1、Association AD. Diagnosis and classification of diabetes mellitus[ J].
Diabetes Care, 2009, 32(Suppl 1): S62-S67. DOI:10.2337/dc09-S062.Association AD. Diagnosis and classification of diabetes mellitus[ J].
Diabetes Care, 2009, 32(Suppl 1): S62-S67. DOI:10.2337/dc09-S062.
2、Hsieh YT, Hsieh MC. Fasting plasma glucose variability is an
independent risk factor for diabetic retinopathy and diabetic macular
oedema in type 2 diabetes: an 8-year prospective cohort study[ J]. Clin
Exp Ophthalmol, 2020, 48(4): 470-476. DOI:10.1111/ceo.13728.Hsieh YT, Hsieh MC. Fasting plasma glucose variability is an
independent risk factor for diabetic retinopathy and diabetic macular
oedema in type 2 diabetes: an 8-year prospective cohort study[ J]. Clin
Exp Ophthalmol, 2020, 48(4): 470-476. DOI:10.1111/ceo.13728.
3、Hsing SC, Lin C, Chen JT, et al. Glycemic gap as a useful surrogate
marker for glucose var iabi lit y and progression of diabetic
retinopathy[ J]. J Pers Med, 2021, 11(8): 799. DOI:10.3390/
jpm11080799.Hsing SC, Lin C, Chen JT, et al. Glycemic gap as a useful surrogate
marker for glucose var iabi lit y and progression of diabetic
retinopathy[ J]. J Pers Med, 2021, 11(8): 799. DOI:10.3390/
jpm11080799.
4、Martinez M, Santamarina J, Pavesi A, et al. Glycemic variability
and cardiovascular disease in patients with type 2 diabetes[ J]. BMJ
Open Diabetes Res Care, 2021, 9(1): e002032. DOI:10.1136/
bmjdrc-2020-002032.Martinez M, Santamarina J, Pavesi A, et al. Glycemic variability
and cardiovascular disease in patients with type 2 diabetes[ J]. BMJ
Open Diabetes Res Care, 2021, 9(1): e002032. DOI:10.1136/
bmjdrc-2020-002032.
5、Belli M, Bellia A, Sergi D, et al. Glucose variability: a new risk factor for
cardiovascular disease[ J]. Acta Diabetol, 2023, 60(10): 1291-1299.
DOI:10.1007/s00592-023-02097-w.Belli M, Bellia A, Sergi D, et al. Glucose variability: a new risk factor for
cardiovascular disease[ J]. Acta Diabetol, 2023, 60(10): 1291-1299.
DOI:10.1007/s00592-023-02097-w.
6、Breyton AE, Lambert-Porcheron S, Laville M, et al. CGMS and
glycemic variability, relevance in clinical research to evaluate
interventions in T2D, a literature review[ J]. Front Endocrinol, 2021,
12: 666008. DOI:10.3389/fendo.2021.666008.Breyton AE, Lambert-Porcheron S, Laville M, et al. CGMS and
glycemic variability, relevance in clinical research to evaluate
interventions in T2D, a literature review[ J]. Front Endocrinol, 2021,
12: 666008. DOI:10.3389/fendo.2021.666008.
7、Pinto MV, Rosa LF, Pinto LF, et al. HbA1c variability and long-term
glycemic control are linked to peripheral neuropathy in patients with
type 1 diabetes[ J]. Diabetol Metab Syndr, 2020, 12: 85. DOI:10.1186/
s13098-020-00594-4.Pinto MV, Rosa LF, Pinto LF, et al. HbA1c variability and long-term
glycemic control are linked to peripheral neuropathy in patients with
type 1 diabetes[ J]. Diabetol Metab Syndr, 2020, 12: 85. DOI:10.1186/
s13098-020-00594-4.
