达96.61%,其次是眼球震颤(62.71%)和斜视(52.54%),而只有不到一半的患者以夜盲为主诉就诊[5],加之眼底表现除近视相关改变外多正常,造成CSNB在国内漏诊、误诊率极高[1,5-8]

本文将详细总结以上各型CSNB的临床表现、最新影像学及功能学检查进展,深入分析其致病基因及病理机制,总结基因型-表型关联,并结合最新进展,介绍3种不同于以上类型的独特CSNB表型及其致病基因,最后对未来CSNB的研究及治疗方向进行展望。

1 CSNB疾病谱及表型特征

1.1 眼底表现大致正常的CSNB

       1.1.1 视杆细胞功能障碍:RiggsCSNB

RiggsCSNB最先由Riggs于1954年报道,并由此命名。但其最早可追溯于1838年,由Cunier记录于法国南部的Nougaret大家族九代人的夜盲疾病中,随后在丹麦的Rambusch家族也发现了类似表型。这两个显性遗传的CSNB家系是遗传学史上最大的遗传病家系,被认为是研究孟德尔显性遗传最经典的案例[9]。该型是CSNB的罕见形式,国内也很少有病例报道[8]

Riggs型CSNB与视杆细胞光转导级联反应中关键蛋白的功能缺陷相关,遗传方式可为常染色体显性遗传(autosomal dominant inheritance, AD)或常染色体隐性遗传(autosomal recessive inheritance, AR)。其表型相对较轻,患者的视力、视野、色觉和眼底外观正常,主要表现为夜盲和暗适应障碍,一般不合并高度近视和眼球震颤,患者多自幼发病,夜盲症状隐匿且不易被察觉,因此这类患者就诊率不高,临床极易漏诊。ffERG表现为暗反应a波振幅下降,与视杆细胞功能障碍一致,并且伴b/a比值下降,呈负波形明适应各项反应正常,说明视锥细胞功能正常,暗反应的负波形正是因为暗适应视锥细胞功能的保留。利用暗适应红色闪光ERG(Red flash ERG)可进一步明确[1-2]

       1.1.2 双极细胞功能障碍:Schubert-BornscheinCSNB

1952年SchubertBornschein报道了一种CSNB最常见的ERG异常形式,其ffERG暗反应a波振幅正常b波振幅明显下降,形成典型的负性ERG反映该类CSNB的功能障碍发生在光转导后,主要影响光感受器和双极细胞之间的信号传导。Miyake等在1986年进一步将Schubert-BornscheinCSNB根据ERG的不同表现细分为完全型CSNB(complete form of CSNB,cCSNB)和不完全型CSNB(incomplete form of CSNB, iCSNB),也曾分别命名为CSNB1和CSNB2,并在随后阐明cCSNBiCSNB为基因型和表型完全不同的两类疾病[10-11]。其主要区别归因于致病基因对on和off双极细胞通路的不同影响:在cCSNB中,编码蛋白位于突触后的on双极细胞树突中,引起on通路的功能障碍因此又被称为on双极细胞功能障碍病;iCSNB的致病基因编码感光细胞突触末端的蛋白质,影响突触关键递质谷氨酸的释放,同时导致on和off通路的功能障碍,所以iCSNB又被称为先天性视杆-视锥细胞突触功能障碍(CACNA1F基因相关)和先天性视锥细胞突触功能障碍(CABP4CACNA2D4基因相关)[12];视锥细胞与on和off双极细胞间都有突触连接,而视杆细胞只与on双极细胞有突触连接。因此,iCSNBcCSNB表现出更大程度的视锥细胞通路功能障碍,造成两者疾病表型不同[7],见表1。

表1 完全型CSNB与不完全型CSNB的基因型与表型对比
Table 1 Comparison of phenotypes and genotypes between complete and incomplete CSNB

     项 目

完全型

不完全型

     致病基因

NYX,TRPM1(最常见,约占70%)

GRM6, GPR179, LRIT3

CACNA1F(最常见,约占90%)

CACNA2,CABP4, RIMS2

致病机制

影响突触后的on双极细胞去极化

影响突触前膜视锥/视杆细胞递质释放,同时影on和off通路

临床症状

自幼夜盲史

视力下降(视力中位数在0.5)

通常无畏光及色觉障碍

早发性近视(中位数为-7.4 D)

眼球震颤及斜视

约54%患者无夜盲症状

严重视力下降(视力中位数在0.3)

常伴畏光及色盲

远视或近视(中位数为+4.8 D)

眼球震颤及斜视

疾病进展性

无明显进展性

无明显进展性

ffERG DA 0.01

完全无法诱发

可诱发,振幅下降

ffERG DA 3.0/10.0

a波振幅正常,b/a下降呈负波形

a波振幅正常,b/a下降呈负波形

ffERG LA 3.0

振幅正常的形波:a波波谷宽大,b波陡直上升,无明显Ops波

b波振幅明显下降,b/a可呈负波形

ffERG 30 Hz ERG

振幅正常,波谷扁平

振幅下降,峰时延迟,呈双峰

长时程闪光ERG

On反应呈负波形,off反应正常

On和off反应均异常

值得注意的是,一些获得性视网膜病变的临床表现与Schubert-BornscheinCSNB相似,应注意鉴别,如黑色素瘤相关视网膜病变,患者血清中因存在cCSNB致病基因编码蛋白TRPM1的抗体而出现类cCSNB表现,而普瑞巴林相关毒性视网膜病变,因其影响光感受器末端钙通道活性,出现类iCSNB表现[13-14]

       1.1.2.1 On双极细胞功能障碍:cCSNB/CSNB1

cCSNB患者通常有自幼夜盲史,且伴有明显的视力下降(视力中位数为0.5)、早发性中度至高度近视(中位数为-7.4 D)、眼球震颤及斜视[15]。这类患者的眼球震颤可随年龄增长而减弱,且具有非共轭性和钟摆性、振幅较低及频率较高的特点[16]。国内最近一项儿童CSNB队列报道,将近一半cCSNB患儿并无夜盲主诉而几乎全部都出现早发性近视,一半以上伴有斜视及眼球震颤,并认为此“三联征”对儿童cCSNB的诊断更有价值[5]

cCSNB与近视的惊人关联引起学者的广泛兴趣,被认为是研究近视发病机制和治疗的理想模型[17]。与“学龄近视”显著不同,CSNB相关近视在4岁前迅速进展,之后进展速度缓慢,平均每年约下降0.12 D,直到 15 岁[18]。其关联机制尚未完全明确。最近的一项研究表明,在TRPM1基因(cCSNB最常见致病基因)敲除小鼠模型中观察到视杆细胞和双极细胞间突触末端缩短,并且无长突细胞树突分支数量和大小皆减少[19]。而既往研究已明确无长突细胞是视网膜多巴胺的主要来源,其水平下降与近视的发展有关[20]。因此,视网膜多巴胺水平的降低可能是导致TRPM1相关cCSNB近视发生的机制。

既往研究认为,cCSNB患者眼底除近视相关改变外,一般无明显异常。但在最近几项关于cCSNB患者眼底光相干断层成像(optical coherence tomography, OCT)的研究发现该类型患者可能存在视网膜内层变薄,而视网膜外层厚度相对正常,且在随访期间视网膜各层结构相对稳定[7,21-22]。 

cCSNB的致病基因编码蛋白位于on双极细胞的树突顶端,主要引起on双极细胞的信号传导障碍,其遗传方式可为X连锁遗传(X-linked inheritance,XL)或AR。ffERG特征为暗反应DA 0.01完全检测不到,这也是最初命名为“完全型”的由来,在接下来的暗反应DA 3.0和DA 10.0中a波振幅基本正常,b波振幅重度下降呈负波形。明反应LA 3.0 的a波振幅正常,但波谷变宽,b波陡直上升而没有振荡电位,b/a略有下降。LA 3.0 30 Hz闪烁ERG振幅正常,表现为波谷平坦,峰时可出现轻微延迟。以上ffERG表现符合on双极细胞通路功能丧失而off通路保留的特征。可分离on和off通路的长时程闪光ERG(明适on-off ERG)显示on反应呈负波形而off反应正常,也证实了cCSNB的这一特征[2,23]

