1、Warrow DJ, Hoang QV, Bailey Freund K. Pachychoroid pigment
epitheliopathy[ J]. Retina, 2013, 33(8): 1659-1672. DOI:10.1097/
IAE.0b013e3182953df4.Warrow DJ, Hoang QV, Bailey Freund K. Pachychoroid pigment
epitheliopathy[ J]. Retina, 2013, 33(8): 1659-1672. DOI:10.1097/
IAE.0b013e3182953df4.
2、Pang CE, Freund KB. Pachychoroid neovasculopathy[ J]. Retina, 2015,
35(1): 1-9. DOI:10.1097/iae.0000000000000331.Pang CE, Freund KB. Pachychoroid neovasculopathy[ J]. Retina, 2015,
35(1): 1-9. DOI:10.1097/iae.0000000000000331.
3、Lee WK, Baek J, Dansingani KK, et al. Choroidal morphology in eyes
with polypoidal choroidal vasculopathy and normal or subnormal
subfoveal choroidal thickness[ J]. Retina, 2016, 36(Suppl 1): S73-S82.
DOI:10.1097/IAE.0000000000001346.Lee WK, Baek J, Dansingani KK, et al. Choroidal morphology in eyes
with polypoidal choroidal vasculopathy and normal or subnormal
subfoveal choroidal thickness[ J]. Retina, 2016, 36(Suppl 1): S73-S82.
DOI:10.1097/IAE.0000000000001346.
4、Phasukkijwatana N, Freund KB, Dolz-Marco R, et al. Peripapillary
pachychoroid syndrome[ J]. Retina, 2018, 38(9): 1652-1667.
DOI:10.1097/IAE.0000000000001907.Phasukkijwatana N, Freund KB, Dolz-Marco R, et al. Peripapillary
pachychoroid syndrome[ J]. Retina, 2018, 38(9): 1652-1667.
DOI:10.1097/IAE.0000000000001907.
5、Cheung CMG, Lee WK, Koizumi H, et al. Pachychoroid disease[ J].
Eye (Lond), 2019, 33(1): 14-33. DOI:10.1038/s41433-018-0158-4.Cheung CMG, Lee WK, Koizumi H, et al. Pachychoroid disease[ J].
Eye (Lond), 2019, 33(1): 14-33. DOI:10.1038/s41433-018-0158-4.
6、Siedlecki J, Schworm B, Priglinger SG. The pachychoroid disease
spectrum-and the need for a uniform classification system[ J].
Ophthalmol Retina, 2019, 3(12): 1013-1015. DOI:10.1016/
j.oret.2019.08.002.Siedlecki J, Schworm B, Priglinger SG. The pachychoroid disease
spectrum-and the need for a uniform classification system[ J].
Ophthalmol Retina, 2019, 3(12): 1013-1015. DOI:10.1016/
j.oret.2019.08.002.
7、中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师
分会眼底病专业委员会. 我国超广角眼底成像术的操作和阅
片规范(2018年)[ J]. 中华眼科杂志, 2018, 54(8): 565-569. DOI:
10.3760/cma.j.issn.0412-4081.2018.08.002.
Retina Group of Chinese Society of Ophthalmology, Retina Committee
of Chinese Ophthalmologist Association. Standardized guidelines for
the operation and interpretation of ultra-widefield retinal imaging in
China (2018). Chin J Ophthalmol, 54(8), 565-569. DOI: 10.3760/
cma.j.issn.0412-4081.2018.08.002.Retina Group of Chinese Society of Ophthalmology, Retina Committee
of Chinese Ophthalmologist Association. Standardized guidelines for
the operation and interpretation of ultra-widefield retinal imaging in
China (2018). Chin J Ophthalmol, 54(8), 565-569. DOI: 10.3760/
cma.j.issn.0412-4081.2018.08.002.
8、Choudhry N, Duker JS, Bailey Freund K, et al. Classification and
guidelines for widefield imaging: recommendations from the
international widefield imaging study group[ J]. Ophthalmol Retina,
2019, 3(10): 843-849. DOI:10.1016/j.oret.2019.05.007.Choudhry N, Duker JS, Bailey Freund K, et al. Classification and
guidelines for widefield imaging: recommendations from the
international widefield imaging study group[ J]. Ophthalmol Retina,
2019, 3(10): 843-849. DOI:10.1016/j.oret.2019.05.007.