8、Zhou%20Z%2C%20Sun%20B%2C%20Huang%20S%2C%20et%20al.%20Glycemic%20variability%3A%20adverse%20clinical%20%0Aoutcomes%20and%20how%20to%20improve%20it%3F%5B%20J%5D.%20Cardiovasc%20Diabetol%2C%202020%2C%20%0A19(1)%3A%20102.%20DOI%3A10.1186%2Fs12933-020-01085-6.Zhou%20Z%2C%20Sun%20B%2C%20Huang%20S%2C%20et%20al.%20Glycemic%20variability%3A%20adverse%20clinical%20%0Aoutcomes%20and%20how%20to%20improve%20it%3F%5B%20J%5D.%20Cardiovasc%20Diabetol%2C%202020%2C%20%0A19(1)%3A%20102.%20DOI%3A10.1186%2Fs12933-020-01085-6.
9、Rodbard D. Glucose variability: a review of clinical applications and
research developments[ J]. Diabetes Technol Ther, 2018, 20(S2):
S25-S215. DOI:10.1089/dia.2018.0092.Rodbard D. Glucose variability: a review of clinical applications and
research developments[ J]. Diabetes Technol Ther, 2018, 20(S2):
S25-S215. DOI:10.1089/dia.2018.0092.
10、Danne T, Nimri R, Battelino T, et al. International consensus on use of
continuous glucose monitoring[ J]. Diabetes Care, 2017, 40(12): 1631-
1640. DOI:10.2337/dc17-1600.Danne T, Nimri R, Battelino T, et al. International consensus on use of
continuous glucose monitoring[ J]. Diabetes Care, 2017, 40(12): 1631-
1640. DOI:10.2337/dc17-1600.
11、Frontoni S, Di Bartolo P, Avogaro A, et al. Glucose variability: an
emerging target for the treatment of diabetes mellitus[ J]. Diabetes Res
Clin Pract, 2013, 102(2): 86-95. DOI:10.1016/j.diabres.2013.09.007.Frontoni S, Di Bartolo P, Avogaro A, et al. Glucose variability: an
emerging target for the treatment of diabetes mellitus[ J]. Diabetes Res
Clin Pract, 2013, 102(2): 86-95. DOI:10.1016/j.diabres.2013.09.007.
12、Starup-Linde J, Lykkeboe S, Handberg A, et al. Glucose variability and
low bone turnover in people with type 2 diabetes[ J]. Bone, 2021, 153:
116159. DOI:10.1016/j.bone.2021.116159.Starup-Linde J, Lykkeboe S, Handberg A, et al. Glucose variability and
low bone turnover in people with type 2 diabetes[ J]. Bone, 2021, 153:
116159. DOI:10.1016/j.bone.2021.116159.
13、Yapanis M, James S, Craig ME, et al. Complications of diabetes and
metrics of glycemic management derived from continuous glucose
monitoring[ J]. J Clin Endocrinol Metab, 2022, 107(6): e2221-e2236. DOI:10.1210/clinem/dgac034.Yapanis M, James S, Craig ME, et al. Complications of diabetes and
metrics of glycemic management derived from continuous glucose
monitoring[ J]. J Clin Endocrinol Metab, 2022, 107(6): e2221-e2236. DOI:10.1210/clinem/dgac034.
14、Gerbaud E, Darier R , Montaudon M, et al. Glycemic variability
is a powerful independent predictive factor of midterm major
adverse cardiac events in patients with diabetes with acute coronary
syndrome[ J]. Diabetes Care, 2019, 42(4): 674-681. DOI:10.2337/
dc18-2047.Gerbaud E, Darier R , Montaudon M, et al. Glycemic variability
is a powerful independent predictive factor of midterm major
adverse cardiac events in patients with diabetes with acute coronary
syndrome[ J]. Diabetes Care, 2019, 42(4): 674-681. DOI:10.2337/
dc18-2047.
15、Zhang T, Su G, Mi SH, et al. Association between blood glucose
variability and the characteristics of vulnerable plaque in elderly nonST segment elevation acute coronary syndrome patients[ J]. Int Heart J,
2019, 60(3): 569-576. DOI:10.1536/ihj.18-503.Zhang T, Su G, Mi SH, et al. Association between blood glucose
variability and the characteristics of vulnerable plaque in elderly nonST segment elevation acute coronary syndrome patients[ J]. Int Heart J,
2019, 60(3): 569-576. DOI:10.1536/ihj.18-503.