       1.1.2.2 On和off双极细胞功能障碍:iCSNB/CSNB2

iCSNB的表型比cCSNB更具异质性,特别是与CACNA1F基因相关的突变,患者很少或没有夜盲症状,所以有学者建议将其改命名为CACNA1F相关突触功能障碍,避免因命名带来的误诊[24]。在一项荷兰的CSNB大队列研究中,100%的cCSNB患者有夜盲症状,而54%的iCSNB患者无夜盲症状,其更为常见的症状是畏光,大约占53%,而这一比例在cCSNB中仅为21%。iCSNB患者有不同程度的屈光不正,从近视到远视,约16%表现为远视,100% cCSNB为近视[15,18]。与CABP4突变相关的病例大多数表现为高度远视,而CACNA1F突变更多地表现为近视[25-26]iCSNB患者也有不同程度的眼球震颤和斜视,但iCSNB患者的视力通常更差,其中位数约为0.3,且常伴有不同程度色觉缺陷,视野通常是正常的,眼底外观除近视性改变外也大多正常[5,7,15]。但一些对CSNB患者眼底OCT和病理学的研究显示icCSNB患者存在视网膜变薄及视网膜结构的改变[22,27]。在一例CACNA1F移码突变的iCSNB患者OCT中发现其外核层存在突触连接样高反射(类外丛状层反射)[28]。在其他一些研究中发现,iCSNB比cCSNB更常见黄斑中央凹发育不全,其发生率为33%58% [7,21,29]

iCSNB致病基因编码蛋白位于感光细胞突触末端,主要影响谷氨酸的释放,进而同时影响on和off通路的信号传导。其遗传方式可为XL或AR。ffERG特征为暗反应DA 0.01 ERG存在,但振幅低于正常,因此其最初被称为“不完全型”,暗反应DA 3.0及DA 10.0 ERG a波振幅正常,但b波振幅明显下降形成负波形;iCSNB明反应ERG异常程度远比cCSNB严重,明反应LA 3.0 b波振幅明显下降,呈负波形, LA 30 Hz 闪烁 ERG振幅明显下降,峰时延迟,且大多数具有特征性的双峰。明适on-off ERG显示on和off反应都异常[2,11,23]

1.2 眼底表现异常的CSNB

尽管大部分的CSNB眼底大致正常,但有两类特殊罕见类型,FA和OD。两者遗传方式皆为AR,眼底有特征性改变。ERG表现类似Riggs型,以视杆细胞功能障碍为主要表现,但在延长暗适应后其ERG都有不同程度提高。

       1.2.1 白点状眼底

白点状眼底(fundus albipunctatus, FA)是一种罕见的IRD,文献中发表的病例约为100多例。其主要是由RDH5基因突变致视黄醇脱氢酶活性下降,造成视循环中视紫红质再生延迟,所以也有学者称其为RDH5相关视网膜病变。其典型临床表现为夜盲症和暗适应延迟以及白点状眼底改变。患者的视力、色觉和视野通常正常。眼底检查可以发现弥漫于后极部至周边部的小白点,呈黄斑回避[30]。眼底自发荧光的表现较多变,可正常,也可呈严重弥漫性下降或局灶异常。在年轻患者中,白点呈高自发荧光,在OCT上表现为突出于视网膜色素上皮(retinal pigment epithelium,RPE)表面至外界膜间的高反射点状病灶,并伴有外核层厚度弥漫变薄。这些白点的病理尚未明确,可能含有11-顺式视黄醛前体 。随年龄增加白点可由斑点状逐渐变得细小,数量可增加或减少,甚至消失[31-32]。需要注意的是,上述改变并非FA所特有,在白点状视网膜变性(retinitis punctata albescens,RPA)病变早期及良性视网膜斑点综合征(benign flecked retina syndrome )中可出现完全一致的眼底表现,前者为进展性视锥-视杆细胞营养不良,视力预后差,而后者为良性病变,无明显视功能异常。

FA患者因视紫红质再生延迟,视网膜在大多时候处于“漂白”状态,但因为残留部分视黄醇脱氢酶活性,在经过长时间暗环境后视紫红质水平可恢复正常[33]ffERG体现了上述病理过程,FA患者在标准ffERG表现类似Riggs型,但不同的是当延长暗适应时间后(由20 min延长至6 h以上甚至过夜),暗反应a、b波振幅可显著提高,甚至恢复正常水平。约一半患者反应也轻度异常,表现为LA 30 Hz反应峰时延迟[34]。对FA患者的自适应光学检查发现除了视杆细胞大小和形态异常外,视锥细胞密度较低,并且黄斑区视锥细胞失去马赛克样规律排布的空间结构,说明FA患者的视锥细胞结构和功能也受到影响,甚至有病例报道随着病情进展而出现视锥细胞营养不良或黄斑萎缩[6,32,35]  

       1.2.2 小口病

OD最初由Oguchi在1907年报道,眼底表现极具特征,呈“变色龙样改变”:明亮环境下眼底呈金黄色光泽,暗适应后消失眼底色泽恢复正常,被称为Mizuo-Nakamura现象,国内也称为水尾征[1-2]OD是一种更为罕见的CSNB类型,多见于日本人,我国仅有十余例文献报道。患者通常有自幼夜盲史,但视力、色觉和视野正常,大部分病例在多年的随访中病情静止、稳定,仅在一例长期随访的病例患者在50年后逐渐出现进展性视杆-视锥变性表现[36]

OD致病基因编码蛋白主要参与光传导级联反应的失活过程,避免因反应过度激活而紫红质异常脱敏。ffERG反映了OD的病理生理过程:患者在标准ffERG下表现类似Riggs型,表现为DA 0.01 未诱发出明显b波,DA 0.3及DA 10.0 呈a波振幅明显下降的负波形。延长暗适应时间可提高或恢复暗反应各波形,类似FA的表现,不同的是随着闪光次数的增加,暗反应各项振幅再次明显减弱。明反应各项及明适on-off ERG通常正常,反映OD患者的视锥细胞和双极细胞功能大致正常[2,37-39]

大量研究试图解释OD患者眼底Mizuo-Nakamura现象的机制。最早的研究来自日本OD患者的视网膜组织切片,观察到RPE细胞排列异常及突向光感受器层的小结节,并在光感受器层和内层小血管旁分别发现了脂褐质和色素的沉积[40]。随着眼底影像技术进展,不同模式的影像也展现了Mizuo-Nakamura现象背后的视网膜微观结构改变。高分辨率OCT进一步观察到,眼底明环境下的金属光泽区域对应的视网膜外层结构反射明显增强,尤其是椭圆体带[41-42]。在自适应光学成像下表现为明暗环境下光感受器细胞马赛克镶嵌结构反射强度的变化[43]。而最近的一项研究观察到OD患者眼底在经过488 nm自发荧光扫描成像后的区域(短波长自发荧光可漂白视紫红质)金属光泽消失,说明脱敏视紫红质的异常累积是OD患者眼底金属光泽形成的基础[44]。然而至今Mizuo-Nakamura现象的机制仍未完全明确,但值得注意的是相似的眼底改变在 X连锁视锥-视杆细胞营养不良和X连锁视网膜劈裂中也有报道[45-47],对该现象背后机制的探索将有助于提高对此类视网膜疾病的认识。