9、Kim YH, Oh J. Choroidal thickness profile in chorioretinal diseases:
beyond the macula[ J]. Front Med, 2021, 8: 797428. DOI:10.3389/
fmed.2021.797428.Kim YH, Oh J. Choroidal thickness profile in chorioretinal diseases:
beyond the macula[ J]. Front Med, 2021, 8: 797428. DOI:10.3389/
fmed.2021.797428.
10、Zeng Q, Luo L, Yao Y, et al. Three-dimensional choroidal vascularity
index in central serous chorioretinopathy using ultra-widefield sweptsource optical coherence tomography angiography[ J]. Front Med,
2022, 9: 967369. DOI:10.3389/fmed.2022.967369.Zeng Q, Luo L, Yao Y, et al. Three-dimensional choroidal vascularity
index in central serous chorioretinopathy using ultra-widefield sweptsource optical coherence tomography angiography[ J]. Front Med,
2022, 9: 967369. DOI:10.3389/fmed.2022.967369.
11、Ishikura M, Muraoka Y, Nishigori N, et al. Widefield choroidal
thickness of eyes with central serous chorioretinopathy examined by
swept-source OCT[ J]. Ophthalmol Retina, 2022, 6(10): 949-956.
DOI:10.1016/j.oret.2022.04.011.Ishikura M, Muraoka Y, Nishigori N, et al. Widefield choroidal
thickness of eyes with central serous chorioretinopathy examined by
swept-source OCT[ J]. Ophthalmol Retina, 2022, 6(10): 949-956.
DOI:10.1016/j.oret.2022.04.011.
12、Kaye R, Chandra S, Sheth J, et al. Central serous chorioretinopathy:
a n u p d ate o n r i s k f a c to r s , p at h o p hy s i o l o g y a n d i m ag i n g
modalities[ J]. Prog Retin Eye Res, 2020, 79: 100865. DOI:10.1016/
j.preteyeres.2020.100865.Kaye R, Chandra S, Sheth J, et al. Central serous chorioretinopathy:
a n u p d ate o n r i s k f a c to r s , p at h o p hy s i o l o g y a n d i m ag i n g
modalities[ J]. Prog Retin Eye Res, 2020, 79: 100865. DOI:10.1016/
j.preteyeres.2020.100865.
13、Zhang X, Lim CZF, Chhablani J, et al. Central serous chorioretinopathy:
updates in the pathogenesis, diagnosis and therapeutic strategies[ J].
Eye Vis, 2023, 10(1): 33. DOI:10.1186/s40662-023-00349-y.Zhang X, Lim CZF, Chhablani J, et al. Central serous chorioretinopathy:
updates in the pathogenesis, diagnosis and therapeutic strategies[ J].
Eye Vis, 2023, 10(1): 33. DOI:10.1186/s40662-023-00349-y.
14、Rajesh B, Kaur A, Giridhar A, et al. “Vacuole” sign adjacent to
retinal pigment epithelial defects on spectral domain optical coherence
tomography in central serous chorioretinopathy associated with
subretinal fibrin[ J]. Retina, 2017, 37(2): 316-324. DOI:10.1097/
IAE.0000000000001192.Rajesh B, Kaur A, Giridhar A, et al. “Vacuole” sign adjacent to
retinal pigment epithelial defects on spectral domain optical coherence
tomography in central serous chorioretinopathy associated with
subretinal fibrin[ J]. Retina, 2017, 37(2): 316-324. DOI:10.1097/
IAE.0000000000001192.
15、Hara C, Wakabayashi T, Nishida K. Macular star associated with
fibrinous central serous chorioretinopathy[ J]. Ophthalmology, 2023,
130(1): 76. DOI:10.1016/j.ophtha.2022.05.003.Hara C, Wakabayashi T, Nishida K. Macular star associated with
fibrinous central serous chorioretinopathy[ J]. Ophthalmology, 2023,
130(1): 76. DOI:10.1016/j.ophtha.2022.05.003.