16、Gohbara M, Iwahashi N, Kataoka S, et al. Glycemic variability
determined by continuous glucose monitoring system predicts
left ventricular remodeling in patients with a first ST-segment
elevation myocardial infarction[ J]. Circ J, 2015, 79(5): 1092-1099.
DOI:10.1253/circj.CJ-14-1226.Gohbara M, Iwahashi N, Kataoka S, et al. Glycemic variability
determined by continuous glucose monitoring system predicts
left ventricular remodeling in patients with a first ST-segment
elevation myocardial infarction[ J]. Circ J, 2015, 79(5): 1092-1099.
DOI:10.1253/circj.CJ-14-1226.
17、Xia J, Xu J, Li B, et al. Association between glycemic variability and
major adverse cardiovascular and cerebrovascular events (MACCE)
in patients with acute coronary syndrome during 30-day follow-up[ J].
Clin Chim Acta, 2017, 466: 162-166. DOI:10.1016/j.cca.2017.01.022.Xia J, Xu J, Li B, et al. Association between glycemic variability and
major adverse cardiovascular and cerebrovascular events (MACCE)
in patients with acute coronary syndrome during 30-day follow-up[ J].
Clin Chim Acta, 2017, 466: 162-166. DOI:10.1016/j.cca.2017.01.022.
18、Zhang J, Yang J, Liu L, et al. Significant abnormal glycemic variability
increased the risk for arrhythmias in elderly type 2 diabetic patients[ J].
BMC Endocr Disord, 2021, 21(1): 83. DOI:10.1186/s12902-021-
00753-2.Zhang J, Yang J, Liu L, et al. Significant abnormal glycemic variability
increased the risk for arrhythmias in elderly type 2 diabetic patients[ J].
BMC Endocr Disord, 2021, 21(1): 83. DOI:10.1186/s12902-021-
00753-2.
19、Kim TJ, Lee JS, Park SH, et al. Short-term glycemic variability
and hemorrhagic transformation after successful endovascular
thrombectomy[ J]. Transl Stroke Res, 2021, 12(6): 968-975.
DOI:10.1007/s12975-021-00895-4.Kim TJ, Lee JS, Park SH, et al. Short-term glycemic variability
and hemorrhagic transformation after successful endovascular
thrombectomy[ J]. Transl Stroke Res, 2021, 12(6): 968-975.
DOI:10.1007/s12975-021-00895-4.
20、Faselis C, Katsimardou A , Imprialos K , et al. Microvascular
complications of type 2 diabetes mellitus[ J]. Curr Vasc Pharmacol,
2020, 18(2): 117-124. DOI:10.2174/1570161117666190502103733.Faselis C, Katsimardou A , Imprialos K , et al. Microvascular
complications of type 2 diabetes mellitus[ J]. Curr Vasc Pharmacol,
2020, 18(2): 117-124. DOI:10.2174/1570161117666190502103733.
21、He Z, King GL. Microvascular complications of diabetes[ J].
Endocrinol Metab Clin N Am, 2004, 33(1): 215-238. DOI:10.1016/
j.ecl.2003.12.003.He Z, King GL. Microvascular complications of diabetes[ J].
Endocrinol Metab Clin N Am, 2004, 33(1): 215-238. DOI:10.1016/
j.ecl.2003.12.003.
22、Lin CC, Chen CC, Chen FN, et al. Risks of diabetic nephropathy
with variation in hemoglobin A1c and fasting plasma glucose[ J].
Am J Med, 2013, 126(11): 1017.e1-1017.10. DOI:10.1016/
j.amjmed.2013.04.015.Lin CC, Chen CC, Chen FN, et al. Risks of diabetic nephropathy
with variation in hemoglobin A1c and fasting plasma glucose[ J].
Am J Med, 2013, 126(11): 1017.e1-1017.10. DOI:10.1016/
j.amjmed.2013.04.015.