2 CSNB的致病基因及病理机制

截至目前,共发现20余个CSNB相关致病基因,共有超过500种不同突变和670多个受影响的等位基因与CSNB相关。包括参与视循环、光转导级联反应以及光感受器到双极细胞间信号传递的重要基因。在这些CSNB致病基因中以CACNA1FNYX基因突变最为常见,两者共占到50%以上,其次为TRPM1,早发性近视是其最重要的表型特征,表2总结了以上3种致病基因的表型,尤其是其近视进展特点[1,5,7,18]。遗传方式以XL最多见,占57.9%,其次为AR和散发型CSNB,占40%,其中伴有眼底异常者占23.6%,AD占2.1%[1]。最新发现的3个致病基因:RIMS2GNB3、和VSX2分别与综合征性的iCSNB、伴有视锥细胞功能障碍的cCSNB和广泛双极细胞功能障碍的Schubert-Bornschein CSNB相关,这些都与经典的CSNB特征不同[48-50]。虽然也有病例报道GUCY2DABCA4突变导致了类似CSNB的表型,但其更可能是进展性视锥-视杆细胞营养不良的轻型[51-52],是否纳入CSNB疾病谱尚存在争议,本文暂不做讨论。通过生物化学方法、体外计算机建模及动物模型可以模拟不同基因的不同突变类型所致CSNB的病理过程,有助于探索其致病机制。

表2 CSNB常见致病基因及相关早发近视特点
Table 2 Common pathogenic genes of CSNB and the characteristics of related early-onset myopia

致病基因

参与的生物学过程

表型

早发近视特点

CACNA1F

触发谷氨酸从光感受器突触持续释放,实现光感受细胞与双极细胞间的信号传递

iCSNB

出生时的平均球镜度数:-3.076 D

平均每年球镜增长度数:-0.254 D

(4岁前快速增长,之后缓慢增长至15岁)

最终平均球镜度数:-5.1 D

NYX

on双极细胞树突顶端的通道调节蛋白,对谷氨酸诱导的双极细胞去极化至关重要

cCSNB

出生时的平均球镜度数:-5.511 D

平均每年球镜增长度数:-0.257 D

(4岁前快速增长,之后缓慢增长至15岁)

最终平均球镜度数:-7.5 D

TRPM1

on双极细胞树突顶端的瞬时受体电位通道,诱导 on双极细胞去极化

cCSNB

出生时的平均球镜度数:-5.386 D

平均每年球镜增长度数:-0.326 D

(4岁前快速增长,之后缓慢增长至15岁)

最终平均球镜度数:-7.5 D

 以上数据整理是基于2024年发表的两个国外大型CSNB近视队列的研究结果(PMID: 39625438和PMID: 39079892)。
The data compilation is based on the results of two large international CSNB myopia cohorts published in 2024 (PMID: 39625438 and PMID: 39079892).

2.1 参与视网膜内视循环和光传导级联反应的关键分子

RDH5、RPE65RLBP1基因编码蛋白位于RPE内,三者相互作用,是参与视循环中的关键酶[53]。其中RDH5催化11-顺式视黄醇转化为11-顺式视黄醛,参与视紫红质的再循环,体外研究显示重组突变体RDH5的活性降低,是FA的主要致病基因[54]。同时也有多个案报道RPE65RLBP1的某些轻型隐性突变也可引起与FA类似的疾病表型,包括ERG表型也有重叠,但其ERG表现可能更为严重,需要更长时间的暗适应才能恢复或恢复有限[6,53,55-57],但后两种是否纳入FA的致病基因仍存在争议,部分学者将其称为类FA病变[58-59],而FA专指RDH5基因突变相关视网膜病变。

RHO、GNAT1、PDE6B、SLC24A1编码蛋白位于感光细胞内,一起参与光传导级联反应,是Riggs型CSNB的致病基因,同时也是RP的致病基因。研究发现引起CSNB的突变类型大多为错义突变及移码突变,这些突变使得级联反应中的关键蛋白处于异常激活的状态,从而导致视杆细胞脱敏及光转导反应下降。而引起RP表型的突变通常导致蛋白活性的降低和缺失,导致光感受器的异常凋亡和结构受损[1,6,9,60]GRK1SAGOD患者的致病基因,其编码蛋白也位于光感受器内,负责光激活后的恢复,突变导致RHO持续激活,致使光传导级联反应无法关闭,进而视杆细胞反应性下降[1]

2.2 参与谷氨酸释放的重要分子

CACNA1FCACNA2D4基因分别编码1型电压依赖性钙通道(Cav1.4)的α1亚基和α2亚基,该离子通道主要定位于光感受器突触活跃区,钙离子通过Cav1.4内流触发谷氨酸从光感受器突触持续释放,与双极细胞树突上的亲谷氨酸受体结合,实现光感受细胞与双极细胞间的信号传递[7,61]。而CABP4编码蛋白为神经元钙调蛋白结合蛋白家族成员之一,其特异性定位于光感受末端,与Cav1.4相互作用,可显著增加Cav1.4通道活性。以上基因突变均可导致Cav1.4通道活性的改变或丧失,干扰了谷氨酸从光感受器突触向双极细胞的持续释放,导致视锥和视杆细胞突触功能障碍,表现为iCSNB的表型特征[1,58]1,61

最近的一项研究报道了一个新的iCSNB致病基因RIMS2, 其编码蛋白主要表达于视网膜光感受器突触、大脑浦肯野细胞和胰腺组织胰岛,主要调节囊泡运输和胞吐作用,并可能直接或间接调节Cav1.4通道活性。其突变可导致视锥和视杆细胞突触功能障碍,影响光感受器与双极细胞间的信号传递,导致伴有神经发育异常和胰腺受累的综合征性iCSNB表型[62]

2.3 参与谷氨酸诱导光感受器向on双极细胞信号传导的重要分子

GRM6、GPR179、NYX、TRPM1、LRIT3编码蛋白定位于on双极细胞树突顶端,对谷氨酸诱导的双极细胞去极化至关重要cCSNB的致病基因[63]GRM6编码蛋白为谷氨酸受体,在级联开始时起作用。TRPM1编码瞬时受体电位通道,在光刺激后,TRPM1通道打开,on双极细胞去极化,也就是ERG b波产生的大部分来源。GPR179、NYX、LRIT3编码蛋白为结合或调节蛋白,对GRM6编码的受体蛋白和TRPMI编码的通道蛋白的正确定位和功能调节起重要作用。这类基因突变在cCSNB中的潜在致病机制为其相应编码蛋白不能正确地定位于树突顶端,导致on双极细胞去极化功能障碍[1,6]

2.4 其他新发现的致病基因及病理机制

上述CSNB致病机制外,还有两类最新发现的机制,可导致非典型的CSNB表型。

GNB3编码G蛋白异源三聚体(Gαβγ)的β亚基,在哺乳动物中表达于视锥细胞和on双极细胞内,作为受体的第二信使调节视锥细胞内的光传导和on双极细胞信号传导,其突变可致一种特殊类型的CSNB,具有不同程度的on双极细胞功能障碍和视锥细胞敏感性降低,其ffERG表型除出现cCSNB特点外,还出现明显的明反应a波波谷增宽,峰时延迟[50,64]

还有一种特殊类型的CSNB,具有广泛双极细胞功能障碍特点,其表型特征不同于iCSNBcCSNB,致病基因为VSX2,该基因编码蛋白位于双极细胞的细胞核中,主要在胚胎眼发育过程中在视网膜祖细胞中大量表达,不仅影响双极细胞分化和功能,还是眼部发育的重要调节因子,所以其突变所致表型大多伴有眼发育障碍,如孤立性小眼症/无眼症,小眼症伴缺损及小眼症伴白内障和虹膜异常,同时出现广泛双极细胞功能障碍,ffERG表现为负波形,暗反应与cCSNB相似,DA0.01未诱发出b波,而明反应又明显异常,类似iCSNB表现[48]