16、Mudvar i SS, Gof f M J, Fu AD, et al. The natural histor y of
pigment epithelial detachment associated with central serous
chorioretinopathy[ J]. Retina, 2007, 27(9): 1168-1173. DOI:10.1097/
IAE.0b013e318156db8a.Mudvar i SS, Gof f M J, Fu AD, et al. The natural histor y of
pigment epithelial detachment associated with central serous
chorioretinopathy[ J]. Retina, 2007, 27(9): 1168-1173. DOI:10.1097/
IAE.0b013e318156db8a.
17、Yang L, Jonas JB, Wei W. Optical coherence tomography-assisted
enhanced depth imaging of central serous chorioretinopathy[ J]. Invest
Ophthalmol Vis Sci, 2013, 54(7): 4659-4665. DOI:10.1167/iovs.12-
10991.Yang L, Jonas JB, Wei W. Optical coherence tomography-assisted
enhanced depth imaging of central serous chorioretinopathy[ J]. Invest
Ophthalmol Vis Sci, 2013, 54(7): 4659-4665. DOI:10.1167/iovs.12-
10991.
18、Bousquet E, Bonnin S, Mrejen S, et al. Optical coherence tomography
angiography of flat irregular pigment epithelium detachment in chronic
central serous chorioretinopathy[ J]. Retina, 2018, 38(3): 629-638.
DOI:10.1097/IAE.0000000000001580.Bousquet E, Bonnin S, Mrejen S, et al. Optical coherence tomography
angiography of flat irregular pigment epithelium detachment in chronic
central serous chorioretinopathy[ J]. Retina, 2018, 38(3): 629-638.
DOI:10.1097/IAE.0000000000001580.
19、Su Y, Zhang X, Gan Y, et al. Characteristics and associated factors of flat irregular pigment epithelial detachment with choroidal
neovascularization in chronic central serous chorioretinopathy[ J].
Front Med, 2021, 8: 687023. DOI:10.3389/fmed.2021.687023.Su Y, Zhang X, Gan Y, et al. Characteristics and associated factors of flat irregular pigment epithelial detachment with choroidal
neovascularization in chronic central serous chorioretinopathy[ J].
Front Med, 2021, 8: 687023. DOI:10.3389/fmed.2021.687023.
20、Dansingani KK, Balaratnasingam C, Naysan J, et al. En face imaging of
pachychoroid spectrum disorders with swept-source optical coherence
tomography[ J]. Retina, 2016, 36(3): 499-516. DOI:10.1097/
IAE.0000000000000742.Dansingani KK, Balaratnasingam C, Naysan J, et al. En face imaging of
pachychoroid spectrum disorders with swept-source optical coherence
tomography[ J]. Retina, 2016, 36(3): 499-516. DOI:10.1097/
IAE.0000000000000742.
21、Kishi S, Matsumoto H. A new insight into pachychoroid diseases:
Remodeling of choroidal vasculature[ J]. Graefes Arch Clin Exp
Ophthalmol, 2022, 260(11): 3405-3417. DOI:10.1007/s00417-022-
05687-6.Kishi S, Matsumoto H. A new insight into pachychoroid diseases:
Remodeling of choroidal vasculature[ J]. Graefes Arch Clin Exp
Ophthalmol, 2022, 260(11): 3405-3417. DOI:10.1007/s00417-022-
05687-6.
22、Meng Y, Xu Y, Li L, et al. Wide-field OCT-angiography assessment
of choroidal thickness and choriocapillaris in eyes with central
serous chorioretinopathy[ J]. Front Physiol, 2022, 13: 1008038.
DOI:10.3389/fphys.2022.1008038.Meng Y, Xu Y, Li L, et al. Wide-field OCT-angiography assessment
of choroidal thickness and choriocapillaris in eyes with central
serous chorioretinopathy[ J]. Front Physiol, 2022, 13: 1008038.
DOI:10.3389/fphys.2022.1008038.