23、Bragd%20J%2C%20Adamson%20U%2C%20B%C3%A4cklund%20LB%2C%20et%20al.%20Can%20glycaemic%20variability%2C%20as%20%0Acalculated%20from%20blood%20glucose%20self-monitoring%2C%20predict%20the%20development%20%0Aof%20complications%20in%20type%201%20diabetes%20over%20a%20decade%3F%5B%20J%5D.%20Diabetes%20Metab%2C%20%0A2008%2C%2034(6%20Pt%201)%3A%20612-616.%20DOI%3A10.1016%2Fj.diabet.2008.04.005.Bragd%20J%2C%20Adamson%20U%2C%20B%C3%A4cklund%20LB%2C%20et%20al.%20Can%20glycaemic%20variability%2C%20as%20%0Acalculated%20from%20blood%20glucose%20self-monitoring%2C%20predict%20the%20development%20%0Aof%20complications%20in%20type%201%20diabetes%20over%20a%20decade%3F%5B%20J%5D.%20Diabetes%20Metab%2C%20%0A2008%2C%2034(6%20Pt%201)%3A%20612-616.%20DOI%3A10.1016%2Fj.diabet.2008.04.005.
24、Kwai NCG, Arnold R , Poynten AM, et al. Association between
glycemic variability and peripheral nerve dysfunction in type 1
diabetes[ J]. Muscle Nerve, 2016, 54(5): 967-969. DOI:10.1002/
mus.25274.Kwai NCG, Arnold R , Poynten AM, et al. Association between
glycemic variability and peripheral nerve dysfunction in type 1
diabetes[ J]. Muscle Nerve, 2016, 54(5): 967-969. DOI:10.1002/
mus.25274.
25、Jun JE, Lee SE, Lee YB, et al. Continuous glucose monitoring defined
glucose variability is associated with cardiovascular autonomic
neuropathy in type 1 diabetes[ J]. Diabetes Metab Res Rev, 2019,
35(2): e3092. DOI:10.1002/dmrr.3092.Jun JE, Lee SE, Lee YB, et al. Continuous glucose monitoring defined
glucose variability is associated with cardiovascular autonomic
neuropathy in type 1 diabetes[ J]. Diabetes Metab Res Rev, 2019,
35(2): e3092. DOI:10.1002/dmrr.3092.
26、Nyiraty%20S%2C%20Pesei%20F%2C%20Orosz%20A%2C%20et%20al.%20Cardiovascular%20autonomic%20neuropathy%20%0Aand%20glucose%20variability%20in%20patients%20with%20type%201%20diabetes%3A%20is%20there%20an%20%0Aassociation%3F%5B%20J%5D.%20Front%20Endocrinol%2C%202018%2C%209%3A%20174.%20DOI%3A10.3389%2F%0Afendo.2018.00174.Nyiraty%20S%2C%20Pesei%20F%2C%20Orosz%20A%2C%20et%20al.%20Cardiovascular%20autonomic%20neuropathy%20%0Aand%20glucose%20variability%20in%20patients%20with%20type%201%20diabetes%3A%20is%20there%20an%20%0Aassociation%3F%5B%20J%5D.%20Front%20Endocrinol%2C%202018%2C%209%3A%20174.%20DOI%3A10.3389%2F%0Afendo.2018.00174.
27、Tan TE, Wong T Y. Diabetic retinopathy: looking for ward to
2030[ J]. Front Endocrinol, 2023, 13: 1077669. DOI:10.3389/
fendo.2022.1077669.Tan TE, Wong T Y. Diabetic retinopathy: looking for ward to
2030[ J]. Front Endocrinol, 2023, 13: 1077669. DOI:10.3389/
fendo.2022.1077669.
28、Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic
retinopathy and projection of burden through 2045: systematic review
and meta-analysis[ J]. Ophthalmology, 2021, 128(11): 1580-1591.
DOI:10.1016/j.ophtha.2021.04.027.Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic
retinopathy and projection of burden through 2045: systematic review
and meta-analysis[ J]. Ophthalmology, 2021, 128(11): 1580-1591.
DOI:10.1016/j.ophtha.2021.04.027.
29、Zhai L, Lu J, Cao X, et al. Association between the variability of
glycated hemoglobin and retinopathy in patients with type 2 diabetes
mellitus: a meta-analysis[ J]. Horm Metab Res, 2023, 55(2): 103-113.