3 总结与展望

CSNB是一组以静止性功能性障碍为特点的IRD,症状隐匿,漏诊、误诊率高,临床如遇到早发近视伴有眼球震颤、畏光和(或)斜视的儿童,眼底检查正常,即使无夜盲和低视力主诉,也应考虑到CSNB,并完善ERG检查[5]。尽管CSNB是一组高度异质性疾病,但目前的研究已经建立了良好的基因型-表型关联,详细的病史询问和眼底影像学联合功能学检查至关重要。完善的表型特征和遗传模式可以指导靶向测序,建立精准的基因诊断,进一步为患者的遗传咨询和疾病管理提供重要依据,同时对未来开发功能修复性治疗策略及筛选潜在的治疗候选人群奠定基础[1]。已有大量的体内外研究确定了CSNB不同基因缺陷的致病机制,尤其是与早发近视相关的关联机制,这些研究同时也增加了对视网膜视觉信号传导机制和近视发病机制的理解[17],未来仍需要更多的研究来完善这些分子机制并阐明不同个体间表型变异的原因。

CSNB主要由功能缺陷引起,多数没有结构损害,是理想的基因治疗群体。尽管已有动物实验成功使用腺相关病毒载体(adeno-associated virus,AAV)基因治疗恢复CSNB模型小鼠视功能,但到目前为止,还没有针对CSNB的基因治疗临床试验,部分原因可能是因为其表型轻且无进展,另一部分主要原因可能是目前的基因治疗主要针对光感受器及RPE的蛋白表达,而大部分CSNB需要以双极细胞为靶向,在技术上具有挑战性[1]。但最近两项动物试验成功地将AAV治疗载体靶向导入CSNB模型动物的on双极细胞(犬类和小鼠),模型动物的ERG暗反应b波和夜视功能显著提高[65-66]。相信随着分子遗传学技术和基因治疗技术的快速发展,CSNB的基因治疗即将到来。

此外由于大部分CSNB儿童合并有近视,其带来的相关眼底损害不容忽视,尽管已有研究表明低浓度阿托品对减缓CSNB患儿眼轴增长有效,但CSNB患儿近视发生与进展机制与健康学龄儿童存在差异,未来仍需进一步研究来明确近视干预是否使CSNB患者真正受益以及设计针对性的近视防控指标[18]