23、Zeng Q, Yao Y, Tu S, et al. Quantitative analysis of choroidal vasculature
in central serous chorioretinopathy using ultra-widefield swept-source
optical coherence tomography angiography[ J]. Sci Rep, 2022, 12(1):
18427. DOI:10.1038/s41598-022-23389-1.Zeng Q, Yao Y, Tu S, et al. Quantitative analysis of choroidal vasculature
in central serous chorioretinopathy using ultra-widefield swept-source
optical coherence tomography angiography[ J]. Sci Rep, 2022, 12(1):
18427. DOI:10.1038/s41598-022-23389-1.
24、何桂琴, 文峰. 正常眼的脉络膜血管系统研究进展[ J]. 眼科学
报, 2024, 39(7): 365-373. DOI: 10.12419/24071001.
He GQ, Wen F. Research progress on choroidal vascular system
in healthy eyes[ J]. Yan Ke Xue Bao, 2024, 39(7): 365-373. DOI:
10.12419/24071001.He GQ, Wen F. Research progress on choroidal vascular system
in healthy eyes[ J]. Yan Ke Xue Bao, 2024, 39(7): 365-373. DOI:
10.12419/24071001.
25、Imanaga N, Terao N, Sonoda S, et al. Relationship between
scleral thickness and choroidal str ucture in central serous
chorioretinopathy[ J]. Invest Ophthalmol Vis Sci, 2023, 64(1): 16.
DOI:10.1167/iovs.64.1.16.Imanaga N, Terao N, Sonoda S, et al. Relationship between
scleral thickness and choroidal str ucture in central serous
chorioretinopathy[ J]. Invest Ophthalmol Vis Sci, 2023, 64(1): 16.
DOI:10.1167/iovs.64.1.16.
26、Imanaga N, Terao N, Nakamine S, et al. Scleral thickness in central
serous chorioretinopathy[ J]. Ophthalmol Retina, 2021, 5(3): 285-291.
DOI:10.1016/j.oret.2020.07.011.Imanaga N, Terao N, Nakamine S, et al. Scleral thickness in central
serous chorioretinopathy[ J]. Ophthalmol Retina, 2021, 5(3): 285-291.
DOI:10.1016/j.oret.2020.07.011.
27、Aichi T, Terao N, Imanaga N, et al. Scleral thickness in the fellow eyes
of patients with unilateral central serous chorioretinopathy[ J]. Retina,
2023, 43(9): 1573-1578. DOI:10.1097/IAE.0000000000003850.Aichi T, Terao N, Imanaga N, et al. Scleral thickness in the fellow eyes
of patients with unilateral central serous chorioretinopathy[ J]. Retina,
2023, 43(9): 1573-1578. DOI:10.1097/IAE.0000000000003850.
28、Guo X, Zhou Y, Gu C, et al. Characteristics and classification of
choroidal Caverns in patients with various retinal and chorioretinal
diseases[ J]. J Clin Med, 2022, 11(23): 6994. DOI:10.3390/
jcm11236994.Guo X, Zhou Y, Gu C, et al. Characteristics and classification of
choroidal Caverns in patients with various retinal and chorioretinal
diseases[ J]. J Clin Med, 2022, 11(23): 6994. DOI:10.3390/
jcm11236994.
29、Sakurada Y, Leong BCS, Parikh R , et al. Association between
choroidal Caverns and choroidal vascular hyperpermeability in eyes
with pachychoroid diseases[ J]. Retina, 2018, 38(10): 1977-1983.
DOI:10.1097/IAE.0000000000002294.Sakurada Y, Leong BCS, Parikh R , et al. Association between
choroidal Caverns and choroidal vascular hyperpermeability in eyes
with pachychoroid diseases[ J]. Retina, 2018, 38(10): 1977-1983.
DOI:10.1097/IAE.0000000000002294.
30、Querques G, Costanzo E, Miere A, et al. Choroidal Caverns: a novel optical coherence tomography finding in geographic atrophy[ J]. Invest
Ophthalmol Vis Sci, 2016, 57(6): 2578-2582. DOI:10.1167/iovs.16-
19083.Querques G, Costanzo E, Miere A, et al. Choroidal Caverns: a novel optical coherence tomography finding in geographic atrophy[ J]. Invest
Ophthalmol Vis Sci, 2016, 57(6): 2578-2582. DOI:10.1167/iovs.16-
19083.