DOI:10.1055/a-1931-4400.Zhai L, Lu J, Cao X, et al. Association between the variability of
glycated hemoglobin and retinopathy in patients with type 2 diabetes
mellitus: a meta-analysis[ J]. Horm Metab Res, 2023, 55(2): 103-113.
DOI:10.1055/a-1931-4400.
30、Cardoso CL, Leite NC, Moram CM, et al. Long-term visit-tovisit glycemic variability as predictor of micro- and macrovascular
complications in patients with type 2 diabetes: The Rio de Janeiro Type
2 Diabetes Cohort Study[ J]. Cardiovasc Diabetol, 2018, 17(1): 33.
DOI:10.1186/s12933-018-0677-0.Cardoso CL, Leite NC, Moram CM, et al. Long-term visit-tovisit glycemic variability as predictor of micro- and macrovascular
complications in patients with type 2 diabetes: The Rio de Janeiro Type
2 Diabetes Cohort Study[ J]. Cardiovasc Diabetol, 2018, 17(1): 33.
DOI:10.1186/s12933-018-0677-0.
31、Park JY, Hwang JH, Kang MJ, et al. Effects of glycemic variability
on the progression of diabetic retinopathy among patients with
type 2 diabetes[ J]. Retina, 2021, 41(7): 1487-1495. DOI:10.1097/
IAE.0000000000003049.Park JY, Hwang JH, Kang MJ, et al. Effects of glycemic variability
on the progression of diabetic retinopathy among patients with
type 2 diabetes[ J]. Retina, 2021, 41(7): 1487-1495. DOI:10.1097/
IAE.0000000000003049.
32、裴薇, 丁娇. 老年早期2型糖尿病肾病患者血糖波动与氧化应
激、炎症及单核细胞自噬的相关性研究[ J]. 中国老年保健医
学, 2021, 19(4): 48-51. DOI: 10.3969/j.issn.1672-2671.2021.04.015.
Pei W, Ding J. Study on the correlation between blood glucose
fluctuation and oxidative stress, inflammation and monocyte autophagy
in elderly patients with early type 2 diabetic nephropathy[ J]. Chin
J Geriatr Care, 2021, 19(4): 48-51. DOI: 10.3969/j.issn.1672-
2671.2021.04.015.Pei W, Ding J. Study on the correlation between blood glucose
fluctuation and oxidative stress, inflammation and monocyte autophagy
in elderly patients with early type 2 diabetic nephropathy[ J]. Chin
J Geriatr Care, 2021, 19(4): 48-51. DOI: 10.3969/j.issn.1672-
2671.2021.04.015.
33、苏弘薇, 康省, 龙艳, 等. 糖尿病肾病与血糖波动和炎性因子的关
系探讨[ J]. 中华老年心脑血管病杂志, 2015, 17(3): 273-276. DOI:
10.3969/j.issn.1009-0126.2015.03.014.
Su HW, Kang S, Long Y, et al. Relation of diabetic nephropathy
and blood glucose fluctuation with inflammatory factors[ J]. Chin J
Geriatr Heart Brain Vessel Dis, 2015, 17(3): 273-276. DOI: 10.3969/
j.issn.1009-0126.2015.03.014.Su HW, Kang S, Long Y, et al. Relation of diabetic nephropathy
and blood glucose fluctuation with inflammatory factors[ J]. Chin J
Geriatr Heart Brain Vessel Dis, 2015, 17(3): 273-276. DOI: 10.3969/
j.issn.1009-0126.2015.03.014.
34、Costantino S, Paneni F, Battista R, et al. Impact of glycemic variability
on chromatin remodeling, oxidative stress, and endothelial dysfunction in patients with type 2 diabetes and with target HbA1c levels[ J].
Diabetes, 2017, 66(9): 2472-2482. DOI:10.2337/db17-0294.Costantino S, Paneni F, Battista R, et al. Impact of glycemic variability
on chromatin remodeling, oxidative stress, and endothelial dysfunction in patients with type 2 diabetes and with target HbA1c levels[ J].
Diabetes, 2017, 66(9): 2472-2482. DOI:10.2337/db17-0294.