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。

1、Zeitz C, Robson AG, Audo I. Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms[ J]. Prog Retin Eye Res, 2015, 45: 58-110. DOI:10.1016/j.preteyeres.2014.09.001.Zeitz C, Robson AG, Audo I. Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms[ J]. Prog Retin Eye Res, 2015, 45: 58-110. DOI:10.1016/j.preteyeres.2014.09.001.
2、国际临床视觉电生理学会. 视觉电生理诊断流程指南[ J]. 中华眼科杂志,2020,56(7):492-508. DOI:10.3760/cma.j.cn112142- 20200217-00077.
International Society for Clinical Electrophysiology of Vision. Guidelines for the Diagnostic Procedure of Visual Electrophysiology [ J]. Chin J Ophthalmol, 2020, 56(7): 492-508. DOI: 10.3760/cma. j.cn112142-20200217-00077.
International Society for Clinical Electrophysiology of Vision. Guidelines for the Diagnostic Procedure of Visual Electrophysiology [ J]. Chin J Ophthalmol, 2020, 56(7): 492-508. DOI: 10.3760/cma. j.cn112142-20200217-00077.
3、Shalom S, Ben-Yosef T, Sher I, et al. Nationwide prevalence of inherited retinal diseases in the Israeli population[ J]. JAMA Ophthalmol, 2024, 142(7): 609-616. DOI:10.1001/jamaophthalmol.2024.1461.Shalom S, Ben-Yosef T, Sher I, et al. Nationwide prevalence of inherited retinal diseases in the Israeli population[ J]. JAMA Ophthalmol, 2024, 142(7): 609-616. DOI:10.1001/jamaophthalmol.2024.1461.
4、AlTalbishi A, Zelinger L, Zeitz C, et al. TRPM1 mutations are the most common cause of autosomal recessive congenital stationary night blindness (CSNB) in the Palestinian and Israeli populations[ J]. Sci Rep, 2019, 9(1): 12047. DOI:10.1038/s41598-019-46811-7.AlTalbishi A, Zelinger L, Zeitz C, et al. TRPM1 mutations are the most common cause of autosomal recessive congenital stationary night blindness (CSNB) in the Palestinian and Israeli populations[ J]. Sci Rep, 2019, 9(1): 12047. DOI:10.1038/s41598-019-46811-7.
5、Huang L, Bai X, Xie Y, et al. Clinical and genetic studies for a cohort of patients with congenital stationary night blindness[ J]. Orphanet J Rare Dis, 2024, 19(1): 101. DOI:10.1186/s13023-024-03091-3.Huang L, Bai X, Xie Y, et al. Clinical and genetic studies for a cohort of patients with congenital stationary night blindness[ J]. Orphanet J Rare Dis, 2024, 19(1): 101. DOI:10.1186/s13023-024-03091-3.
6、Almutairi F, Almeshari N, Ahmad K, et al. Congenital stationary night blindness: an update and review of the disease spectrum in Saudi Arabia[ J]. Acta Ophthalmol, 2021, 99(6): 581-591. DOI:10.1111/ aos.14693.Almutairi F, Almeshari N, Ahmad K, et al. Congenital stationary night blindness: an update and review of the disease spectrum in Saudi Arabia[ J]. Acta Ophthalmol, 2021, 99(6): 581-591. DOI:10.1111/ aos.14693.
7、Katta M, de Guimaraes TAC, Fujinami-Yokokawa Y, et al. Congenital stationary night blindness: structure, function and genotype-phenotype correlations in a cohort of 122 patients[ J]. Ophthalmol Retina, 2024, 8(9): 932-941. DOI:10.1016/j.oret.2024.03.017.Katta M, de Guimaraes TAC, Fujinami-Yokokawa Y, et al. Congenital stationary night blindness: structure, function and genotype-phenotype correlations in a cohort of 122 patients[ J]. Ophthalmol Retina, 2024, 8(9): 932-941. DOI:10.1016/j.oret.2024.03.017.
8、李蕙, 刘丽英, 徐海燕, 等. 先天性静止性夜盲患者的临床特征 [ J]. 中华医学杂志, 2012, 92(39): 2756-2759. DOI: 10.3760/cma. j.issn.0376-2491.2012.39.006.
Li H, Liu LY, Xu HY, et al. Clinical features of congenital stationary night blindness[ J]. Natl Med J China, 2012, 92(39): 2756-2759. DOI: 10.3760/cma.j.issn.0376-2491.2012.39.006.
Li H, Liu LY, Xu HY, et al. Clinical features of congenital stationary night blindness[ J]. Natl Med J China, 2012, 92(39): 2756-2759. DOI: 10.3760/cma.j.issn.0376-2491.2012.39.006.
9、Marmor MF, Zeitz C. Riggs-type dominant congenital stationary night blindness: ERG findings, a new GNAT1 mutation and a systemic association[ J]. Doc Ophthalmol, 2018, 137(1): 57-62. DOI:10.1007/ s10633-018-9651-0.Marmor MF, Zeitz C. Riggs-type dominant congenital stationary night blindness: ERG findings, a new GNAT1 mutation and a systemic association[ J]. Doc Ophthalmol, 2018, 137(1): 57-62. DOI:10.1007/ s10633-018-9651-0.
10、Miyake Y. Congenital Stationary Night Blindness With Negative Electroretinogram[ J].Archives of Ophthalmology, 1986, 104(7):1013. DOI:10.1001/archopht.1986.01050190071042.Miyake Y. Congenital Stationary Night Blindness With Negative Electroretinogram[ J].Archives of Ophthalmology, 1986, 104(7):1013. DOI:10.1001/archopht.1986.01050190071042.
11、Miyake Y. Establishment of the concept of new clinical entities: complete and incomplete form of congenital stationar y night blindness[ J]. Nippon Ganka Gakkai Zasshi, 2002, 106(12): 737-755;discussion756.Miyake Y. Establishment of the concept of new clinical entities: complete and incomplete form of congenital stationar y night blindness[ J]. Nippon Ganka Gakkai Zasshi, 2002, 106(12): 737-755;discussion756.
12、Riemslag FCC. Visually impaired children: “coming to better terms”[ J]. Doc Ophthalmol, 2009, 119(1): 1-7. DOI:10.1007/s10633-008-9161-6.Riemslag FCC. Visually impaired children: “coming to better terms”[ J]. Doc Ophthalmol, 2009, 119(1): 1-7. DOI:10.1007/s10633-008-9161-6.
13、Cohen DC, Sumaroka A, Paulos JA, et al. Anti-TRPM1 autoantibodypositive unilateral melanoma associated retinopathy (MAR) triggered by immunotherapy recapitulates functional and structural details of TRPM1-associated congenital stationary night blindness[ J]. Am J Ophthalmol Case Rep, 2024, 36: 102098. DOI:10.1016/ j.ajoc.2024.102098.Cohen DC, Sumaroka A, Paulos JA, et al. Anti-TRPM1 autoantibodypositive unilateral melanoma associated retinopathy (MAR) triggered by immunotherapy recapitulates functional and structural details of TRPM1-associated congenital stationary night blindness[ J]. Am J Ophthalmol Case Rep, 2024, 36: 102098. DOI:10.1016/ j.ajoc.2024.102098.
14、Ninomiya W, Mizobuchi K, Hayashi T, et al. Electroretinographic abnormalities associated with pregabalin: a case report[ J]. Doc Ophthalmol, 2020, 140(3): 279-287. DOI:10.1007/s10633-019- 09743-1.Ninomiya W, Mizobuchi K, Hayashi T, et al. Electroretinographic abnormalities associated with pregabalin: a case report[ J]. Doc Ophthalmol, 2020, 140(3): 279-287. DOI:10.1007/s10633-019- 09743-1.
15、Bijveld MMC, Florijn RJ, Bergen AAB, et al. Genotype and phenotype of 101 Dutch patients with congenital stationary night blindness[ J]. Ophthalmology, 2013, 120(10): 2072-2081. DOI:10.1016/ j.ophtha.2013.03.002.Bijveld MMC, Florijn RJ, Bergen AAB, et al. Genotype and phenotype of 101 Dutch patients with congenital stationary night blindness[ J]. Ophthalmology, 2013, 120(10): 2072-2081. DOI:10.1016/ j.ophtha.2013.03.002.
16、Pieh C, Simonsz-Toth B, Gottlob I. Nystagmus characteristics in congenital stationary night blindness (CSNB)[ J]. Br J Ophthalmol, 2008, 92(2): 236-240. DOI:10.1136/bjo.2007.126342.Pieh C, Simonsz-Toth B, Gottlob I. Nystagmus characteristics in congenital stationary night blindness (CSNB)[ J]. Br J Ophthalmol, 2008, 92(2): 236-240. DOI:10.1136/bjo.2007.126342.
17、Zeitz C, Roger JE, Audo I, et al. Shedding light on myopia by studying complete congenital stationary night blindness[ J]. Prog Retin Eye Res, 2023, 93: 101155. DOI:10.1016/j.preteyeres.2022.101155.Zeitz C, Roger JE, Audo I, et al. Shedding light on myopia by studying complete congenital stationary night blindness[ J]. Prog Retin Eye Res, 2023, 93: 101155. DOI:10.1016/j.preteyeres.2022.101155.