31、Sakurada Y, Parikh R, Bailey Freund K. Resolution of a subfoveal
choroidal cavern after half-dose photodynamic therapy for central
serous chorioretinopathy[ J]. Retin Cases Brief Rep, 2021, 15(6): 673-
675. DOI:10.1097/ICB.0000000000000903.Sakurada Y, Parikh R, Bailey Freund K. Resolution of a subfoveal
choroidal cavern after half-dose photodynamic therapy for central
serous chorioretinopathy[ J]. Retin Cases Brief Rep, 2021, 15(6): 673-
675. DOI:10.1097/ICB.0000000000000903.
32、刘文,文峰. 临床眼底病:内科卷[M]. 北京: 人民卫生出版社,
2015.
Liu W, Wen F. Clinical Fundus Disease - Internal Medicine Volume[M].
Beijing: People's Medical Publishing House, 2015.Liu W, Wen F. Clinical Fundus Disease - Internal Medicine Volume[M].
Beijing: People's Medical Publishing House, 2015.
33、Pang CE, Shah VP, Sarraf D, et al. Ultra-widefield imaging with
autofluorescence and indocyanine green angiography in central serous
chorioretinopathy[ J]. Am J Ophthalmol, 2014, 158(2): 362-371.e2.
DOI:10.1016/j.ajo.2014.04.021.Pang CE, Shah VP, Sarraf D, et al. Ultra-widefield imaging with
autofluorescence and indocyanine green angiography in central serous
chorioretinopathy[ J]. Am J Ophthalmol, 2014, 158(2): 362-371.e2.
DOI:10.1016/j.ajo.2014.04.021.
34、Yu DY, Yu PK , Cringle SJ, et al. Functional and morphological
characteristics of the retinal and choroidal vasculature[ J]. Prog Retin
Eye Res, 2014, 40: 53-93. DOI:10.1016/j.preteyeres.2014.02.001.Yu DY, Yu PK , Cringle SJ, et al. Functional and morphological
characteristics of the retinal and choroidal vasculature[ J]. Prog Retin
Eye Res, 2014, 40: 53-93. DOI:10.1016/j.preteyeres.2014.02.001.
35、Jeong A, Lim J, Min S. Choroidal vascular abnormalities by ultrawidefield indocyanine green angiography in polypoidal choroidal
vasculopathy[ J]. Invest Ophthalmol Vis Sci, 2021, 62(2): 29.
DOI:10.1167/iovs.62.2.29.Jeong A, Lim J, Min S. Choroidal vascular abnormalities by ultrawidefield indocyanine green angiography in polypoidal choroidal
vasculopathy[ J]. Invest Ophthalmol Vis Sci, 2021, 62(2): 29.
DOI:10.1167/iovs.62.2.29.
36、Spaide RF, Ngo WK, Barbazetto I, et al. Sausaging and bulbosities of
the choroidal veins in central serous chorioretinopathy[ J]. Retina,
2022, 42(9): 1638-1644. DOI:10.1097/IAE.0000000000003521.Spaide RF, Ngo WK, Barbazetto I, et al. Sausaging and bulbosities of
the choroidal veins in central serous chorioretinopathy[ J]. Retina,
2022, 42(9): 1638-1644. DOI:10.1097/IAE.0000000000003521.
37、Jung JJ, Yu DJG, Ito K, et al. Quantitative assessment of asymmetric
choroidal outflow in pachychoroid eyes on ultra-widefield indocyanine
green angiography[ J]. Invest Ophthalmol Vis Sci, 2020, 61(8): 50.
DOI:10.1167/iovs.61.8.50.Jung JJ, Yu DJG, Ito K, et al. Quantitative assessment of asymmetric
choroidal outflow in pachychoroid eyes on ultra-widefield indocyanine
green angiography[ J]. Invest Ophthalmol Vis Sci, 2020, 61(8): 50.
DOI:10.1167/iovs.61.8.50.
38、Spaide RF, Ledesma-Gil G, Gemmy Cheung CM. Intervortex venous
anastomosis in pachychoroid-RELATED disorders[ J]. Retina, 2021,
41(5): 997-1004. DOI:10.1097/IAE.0000000000003004.Spaide RF, Ledesma-Gil G, Gemmy Cheung CM. Intervortex venous
anastomosis in pachychoroid-RELATED disorders[ J]. Retina, 2021,
41(5): 997-1004. DOI:10.1097/IAE.0000000000003004.