35、王景尚, 黄烨, 陈可冀, 等. 2型糖尿病患者血糖波动状态与血管
内皮损伤、血小板活化及PKCβ1表达的相关性[ J]. 中国中西
医结合杂志, 2016, 36(10): 1184-1190. DOI: 10.7661/CJIM.2016.
10.1184.
Wang JS, Huang Y, Chen KJ, et al. Correlation research on blood
glucose fluctuation in type 2 diabetes mellitus patients and vascular
endothelial injury/platelet activation/PKCβ1 expression[ J]. Chin
J Integr Tradit West Med, 2016, 36(10): 1184-1190. DOI: 10.7661/
CJIM.2016.10.1184.Wang JS, Huang Y, Chen KJ, et al. Correlation research on blood
glucose fluctuation in type 2 diabetes mellitus patients and vascular
endothelial injury/platelet activation/PKCβ1 expression[ J]. Chin
J Integr Tradit West Med, 2016, 36(10): 1184-1190. DOI: 10.7661/
CJIM.2016.10.1184.
36、Piconi L, Quagliaro L, Assaloni R, et al. Constant and intermittent high
glucose enhances endothelial cell apoptosis through mitochondrial
superoxide overproduction[ J]. Diabetes Metab Res Rev, 2006, 22(3):
198-203. DOI:10.1002/dmrr.613.Piconi L, Quagliaro L, Assaloni R, et al. Constant and intermittent high
glucose enhances endothelial cell apoptosis through mitochondrial
superoxide overproduction[ J]. Diabetes Metab Res Rev, 2006, 22(3):
198-203. DOI:10.1002/dmrr.613.
37、Quagliaro L, Piconi L, Assaloni R, et al. Intermittent high glucose
enhances apoptosis related to oxidative stress in human umbilical vein
endothelial cells: the role of protein kinase C and NAD(P)H-oxidase
activation[ J]. Diabetes, 2003, 52(11): 2795-2804. DOI:10.2337/
diabetes.52.11.2795.Quagliaro L, Piconi L, Assaloni R, et al. Intermittent high glucose
enhances apoptosis related to oxidative stress in human umbilical vein
endothelial cells: the role of protein kinase C and NAD(P)H-oxidase
activation[ J]. Diabetes, 2003, 52(11): 2795-2804. DOI:10.2337/
diabetes.52.11.2795.
38、Guo C, Deshpande M, Niu Y, et al. HIF-1α accumulation in response
to transient hypoglycemia may worsen diabetic eye disease[ J]. Cell
Rep, 2023, 42(1): 111976. DOI:10.1016/j.celrep.2022.111976.Guo C, Deshpande M, Niu Y, et al. HIF-1α accumulation in response
to transient hypoglycemia may worsen diabetic eye disease[ J]. Cell
Rep, 2023, 42(1): 111976. DOI:10.1016/j.celrep.2022.111976.
39、Li HY, Yuan Y, Fu YH, et al. Hypoxia-inducible factor-1α: a promising
therapeutic target for vasculopathy in diabetic retinopathy[ J].
Pharmacol Res, 2020, 159: 104924. DOI:10.1016/j.phrs.2020.104924.Li HY, Yuan Y, Fu YH, et al. Hypoxia-inducible factor-1α: a promising
therapeutic target for vasculopathy in diabetic retinopathy[ J].
Pharmacol Res, 2020, 159: 104924. DOI:10.1016/j.phrs.2020.104924.
40、Picconi F, Parravano M, Sciarretta F, et al. Activation of retinal Müller
cells in response to glucose variability[ J]. Endocrine, 2019, 65(3): 542-
549. DOI:10.1007/s12020-019-02017-5.Picconi F, Parravano M, Sciarretta F, et al. Activation of retinal Müller
cells in response to glucose variability[ J]. Endocrine, 2019, 65(3): 542-
549. DOI:10.1007/s12020-019-02017-5.
41、Stem MS, Dunbar GE, Jackson GR, et al. Glucose variability and inner
retinal sensory neuropathy in persons with type 1 diabetes mellitus[ J].