18、Poels MMF, de Wit GC, Bijveld MMC, et al. Natural course of refractive error in congenital stationary night blindness: implications for myopia treatment[ J]. Invest Ophthalmol Vis Sci, 2024, 65(14): 9. DOI:10.1167/iovs.65.14.9.Poels MMF, de Wit GC, Bijveld MMC, et al. Natural course of refractive error in congenital stationary night blindness: implications for myopia treatment[ J]. Invest Ophthalmol Vis Sci, 2024, 65(14): 9. DOI:10.1167/iovs.65.14.9.
19、Kozuka T, Chaya T, Tamalu F, et al. The TRPM1 channel is required for development of the rod ON bipolar cell-AII amacrine cell pathway in the retinal circuit[ J]. J Neurosci, 2017, 37(41): 9889-9900. DOI:10.1523/JNEUROSCI.0824-17.2017.Kozuka T, Chaya T, Tamalu F, et al. The TRPM1 channel is required for development of the rod ON bipolar cell-AII amacrine cell pathway in the retinal circuit[ J]. J Neurosci, 2017, 37(41): 9889-9900. DOI:10.1523/JNEUROSCI.0824-17.2017.
20、Zhou X, Pardue MT, Michael Iuvone P, et al. Dopamine signaling and myopia development: what are the key challenges[ J]. Prog Retin Eye Res, 2017, 61: 60-71. DOI:10.1016/j.preteyeres.2017.06.003.Zhou X, Pardue MT, Michael Iuvone P, et al. Dopamine signaling and myopia development: what are the key challenges[ J]. Prog Retin Eye Res, 2017, 61: 60-71. DOI:10.1016/j.preteyeres.2017.06.003.
21、Parodi MB, Arrigo A, Rajabian F, et al. Multimodal imaging in Schubert-Bornschein congenital stationary night blindness[ J]. Ophthalmic Genet, 2023, 44(4): 408-413. DOI:10.1080/13816810.20 22.2135108.Parodi MB, Arrigo A, Rajabian F, et al. Multimodal imaging in Schubert-Bornschein congenital stationary night blindness[ J]. Ophthalmic Genet, 2023, 44(4): 408-413. DOI:10.1080/13816810.20 22.2135108.
22、Yu M, Hao W, Wang M, et al. Characterizing retinal sensitivity and structure in congenital stationary night blindness: a combined microperimetry and OCT study[ J]. Invest Ophthalmol Vis Sci, 2024, 65(6): 35. DOI:10.1167/iovs.65.6.35.Yu M, Hao W, Wang M, et al. Characterizing retinal sensitivity and structure in congenital stationary night blindness: a combined microperimetry and OCT study[ J]. Invest Ophthalmol Vis Sci, 2024, 65(6): 35. DOI:10.1167/iovs.65.6.35.
23、Miyake Y, Yagasaki K, Horiguchi M, et al. Congenital stationary night blindness with negative electroretinogram. A new classification[ J]. Arch Ophthalmol, 1986, 104(7): 1013-1020. DOI:10.1001/archopht.1986.01050190071042.Miyake Y, Yagasaki K, Horiguchi M, et al. Congenital stationary night blindness with negative electroretinogram. A new classification[ J]. Arch Ophthalmol, 1986, 104(7): 1013-1020. DOI:10.1001/archopht.1986.01050190071042.
24、Dumitrescu AV, Pfeifer WL, Arhens M, et al. CACNA1F-related synaptic dysfunction: challenges diagnosing congenital stationary night blindness presenting without night blindness[ J]. Can J Ophthalmol, 2024, 59(6): e808-e818. DOI:10.1016/j.jcjo.2023.11.022.Dumitrescu AV, Pfeifer WL, Arhens M, et al. CACNA1F-related synaptic dysfunction: challenges diagnosing congenital stationary night blindness presenting without night blindness[ J]. Can J Ophthalmol, 2024, 59(6): e808-e818. DOI:10.1016/j.jcjo.2023.11.022.
25、Bijveld MMC, van Genderen MM, Hoeben FP, et al. Assessment of night vision problems in patients with congenital stationary night blindness[ J]. PLoS One, 2013, 8(5): e62927. DOI:10.1371/journal. pone.0062927.Bijveld MMC, van Genderen MM, Hoeben FP, et al. Assessment of night vision problems in patients with congenital stationary night blindness[ J]. PLoS One, 2013, 8(5): e62927. DOI:10.1371/journal. pone.0062927.
26、Khan AO. CABP4 mutations do not cause congenital stationary night blindness[ J]. Ophthalmology, 2014, 121(3): e15. DOI:10.1016/ j.ophtha.2013.11.005.Khan AO. CABP4 mutations do not cause congenital stationary night blindness[ J]. Ophthalmology, 2014, 121(3): e15. DOI:10.1016/ j.ophtha.2013.11.005.
27、Chen RWS, Greenberg JP, Lazow MA, et al. Autofluorescence imaging and spectral-domain optical coherence tomography in incomplete congenital stationary night blindness and comparison with retinitis pigmentosa[ J]. Am J Ophthalmol, 2012, 153(1): 143-154.e2. DOI:10.1016/j.ajo.2011.06.018.Chen RWS, Greenberg JP, Lazow MA, et al. Autofluorescence imaging and spectral-domain optical coherence tomography in incomplete congenital stationary night blindness and comparison with retinitis pigmentosa[ J]. Am J Ophthalmol, 2012, 153(1): 143-154.e2. DOI:10.1016/j.ajo.2011.06.018.
28、Vincent A, Héon E. Outer retinal structural anomaly due to frameshift mutation in CACNA1F gene[ J]. Eye, 2012, 26(9): 1278-1280. DOI:10.1038/eye.2012.125.Vincent A, Héon E. Outer retinal structural anomaly due to frameshift mutation in CACNA1F gene[ J]. Eye, 2012, 26(9): 1278-1280. DOI:10.1038/eye.2012.125.
29、Hove%20MN%2C%20Kilic-Biyik%20KZ%2C%20Trotter%20A%2C%20et%20al.%20Clinical%20characteristics%2C%20%0Amutation%20spectrum%2C%20and%20prevalence%20of%20%C3%A5land%20eye%20disease%2Fincomplete%20%0Acongenital%20stationar%20y%20night%20blindness%20in%20Denmark%5B%20J%5D.%20Invest%20%0AOphthalmol%20Vis%20Sci%2C%202016%2C%2057(15)%3A%206861-6869.%20DOI%3A10.1167%2Fiovs.16-%0A19445.Hove%20MN%2C%20Kilic-Biyik%20KZ%2C%20Trotter%20A%2C%20et%20al.%20Clinical%20characteristics%2C%20%0Amutation%20spectrum%2C%20and%20prevalence%20of%20%C3%A5land%20eye%20disease%2Fincomplete%20%0Acongenital%20stationar%20y%20night%20blindness%20in%20Denmark%5B%20J%5D.%20Invest%20%0AOphthalmol%20Vis%20Sci%2C%202016%2C%2057(15)%3A%206861-6869.%20DOI%3A10.1167%2Fiovs.16-%0A19445.
30、Lim HY, Joo K. Clinical and genetic characteristics of patients with peripheral retinal flecks in koreans[ J]. Korean J Ophthalmol, 2024, 38(6): 461-470. DOI:10.3341/kjo.2024.0089.Lim HY, Joo K. Clinical and genetic characteristics of patients with peripheral retinal flecks in koreans[ J]. Korean J Ophthalmol, 2024, 38(6): 461-470. DOI:10.3341/kjo.2024.0089.
31、Sparrow JR, Parmann R, Tsang SH, et al. Shared features in retinal disorders with involvement of retinal pigment epithelium[ J]. Invest Ophthalmol Vis Sci, 2021, 62(7): 15. DOI:10.1167/iovs.62.7.15.Sparrow JR, Parmann R, Tsang SH, et al. Shared features in retinal disorders with involvement of retinal pigment epithelium[ J]. Invest Ophthalmol Vis Sci, 2021, 62(7): 15. DOI:10.1167/iovs.62.7.15.
32、Newman H, Perlman I, Pras E, et al. THE TARGET SIGN: a near infrared feature and multimodal imaging in a pluri-ethnic cohort with RDH5-related fundus albipunctatus[ J]. Retina, 2022, 42(7): 1364- 1369. DOI:10.1097/IAE.0000000000003466.Newman H, Perlman I, Pras E, et al. THE TARGET SIGN: a near infrared feature and multimodal imaging in a pluri-ethnic cohort with RDH5-related fundus albipunctatus[ J]. Retina, 2022, 42(7): 1364- 1369. DOI:10.1097/IAE.0000000000003466.
33、Sergouniotis PI, Sohn EH, Li Z, et al. Phenotypic variability in RDH5 retinopathy (fundus albipunctatus)[ J]. Ophthalmology, 2011, 118(8): 1661-1670. DOI:10.1016/j.ophtha.2010.12.031.Sergouniotis PI, Sohn EH, Li Z, et al. Phenotypic variability in RDH5 retinopathy (fundus albipunctatus)[ J]. Ophthalmology, 2011, 118(8): 1661-1670. DOI:10.1016/j.ophtha.2010.12.031.