39、Hiroe T, Kishi S. Dilatation of asymmetric vortex vein in central serous
chorioretinopathy[ J]. Ophthalmol Retina, 2018, 2(2): 152-161.
DOI:10.1016/j.oret.2017.05.013.Hiroe T, Kishi S. Dilatation of asymmetric vortex vein in central serous
chorioretinopathy[ J]. Ophthalmol Retina, 2018, 2(2): 152-161.
DOI:10.1016/j.oret.2017.05.013.
40、Bacci T, Oh DJ, Singer M, et al. Ultra-widefield indocyanine green
angiography reveals patterns of choroidal venous insufficiency
influencing pachychoroid disease[ J]. Invest Ophthalmol Vis Sci, 2022,
63(1): 17. DOI:10.1167/iovs.63.1.17.Bacci T, Oh DJ, Singer M, et al. Ultra-widefield indocyanine green
angiography reveals patterns of choroidal venous insufficiency
influencing pachychoroid disease[ J]. Invest Ophthalmol Vis Sci, 2022,
63(1): 17. DOI:10.1167/iovs.63.1.17.
41、Jeong S, Kang W, Noh D, et al. Choroidal vascular alterations evaluated
by ultra-widefield indocyanine green angiography in central serous
chorioretinopathy[ J]. Graefes Arch Clin Exp Ophthalmol, 2022,
260(6): 1887-1898. DOI:10.1007/s00417-021-05461-0.Jeong S, Kang W, Noh D, et al. Choroidal vascular alterations evaluated
by ultra-widefield indocyanine green angiography in central serous
chorioretinopathy[ J]. Graefes Arch Clin Exp Ophthalmol, 2022,
260(6): 1887-1898. DOI:10.1007/s00417-021-05461-0.
42、He G, Zhang X, Gan Y, et al. Choroidal vein alterations in pachychoroid
disease with choroidal vascular hyperpermeability: evaluated by widefield indocyanine green angiography[ J]. Invest Ophthalmol Vis Sci,
2023, 64(11): 25. DOI:10.1167/iovs.64.11.25.He G, Zhang X, Gan Y, et al. Choroidal vein alterations in pachychoroid
disease with choroidal vascular hyperpermeability: evaluated by widefield indocyanine green angiography[ J]. Invest Ophthalmol Vis Sci,
2023, 64(11): 25. DOI:10.1167/iovs.64.11.25.
43、He G, Zhang X, Ji Y, et al. Distribution and morphologic characteristics
of choroidal vortex veins in Pachychoroid disease[ J]. Photodiagnosis
Photodyn Ther, 2024, 50: 104404. DOI:10.1016/j.pdpdt.2024.104404.He G, Zhang X, Ji Y, et al. Distribution and morphologic characteristics
of choroidal vortex veins in Pachychoroid disease[ J]. Photodiagnosis
Photodyn Ther, 2024, 50: 104404. DOI:10.1016/j.pdpdt.2024.104404.
44、游启生. OCTA在眼底病诊治应用中的注意事项[ J]. 眼科, 2022,
31(2): 81-88. DOI: 10.13281/j.cnki.issn.1004-4469.2022.02.001.
You QS. Optical coherence tomography angiography for retinal
diseases: pearls and pitfalls[ J]. Ophthalmol China, 2022, 31(2): 81-88.
DOI: 10.13281/j.cnki.issn.1004-4469.2022.02.001.You QS. Optical coherence tomography angiography for retinal
diseases: pearls and pitfalls[ J]. Ophthalmol China, 2022, 31(2): 81-88.
DOI: 10.13281/j.cnki.issn.1004-4469.2022.02.001.
45、王敏. OCT血管成像和en face OCT图谱[M]. 上海: 复旦大学出
版社, 2015.
Wang M. OCT vascular imaging and en face OCT atlas[M]. Shanghai:
Fudan Press, 2015.Wang M. OCT vascular imaging and en face OCT atlas[M]. Shanghai:
Fudan Press, 2015.