Eye, 2016, 30(6): 825-832. DOI:10.1038/eye.2016.48.Stem MS, Dunbar GE, Jackson GR, et al. Glucose variability and inner
retinal sensory neuropathy in persons with type 1 diabetes mellitus[ J].
Eye, 2016, 30(6): 825-832. DOI:10.1038/eye.2016.48.
42、Battelino T, Alexander CM, Amiel SA, et al. Continuous glucose
monitoring and metrics for clinical trials: an international consensus
statement[ J]. Lancet Diabetes Endocrinol, 2023, 11(1): 42-57.
DOI:10.1016/S2213-8587(22)00319-9.Battelino T, Alexander CM, Amiel SA, et al. Continuous glucose
monitoring and metrics for clinical trials: an international consensus
statement[ J]. Lancet Diabetes Endocrinol, 2023, 11(1): 42-57.
DOI:10.1016/S2213-8587(22)00319-9.
43、Jancev M, Vissers TACM, Visseren FLJ, et al. Continuous glucose
monitoring in adults with type 2 diabetes: a systematic review and
meta-analysis[ J]. Diabetologia, 2024, 67(5): 798-810. DOI:10.1007/
s00125-024-06107-6.Jancev M, Vissers TACM, Visseren FLJ, et al. Continuous glucose
monitoring in adults with type 2 diabetes: a systematic review and
meta-analysis[ J]. Diabetologia, 2024, 67(5): 798-810. DOI:10.1007/
s00125-024-06107-6.
44、Ferreira ROM, Trevisan T, Pasqualotto E, et al. Continuous glucose
monitoring systems in noninsulin-treated people with type 2 diabetes:
a systematic review and meta-analysis of randomized controlled
trials[ J]. Diabetes Technol Ther, 2024, 26(4): 252-262. DOI:10.1089/
dia.2023.0390.Ferreira ROM, Trevisan T, Pasqualotto E, et al. Continuous glucose
monitoring systems in noninsulin-treated people with type 2 diabetes:
a systematic review and meta-analysis of randomized controlled
trials[ J]. Diabetes Technol Ther, 2024, 26(4): 252-262. DOI:10.1089/
dia.2023.0390.
45、Munshi MN. Continuous glucose monitoring use in older adults
for optimal diabetes management[ J]. Diabetes Technol Ther, 2023,
25(S3): S56-S64. DOI:10.1089/dia.2023.0111.Munshi MN. Continuous glucose monitoring use in older adults
for optimal diabetes management[ J]. Diabetes Technol Ther, 2023,
25(S3): S56-S64. DOI:10.1089/dia.2023.0111.
46、Gupta A, Mukherjee S, Kumar Bhadada S, et al. Impact of shortterm application of continuous glucose monitoring system(CGMS)
on long-term glycemic profile in adolescents and adults with type
1 diabetes mellitus: an open-label randomized control cross over
study[ J]. Diabetes Res Clin Pract, 2024, 210: 111610. DOI:10.1016/
j.diabres.2024.111610.Gupta A, Mukherjee S, Kumar Bhadada S, et al. Impact of shortterm application of continuous glucose monitoring system(CGMS)
on long-term glycemic profile in adolescents and adults with type
1 diabetes mellitus: an open-label randomized control cross over
study[ J]. Diabetes Res Clin Pract, 2024, 210: 111610. DOI:10.1016/
j.diabres.2024.111610.
47、Leite SAO, Silva MP, Lavalle ACR, et al. Use of continuous glucose
monitoring in insulin-treated older adults with type 2 diabetes[ J].
Diabetol Metab Syndr, 2023, 15(1): 240. DOI:10.1186/s13098-023-
01225-4.Leite SAO, Silva MP, Lavalle ACR, et al. Use of continuous glucose
monitoring in insulin-treated older adults with type 2 diabetes[ J].
Diabetol Metab Syndr, 2023, 15(1): 240. DOI:10.1186/s13098-023-
01225-4.