34、Haraguchi Y, Chiang TK, Yu M. Application of electrophysiology in non-macular inherited retinal dystrophies[ J]. J Clin Med, 2023, 12(21): 6953. DOI:10.3390/jcm12216953.Haraguchi Y, Chiang TK, Yu M. Application of electrophysiology in non-macular inherited retinal dystrophies[ J]. J Clin Med, 2023, 12(21): 6953. DOI:10.3390/jcm12216953.
35、Sobol EK, Deobhakta A, Wilkins CS, et al. Fundus albipunctatus photoreceptor microstructure revealed using adaptive optics scanning light ophthalmoscopy[ J]. Am J Ophthalmol Case Rep, 2021, 22: 101090. DOI:10.1016/j.ajoc.2021.101090.Sobol EK, Deobhakta A, Wilkins CS, et al. Fundus albipunctatus photoreceptor microstructure revealed using adaptive optics scanning light ophthalmoscopy[ J]. Am J Ophthalmol Case Rep, 2021, 22: 101090. DOI:10.1016/j.ajoc.2021.101090.
36、Nishiguchi KM, Oguchi Y, Nakazawa T. Progression from classical oguchi disease to retinitis pigmentosa after 50 years[ J]. Ophthalmology, 2020, 127(1): 51. DOI:10.1016/j.ophtha.2019.09.015.Nishiguchi KM, Oguchi Y, Nakazawa T. Progression from classical oguchi disease to retinitis pigmentosa after 50 years[ J]. Ophthalmology, 2020, 127(1): 51. DOI:10.1016/j.ophtha.2019.09.015.
37、Sergouniotis PI, Davidson AE, Sehmi K, et al. Mizuo-Nakamura phenomenon in Oguchi disease due to a homozygous nonsense mutation in the SAG gene[ J]. Eye, 2011, 25(8): 1098-1101. DOI:10.1038/eye.2011.88.Sergouniotis PI, Davidson AE, Sehmi K, et al. Mizuo-Nakamura phenomenon in Oguchi disease due to a homozygous nonsense mutation in the SAG gene[ J]. Eye, 2011, 25(8): 1098-1101. DOI:10.1038/eye.2011.88.
38、Miyake Y, Horiguchi M, Suzuki S, et al. Electrophysiological findings in patients with oguchi's disease[ J]. Jpn J Ophthalmol, 1996, 40(4): 511- 519.Miyake Y, Horiguchi M, Suzuki S, et al. Electrophysiological findings in patients with oguchi's disease[ J]. Jpn J Ophthalmol, 1996, 40(4): 511- 519.
39、Yamanaka M. Histologic study of Oguchi's disease. Its relationship to pigmentary degeneration of the retina[ J]. Am J Ophthalmol, 1969, 68(1): 19-26. DOI:10.1016/0002-9394(69)94930-7.Yamanaka M. Histologic study of Oguchi's disease. Its relationship to pigmentary degeneration of the retina[ J]. Am J Ophthalmol, 1969, 68(1): 19-26. DOI:10.1016/0002-9394(69)94930-7.
40、Liu X, Gao L, Wang G, et al. Oguchi disease caused by a homozygous novel SAG splicing alteration associated with the multiple evanescent white dot sy ndrome: A 15-month follow-up[ J].Documenta Ophthalmologica, 2020, 141(3).DOI:10.1007/s10633-020-09766-z.Liu X, Gao L, Wang G, et al. Oguchi disease caused by a homozygous novel SAG splicing alteration associated with the multiple evanescent white dot sy ndrome: A 15-month follow-up[ J].Documenta Ophthalmologica, 2020, 141(3).DOI:10.1007/s10633-020-09766-z.
41、Pilotto E, Trevisson E, Nacci EB, et al. Two novel compound heterozygous SAG mutations in an Italian patient with Oguchi disease: a genetic and multimodal retinal imaging study[ J]. Eur J Ophthalmol, 2022, 32(6): NP1-NP5. DOI:10.1177/11206721211027422.Pilotto E, Trevisson E, Nacci EB, et al. Two novel compound heterozygous SAG mutations in an Italian patient with Oguchi disease: a genetic and multimodal retinal imaging study[ J]. Eur J Ophthalmol, 2022, 32(6): NP1-NP5. DOI:10.1177/11206721211027422.
42、Kato Y, Tsunoda K, Fujinami K, et al. Association of retinal artery and other inner retinal structures with distribution of tapetal-like reflex in oguchi's disease[ J]. Invest Ophthalmol Vis Sci, 2015, 56(4): 2162- 2172. DOI:10.1167/iovs.14-16198.Kato Y, Tsunoda K, Fujinami K, et al. Association of retinal artery and other inner retinal structures with distribution of tapetal-like reflex in oguchi's disease[ J]. Invest Ophthalmol Vis Sci, 2015, 56(4): 2162- 2172. DOI:10.1167/iovs.14-16198.
43、Godara P, Cooper RF, Sergouniotis PI, et al. Assessing retinal structure in complete congenital stationary night blindness and Oguchi disease[ J]. Am J Ophthalmol, 2012, 154(6): 987-1001.e1. DOI:10.1016/j.ajo.2012.06.003.Godara P, Cooper RF, Sergouniotis PI, et al. Assessing retinal structure in complete congenital stationary night blindness and Oguchi disease[ J]. Am J Ophthalmol, 2012, 154(6): 987-1001.e1. DOI:10.1016/j.ajo.2012.06.003.
44、Akhtar HN, Nicholson L, Ockrim Z, et al. Loss of sheen in Oguchi disease following short wavelength exposure[ J]. Eye, 2024, 38(16): 3197-3199. DOI:10.1038/s41433-024-03237-4.Akhtar HN, Nicholson L, Ockrim Z, et al. Loss of sheen in Oguchi disease following short wavelength exposure[ J]. Eye, 2024, 38(16): 3197-3199. DOI:10.1038/s41433-024-03237-4.
45、Robson AG, Mengher LS, Tan MH, et al. An unusual fundus phenotype of inner retinal sheen in X-linked retinoschisis[ J]. Eye, 2009, 23(9): 1876-1878. DOI:10.1038/eye.2008.358.Robson AG, Mengher LS, Tan MH, et al. An unusual fundus phenotype of inner retinal sheen in X-linked retinoschisis[ J]. Eye, 2009, 23(9): 1876-1878. DOI:10.1038/eye.2008.358.
46、de Jong PT, Zrenner E, van Meel GJ, et al. Mizuo phenomenon in X-linked retinoschisis. pathogenesis of the mizuo phenomenon[ J]. Arch Ophthalmol, 1991, 109(8): 1104-1108. DOI:10.1001/ archopht.1991.01080080064029.de Jong PT, Zrenner E, van Meel GJ, et al. Mizuo phenomenon in X-linked retinoschisis. pathogenesis of the mizuo phenomenon[ J]. Arch Ophthalmol, 1991, 109(8): 1104-1108. DOI:10.1001/ archopht.1991.01080080064029.
47、Weleber RG. Infantile and childhood retinal blindness: a molecular perspective (the franceschetti lecture)[ J]. Ophthalmic Genet, 2002, 23(2): 71-97. DOI:10.1076/opge.23.2.71.2214.Weleber RG. Infantile and childhood retinal blindness: a molecular perspective (the franceschetti lecture)[ J]. Ophthalmic Genet, 2002, 23(2): 71-97. DOI:10.1076/opge.23.2.71.2214.
48、Smirnov VM, Robert MP, Condroyer C, et al. Association of missense variants in VSX2 with a peculiar form of congenital stationary night blindness affecting all bipolar cells[ J]. JAMA Ophthalmol, 2022, 140(12): 1163-1173. DOI:10.1001/jamaophthalmol.2022.4146.Smirnov VM, Robert MP, Condroyer C, et al. Association of missense variants in VSX2 with a peculiar form of congenital stationary night blindness affecting all bipolar cells[ J]. JAMA Ophthalmol, 2022, 140(12): 1163-1173. DOI:10.1001/jamaophthalmol.2022.4146.
49、Mechaussier S, Almoallem B, Zeitz C, et al. Loss of function of RIMS2 causes a syndromic congenital cone-rod synaptic disease with neurodevelopmental and pancreatic involvement[ J]. Am J Hum Genet, 2020, 106(6): 859-871. DOI:10.1016/j.ajhg.2020.04.018.Mechaussier S, Almoallem B, Zeitz C, et al. Loss of function of RIMS2 causes a syndromic congenital cone-rod synaptic disease with neurodevelopmental and pancreatic involvement[ J]. Am J Hum Genet, 2020, 106(6): 859-871. DOI:10.1016/j.ajhg.2020.04.018.
50、Vincent A, Audo I, Tavares E, et al. Biallelic mutations in GNB3 cause a unique form of autosomal-recessive congenital stationary night blindness[ J]. Am J Hum Genet, 2016, 98(5): 1011-1019. DOI:10.1016/j.ajhg.2016.03.021.Vincent A, Audo I, Tavares E, et al. Biallelic mutations in GNB3 cause a unique form of autosomal-recessive congenital stationary night blindness[ J]. Am J Hum Genet, 2016, 98(5): 1011-1019. DOI:10.1016/j.ajhg.2016.03.021.