46、Ramtohul P, Cabral D, Oh D, et al. En face ultrawidefield OCT of the
vortex vein system in central serous chorioretinopathy[ J]. Ophthalmol
Retina, 2023, 7(4): 346-353. DOI:10.1016/j.oret.2022.10.001.Ramtohul P, Cabral D, Oh D, et al. En face ultrawidefield OCT of the
vortex vein system in central serous chorioretinopathy[ J]. Ophthalmol
Retina, 2023, 7(4): 346-353. DOI:10.1016/j.oret.2022.10.001.
47、Ji MJ, Park JH, Yoo C, et al. Comparison of the progression of localized
retinal nerve fiber layer defects in red-free fundus photograph, en face
structural image, and OCT angiography image[ J]. J Glaucoma, 2020,
29(8): 698-703. DOI:10.1097/IJG.0000000000001528.Ji MJ, Park JH, Yoo C, et al. Comparison of the progression of localized
retinal nerve fiber layer defects in red-free fundus photograph, en face
structural image, and OCT angiography image[ J]. J Glaucoma, 2020,
29(8): 698-703. DOI:10.1097/IJG.0000000000001528.
48、Savastano MC, Dansingani KK , Rispoli M, et al. Classification
of hal ler vessel arrangements in acute and chronic central
serous chorioretinopathy imaged with en face optical coherence
tomography[ J]. Retina, 2018, 38(6): 1211-1215. DOI:10.1097/
IAE.0000000000001678.Savastano MC, Dansingani KK , Rispoli M, et al. Classification
of hal ler vessel arrangements in acute and chronic central
serous chorioretinopathy imaged with en face optical coherence
tomography[ J]. Retina, 2018, 38(6): 1211-1215. DOI:10.1097/
IAE.0000000000001678.
49、Lee WJ, Lee JW, Park SH, et al. En face choroidal vascular feature
imaging in acute and chronic central serous chorioretinopathy using
swept source optical coherence tomography[ J]. Br J Ophthalmol, 2017,
101(5): 580-586. DOI:10.1136/bjophthalmol-2016-308428.Lee WJ, Lee JW, Park SH, et al. En face choroidal vascular feature
imaging in acute and chronic central serous chorioretinopathy using
swept source optical coherence tomography[ J]. Br J Ophthalmol, 2017,
101(5): 580-586. DOI:10.1136/bjophthalmol-2016-308428.
50、Zeng Q, Yao Y, Li S, et al. Comparison of swept-source OCTA and
indocyanine green angiography in central serous chorioretinopathy[ J].
BMC Ophthalmol, 2022, 22(1): 380. DOI:10.1186/s12886-022-
02607-4.Zeng Q, Yao Y, Li S, et al. Comparison of swept-source OCTA and
indocyanine green angiography in central serous chorioretinopathy[ J].
BMC Ophthalmol, 2022, 22(1): 380. DOI:10.1186/s12886-022-
02607-4.
51、Luo Z, Xu Y, Xu K, et al. Choroidal vortex vein drainage system in
central serous chorioretinopathy using ultra-widefield optical coherence
tomography angiography[ J]. Transl Vis Sci Technol, 2023, 12(9): 17.
DOI:10.1167/tvst.12.9.17.Luo Z, Xu Y, Xu K, et al. Choroidal vortex vein drainage system in
central serous chorioretinopathy using ultra-widefield optical coherence
tomography angiography[ J]. Transl Vis Sci Technol, 2023, 12(9): 17.
DOI:10.1167/tvst.12.9.17.
52、文峰, 张雄泽. 眼底影像的繁荣和挑战[ J]. 中华眼底病杂志,
2021, 37(2): 89-92. DOI: 10.3760/cma.j.cn511434-20210120-00043.
Wen F, Zhang XZ. The prosperity and challenge of ocular fundus
imaging[ J]. Chin J Ocul Fundus Dis, 2021, 37(2): 89-92. DOI:
10.3760/cma.j.cn511434-20210120-00043.Wen F, Zhang XZ. The prosperity and challenge of ocular fundus
imaging[ J]. Chin J Ocul Fundus Dis, 2021, 37(2): 89-92. DOI:
10.3760/cma.j.cn511434-20210120-00043.