48、Wang H, Zhou Y, Wang Y, et al. Basal insulin reduces glucose
variability and hypoglycaemia compared to premixed insulin in type
2 diabetes patients: a study based on continuous glucose monitoring
systems[ J]. Front Endocrinol, 2022, 13: 791439. DOI:10.3389/
fendo.2022.791439.Wang H, Zhou Y, Wang Y, et al. Basal insulin reduces glucose
variability and hypoglycaemia compared to premixed insulin in type
2 diabetes patients: a study based on continuous glucose monitoring
systems[ J]. Front Endocrinol, 2022, 13: 791439. DOI:10.3389/
fendo.2022.791439.
49、Elhabashy SA, Sakr EM, Salah NY. The efficacy of insulin degludec and
insulin glargine over NPH insulin among toddlers and preschoolers
with type 1 diabetes using glycemic variability and time in range[ J].
Eur J Pediatr, 2023, 182(4): 1857-1868. DOI:10.1007/s00431-023-
04857-w.Elhabashy SA, Sakr EM, Salah NY. The efficacy of insulin degludec and
insulin glargine over NPH insulin among toddlers and preschoolers
with type 1 diabetes using glycemic variability and time in range[ J].
Eur J Pediatr, 2023, 182(4): 1857-1868. DOI:10.1007/s00431-023-
04857-w.
50、Lee YH, Kim DM, Yu JM, et al. Anagliptin twice-daily regimen
improves glycaemic variability in subjects with type 2 diabetes: a
double-blind, randomized controlled trial[ J]. Diabetes Obes Metab,
2023, 25(5): 1174-1185. DOI:10.1111/dom.14959.Lee YH, Kim DM, Yu JM, et al. Anagliptin twice-daily regimen
improves glycaemic variability in subjects with type 2 diabetes: a
double-blind, randomized controlled trial[ J]. Diabetes Obes Metab,
2023, 25(5): 1174-1185. DOI:10.1111/dom.14959.
51、Takuma K, Fuchigami A, Shigiyama F, et al. Comparison of the effects
of sitagliptin and dapagliflozin on time in range in Japanese patients
with type 2 diabetes stratified by body mass index: a sub-analysis of the
DIVERSITY-CVR study[ J]. Diabetes Obes Metab, 2023, 25(8): 2131-
2141. DOI:10.1111/dom.15089.Takuma K, Fuchigami A, Shigiyama F, et al. Comparison of the effects
of sitagliptin and dapagliflozin on time in range in Japanese patients
with type 2 diabetes stratified by body mass index: a sub-analysis of the
DIVERSITY-CVR study[ J]. Diabetes Obes Metab, 2023, 25(8): 2131-
2141. DOI:10.1111/dom.15089.
52、Ribeiro AKPL, Carvalho JPR, Bento-Torres NVO. Physical exercise
as treatment for adults with type 2 diabetes: a rapid review[ J]. Front
Endocrinol, 2023, 14: 1233906. DOI:10.3389/fendo.2023.1233906.Ribeiro AKPL, Carvalho JPR, Bento-Torres NVO. Physical exercise
as treatment for adults with type 2 diabetes: a rapid review[ J]. Front
Endocrinol, 2023, 14: 1233906. DOI:10.3389/fendo.2023.1233906.
53、Chang CR , Francois ME, Little JP. Restricting carbohydrates at
breakfast is sufficient to reduce 24-hour exposure to postprandial
hyperglycemia and improve glycemic variability[ J]. Am J Clin Nutr,
2019, 109(5): 1302-1309. DOI:10.1093/ajcn/nqy261.Chang CR , Francois ME, Little JP. Restricting carbohydrates at
breakfast is sufficient to reduce 24-hour exposure to postprandial
hyperglycemia and improve glycemic variability[ J]. Am J Clin Nutr,
2019, 109(5): 1302-1309. DOI:10.1093/ajcn/nqy261.
54、Liu D, Zhang Y, Wu Q, et al. Exercise-induced improvement of glycemic
fluctuation and its relationship with fat and muscle distribution in type
2 diabetes[ J]. J Diabetes, 2024, 16(4): e13549. DOI:10.1111/1753-
0407.13549.Liu D, Zhang Y, Wu Q, et al. Exercise-induced improvement of glycemic
fluctuation and its relationship with fat and muscle distribution in type
2 diabetes[ J]. J Diabetes, 2024, 16(4): e13549. DOI:10.1111/1753-
0407.13549.