51、Peshenko IV, Olshevskaya EV, Dizhoor AM. GUCY2D mutations in retinal guanylyl cyclase 1 provide biochemical reasons for dominant cone-rod dystrophy but not for stationary night blindness[ J]. J Biol Chem, 2020, 295(52): 18301-18315. DOI:10.1074/jbc. RA120.015553.Peshenko IV, Olshevskaya EV, Dizhoor AM. GUCY2D mutations in retinal guanylyl cyclase 1 provide biochemical reasons for dominant cone-rod dystrophy but not for stationary night blindness[ J]. J Biol Chem, 2020, 295(52): 18301-18315. DOI:10.1074/jbc. RA120.015553.
52、Hayashi T, Hosono K, Kurata K, et al. Coexistence of GNAT1 and ABCA4 variants associated with Nougaret-type congenital stationary night blindness and childhood-onset cone-rod dystrophy[ J]. Doc Ophthalmol, 2020, 140(2): 147-157. DOI:10.1007/s10633-019- 09727-1.Hayashi T, Hosono K, Kurata K, et al. Coexistence of GNAT1 and ABCA4 variants associated with Nougaret-type congenital stationary night blindness and childhood-onset cone-rod dystrophy[ J]. Doc Ophthalmol, 2020, 140(2): 147-157. DOI:10.1007/s10633-019- 09727-1.
53、Schatz P, Preising M, Lorenz B, et al. Fundus albipunctatus associated with compound heterozygous mutations in RPE65[ J]. Ophthalmology, 2011, 118(5): 888-894. DOI:10.1016/j.ophtha.2010.09.005.Schatz P, Preising M, Lorenz B, et al. Fundus albipunctatus associated with compound heterozygous mutations in RPE65[ J]. Ophthalmology, 2011, 118(5): 888-894. DOI:10.1016/j.ophtha.2010.09.005.
54、Yamamoto H, Simon A, Eriksson U, et al. Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus[ J]. Nat Genet, 1999, 22(2): 188-191. DOI:10.1038/9707.Yamamoto H, Simon A, Eriksson U, et al. Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus[ J]. Nat Genet, 1999, 22(2): 188-191. DOI:10.1038/9707.
55、Yang G, Liu Z, Xie S, et al. Genetic and phenotypic characteristics of four Chinese families with fundus albipunctatus[ J]. Sci Rep, 2017, 7: 46285. DOI:10.1038/srep46285.Yang G, Liu Z, Xie S, et al. Genetic and phenotypic characteristics of four Chinese families with fundus albipunctatus[ J]. Sci Rep, 2017, 7: 46285. DOI:10.1038/srep46285.
56、Ramtohul P, Denis D. RPE65-mutation associated fundus albipunctatus with cone dystrophy[ J]. Ophthalmol Retina, 2019, 3(6): 535. DOI:10.1016/j.oret.2019.02.008.Ramtohul P, Denis D. RPE65-mutation associated fundus albipunctatus with cone dystrophy[ J]. Ophthalmol Retina, 2019, 3(6): 535. DOI:10.1016/j.oret.2019.02.008.
57、Hipp%20S%2C%20Zobor%20G%2C%20Gl%C3%B6ckle%20N%2C%20et%20al.%20Phenotype%20variations%20of%20retinal%20%0Adystrophies%20caused%20by%20mutations%20in%20the%20RLBP1%20gene%5B%20J%5D.%20Acta%20%0AOphthalmol%2C%202015%2C%2093(4)%3A%20e281-6.%20DOI%3A10.1111%2Faos.12573.Hipp%20S%2C%20Zobor%20G%2C%20Gl%C3%B6ckle%20N%2C%20et%20al.%20Phenotype%20variations%20of%20retinal%20%0Adystrophies%20caused%20by%20mutations%20in%20the%20RLBP1%20gene%5B%20J%5D.%20Acta%20%0AOphthalmol%2C%202015%2C%2093(4)%3A%20e281-6.%20DOI%3A10.1111%2Faos.12573.
58、Li S, Xiao X, Yi Z, et al. RPE65 mutation frequency and phenotypic variation according to exome sequencing in a tertiary centre for genetic eye diseases in China[ J]. Acta Ophthalmol, 2020, 98(2): e181-e190. DOI:10.1111/aos.14181.Li S, Xiao X, Yi Z, et al. RPE65 mutation frequency and phenotypic variation according to exome sequencing in a tertiary centre for genetic eye diseases in China[ J]. Acta Ophthalmol, 2020, 98(2): e181-e190. DOI:10.1111/aos.14181.
59、Hull S, Holder GE, Robson AG, et al. Preserved visual function in retinal dystrophy due to hypomorphic RPE65 mutations[ J]. Br J Ophthalmol, 2016, 100(11): 1499-1505. DOI:10.1136/ bjophthalmol-2015-308019.Hull S, Holder GE, Robson AG, et al. Preserved visual function in retinal dystrophy due to hypomorphic RPE65 mutations[ J]. Br J Ophthalmol, 2016, 100(11): 1499-1505. DOI:10.1136/ bjophthalmol-2015-308019.
60、Reiff C, Owczarek-Lipska M, Spital G, et al. The mutation p.E113K in the Schiff base counterion of rhodopsin is associated with two distinct retinal phenotypes within the same family[ J]. Sci Rep, 2016, 6: 36208. DOI:10.1038/srep36208.Reiff C, Owczarek-Lipska M, Spital G, et al. The mutation p.E113K in the Schiff base counterion of rhodopsin is associated with two distinct retinal phenotypes within the same family[ J]. Sci Rep, 2016, 6: 36208. DOI:10.1038/srep36208.
61、Tan GMY, Yu D, Wang J, et al. Alternative splicing at C terminus of Ca(V)1.4 calcium channel modulates calcium-dependent inactivation, activation potential, and current density[ J]. J Biol Chem, 2012, 287(2): 832-847. DOI:10.1074/jbc.M111.268722.Tan GMY, Yu D, Wang J, et al. Alternative splicing at C terminus of Ca(V)1.4 calcium channel modulates calcium-dependent inactivation, activation potential, and current density[ J]. J Biol Chem, 2012, 287(2): 832-847. DOI:10.1074/jbc.M111.268722.
62、Mechaussier S, Almoallem B, Zeitz C, et al. Loss of function of RIMS2 causes a syndromic congenital cone-rod synaptic disease with neurodevelopmental and pancreatic involvement[ J]. Am J Hum Genet, 2020, 107(3): 580. DOI:10.1016/j.ajhg.2020.08.004.Mechaussier S, Almoallem B, Zeitz C, et al. Loss of function of RIMS2 causes a syndromic congenital cone-rod synaptic disease with neurodevelopmental and pancreatic involvement[ J]. Am J Hum Genet, 2020, 107(3): 580. DOI:10.1016/j.ajhg.2020.08.004.
63、Zeitz C, Jacobson SG, Hamel CP, et al. Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenital stationary night blindness[ J]. Am J Hum Genet, 2013, 92(1): 67-75. DOI:10.1016/j.ajhg.2012.10.023.Zeitz C, Jacobson SG, Hamel CP, et al. Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenital stationary night blindness[ J]. Am J Hum Genet, 2013, 92(1): 67-75. DOI:10.1016/j.ajhg.2012.10.023.
64、Arno G, Holder GE, Chakarova C, et al. Recessive retinopathy consequent on mutant G-protein β subunit 3 (GNB3)[ J]. JAMA Ophthalmol, 2016, 134(8): 924-927. DOI:10.1001/ jamaophthalmol.2016.1543.Arno G, Holder GE, Chakarova C, et al. Recessive retinopathy consequent on mutant G-protein β subunit 3 (GNB3)[ J]. JAMA Ophthalmol, 2016, 134(8): 924-927. DOI:10.1001/ jamaophthalmol.2016.1543.
65、Miyadera K, Santana E, Roszak K, et al. Targeting ON-bipolar cells by AAV gene therapy stably reverses LRIT3-congenital stationary night blindness[ J]. Proc Natl Acad Sci USA, 2022, 119(13): e2117038119. DOI:10.1073/pnas.2117038119.Miyadera K, Santana E, Roszak K, et al. Targeting ON-bipolar cells by AAV gene therapy stably reverses LRIT3-congenital stationary night blindness[ J]. Proc Natl Acad Sci USA, 2022, 119(13): e2117038119. DOI:10.1073/pnas.2117038119.
66、Varin J, Bouzidi N, Dias MMS, et al. Restoration of mGluR6 localization following AAV-mediated delivery in a mouse model of congenital stationary night blindness[ J]. Invest Ophthalmol Vis Sci, 2021, 62(3): 24. DOI:10.1167/iovs.62.3.24.Varin J, Bouzidi N, Dias MMS, et al. Restoration of mGluR6 localization following AAV-mediated delivery in a mouse model of congenital stationary night blindness[ J]. Invest Ophthalmol Vis Sci, 2021, 62(3): 24. DOI:10.1167/iovs.62.3.24.
1、国家重点基础研究发展计划项目(2024YFA1108700);福建省自然科学基金面上 项目(2022J01110650);厦门市医工结合科技计划项(3502Z20224030)。
This work was supported by National Key Research and Development Program of China (2024YFA1108700); Nature Science Foundation of Fujian Province of China (2022J01110650);Scientific and technological projects with combination of medicine and engineering in Xiamen of China (3502Z20224030).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录