53、Funatsu R, Terasaki H, Shiihara H, et al. Quantitative evaluations of
vortex vein ampullae by adjusted 3D reverse projection model of ultrawidefield fundus images[ J]. Sci Rep, 2021, 11(1): 8916. DOI:10.1038/
s41598-021-88265-w.Funatsu R, Terasaki H, Shiihara H, et al. Quantitative evaluations of
vortex vein ampullae by adjusted 3D reverse projection model of ultrawidefield fundus images[ J]. Sci Rep, 2021, 11(1): 8916. DOI:10.1038/
s41598-021-88265-w.
54、Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous
AI-based diagnostic system for detection of diabetic retinopathy in
primary care offices[ J]. NPJ Digit Med, 2018, 1: 39. DOI:10.1038/
s41746-018-0040-6.Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous
AI-based diagnostic system for detection of diabetic retinopathy in
primary care offices[ J]. NPJ Digit Med, 2018, 1: 39. DOI:10.1038/
s41746-018-0040-6.
55、Zhen Y, Chen H, Zhang X, et al. Assessment of central serous
chorioretinopathy depicted on color fundus photographs using
deep learning[ J]. Retina, 2020, 40(8): 1558-1564. DOI:10.1097/
IAE.0000000000002621.Zhen Y, Chen H, Zhang X, et al. Assessment of central serous
chorioretinopathy depicted on color fundus photographs using
deep learning[ J]. Retina, 2020, 40(8): 1558-1564. DOI:10.1097/
IAE.0000000000002621.
56、Han J, Choi S, Park JI, et al. Detecting macular disease based on optical
coherence tomography using a deep convolutional network[ J]. J Clin
Med, 2023, 12(3): 1005. DOI:10.3390/jcm12031005.Han J, Choi S, Park JI, et al. Detecting macular disease based on optical
coherence tomography using a deep convolutional network[ J]. J Clin
Med, 2023, 12(3): 1005. DOI:10.3390/jcm12031005.
57、Chen M, Jin K, You K, et al. Automatic detection of leakage point in
central serous chorioretinopathy of fundus fluorescein angiography
based on time sequence deep learning[ J]. Graefes Arch Clin Exp
Ophthalmol, 2021, 259(8): 2401-2411. DOI:10.1007/s00417-021-
05151-x.Chen M, Jin K, You K, et al. Automatic detection of leakage point in
central serous chorioretinopathy of fundus fluorescein angiography
based on time sequence deep learning[ J]. Graefes Arch Clin Exp
Ophthalmol, 2021, 259(8): 2401-2411. DOI:10.1007/s00417-021-
05151-x.
58、Chen X, Zhang W, Xu P, et al. FFA-GPT: an automated pipeline for
fundus fluorescein angiography interpretation and question-answer[ J].
NPJ Digit Med, 2024, 7(1): 111. DOI:10.1038/s41746-024-01101-z.Chen X, Zhang W, Xu P, et al. FFA-GPT: an automated pipeline for
fundus fluorescein angiography interpretation and question-answer[ J].
NPJ Digit Med, 2024, 7(1): 111. DOI:10.1038/s41746-024-01101-z.
59、Kim IK, Lee K, Park JH, et al. Classification of pachychoroid disease
on ultrawide-field indocyanine green angiography using auto-machine
learning platform[ J]. Br J Ophthalmol, 2021, 105(6): 856-861.
DOI:10.1136/bjophthalmol-2020-316108.Kim IK, Lee K, Park JH, et al. Classification of pachychoroid disease
on ultrawide-field indocyanine green angiography using auto-machine
learning platform[ J]. Br J Ophthalmol, 2021, 105(6): 856-861.
DOI:10.1136/bjophthalmol-2020-316108.
60、宋宗明, 郭晓红. 眼底多模式影像的进展及其现阶段存在的问
题[ J]. 中华眼底病杂志, 2022, 38(2): 93-97. DOI: 10.3760/cma.
j.cn511434-20220110-00014.
Song ZM, Guo XH. The progress and problems of the fundus
multimodal imaging[ J]. Chin J Ocul Fundus Dis, 2022, 38(2): 93-97.
DOI: 10.3760/cma.j.cn511434-20220110-00014.Song ZM, Guo XH. The progress and problems of the fundus
multimodal imaging[ J]. Chin J Ocul Fundus Dis, 2022, 38(2): 93-97.
DOI: 10.3760/cma.j.cn511434-20220110-00014.