您的位置: 首页 > 2025年2月 第40卷 第2期 > 文字全文
2023年7月 第38卷 第7期11
目录

基于 en face OCT 的视网膜前巨噬细胞样细胞在眼底病中的研究进展

Research progress in epiretinal macrophage-like cells characterized by en face OCT in ocular fundus diseases

来源期刊: 眼科学报 | 2025年2月 第40卷 第2期 202-207 发布时间:2025-02-28 收稿时间:2025/2/13 15:09:46 阅读量:339
作者:
关键词:
en face OCT巨噬细胞样细胞眼底病炎症
en face OCT macrophage-like cells ocular fundus diseases review
DOI:
10.12419/24102801
收稿时间:
2024-10-28 
修订日期:
2024-12-03 
接收日期:
2025-01-14 
巨噬细胞样细胞(macrophage-like cells, MLC)指起源、功能与巨噬细胞类似的免疫细胞,包括小胶质细胞、玻璃体细胞及巨噬细胞。将en face OCT显示层面设置在视网膜表明即可观测到视网膜表明的 MLC(epiretinal MLC, eMLC),随后利用ImageJ软件即可对细胞进行提取和量化。研究表明,eMLC在炎症情况下均可出现细胞募集及活化现象,但在不同眼底病中各具特点。在糖尿病视网膜病变、视网膜静脉阻塞等视网膜缺血缺氧性疾病中,eMLC密度越高,黄斑水肿可能越严重。此外,eMLC密度更高的视网膜静脉阻塞患者抗VEGF疗效更差,视力预后不佳,提示基于en face OCT的eMLC不仅可用于评估视网膜炎情况,而且还能充当提示疾病疗效及预后的标志物。在葡萄膜炎等免疫炎症性疾病中,en face OCT亦可观测到eMLC密度、形态等改变。白塞病葡萄膜炎患者视网膜血管渗漏程度与eMLC密度相关性强,故eMLC密度可充当无创评估视网膜血管渗漏程度的新指标。然而,目前提取和量化eMLC的方法及标准不统一,降低了各研究间的可比性。因此,亟需制定统一的操作规范和评估标准。此外eMLC 所代表的具体细胞类型及功能仍需进一步探究。未来,研究者可以利用en face OCT对眼底炎症地进行无创评估。基于en face OCT的eMLC还能作为基础研究与临床研究之间的桥梁,为揭示疾病的致病机制提供重要参考。

Macrophage-like cells (MLC) refer to immune cells that originate from and function similarly to macrophages, including microglia, hyalocytes, and macrophages themselves. By setting the display level of en face OCT to the retinal surface, epiretinal MLC (eMLC) can be observed and subsequently extracted and quantified using ImageJ software. Studies indicate that eMLC can exhibit cell recruitment and activation in inflammatory conditions, each displaying distinct characteristics in different retinal diseases. In ischemic and hypoxic retinal conditions such as diabetic retinopathy and retinal vein occlusion, higher densities of eMLC are associated with more severe macularedema. Moreover, patients with retinal vein occlusion showing higher eMLC densities tend to have poorer responses to anti-VEGF treatments and worse visual prognoses, suggesting that eMLC identified via en face OCT can be used not only to assess retinal inflammation but also as biomarkers for disease efficacy and prognosis. In immune-inflammatory diseases like uveitis, changes in eMLC density and morphology can also be observed through en face OCT. Inpatients with Beh?et's disease, a strong correlation exists between the degree of retinal vascular leakage and eMLC density, making eMLC density a potential non-invasive marker for assessing retinal vascular leakage. However, the current methods and standards for extracting and quantifying eMLC are not unified, significantly reducing comparability between studies. Therefore, there is an urgent need to establish uniform operational protocols and assessment standards. Furthermore, the specific cell types and functions represented by eMLC observed via en face OCT require further investigation. In the future, en face OCT could be utilized for non-invasive assessment of retinal inflammation. eMLC based onen face OCT could also serve as a bridge between basic research and clinical studies, providing valuable insights into the pathogenic mechanisms of diseases.

文章亮点

1. 关键发现

• en face OCT 可对视网膜表面的炎症细胞,即巨噬细胞样细胞进行无创成像,故临床工作中研究者可在活体状态下观测该类炎症细胞在眼底病中的数量、分布、动态变化等特征。

2. 已知与发现

• 炎症在多种眼底病中具有重要的推动作用。目前临床上常用的观测方法各具局限性。基于 en face OCT 的 eMLC 成像技术是临床工作中评估视网膜炎症更直接可靠的方式。eMLC 在不同疾病中主要表现为密度增加和形态变化,但其具体特点因疾病而异。

3. 意义与改变

• 基于 en face OCT 的巨噬细胞样细胞具有评估视网膜炎症程度、指示视网膜血管渗漏程度及促进眼底病病理生理研究的潜力。

        视网膜上存在多种功能类似于巨噬细胞的细胞,包括小胶质细胞、玻璃体细胞和巨噬细胞,统称为巨噬细胞样细胞(macrophage-like cell, MLC)。这些细胞在维持免疫稳态、微环境平衡和介导炎症中扮演重要角色。传统的细胞成像方法大多依赖于对组织或细胞进行标记和染色。因此,对MLC的研究多见于细胞、离体组织或动物模型。然而,这些检测对象的状态可能难以真实反映其在人体中的病理生理状态。随着影像技术的发展,现在可以利用自适应光学相干断层扫描成象(optical coherence tomography, OCT)等光学技术对活体视网膜表面的MLC(epiretinal MLC, eMLC)进行无创成像。OCT技术进步和光学相干断层扫描血管成像(optical coherence tomography angiography, OCTA)设备普及使得快速眼底容积扫描和精准分层功能更易获取,en face OCT的应用也随之增加。目前,en face OCT 已被用于对 eMLC 进行无创成像。在活体状态下研究眼底病eMLC数量、分布规律等特征,有助于揭示此类疾病的致病机制,为探究新的诊治策略提供新思路。

1 巨噬细胞样细胞的定义和基本特点

       巨噬细胞是体内重要的免疫细胞,具有免疫调节、抗肿瘤及抗感染等作用[1]。骨髓中的前体细胞首先分化为单核细胞,而单核细胞在血液循环一段时间后会迁移到组织中并进一步分化为巨噬细胞[2]。巨噬细胞在不同组织中称谓不一,如眼内巨噬细胞则有玻璃体细胞和小胶质细胞[3]。这些细胞与血液来源的巨噬细胞在特征和功能上相似,统称为MLC。玻璃体细胞位于玻璃体皮质中,在视网膜损伤时是促发炎症的重要因素之一[4]。它们主要位于玻璃体基底部,距离内界膜约50 μm处。小胶质细胞主要存在于内丛状层和外丛状层,部分也分布在神经节细胞层、神经纤维层以及内界膜附近[5]。成人视网膜小胶质细胞具有抗原呈递、吞噬及炎症介导的作用[6]。静息状态下的MLC相对较小且有较多突起、外观细长或呈星形。
        eMLC,顾名思义,指的是位于内界膜上0~10 μm层面附近的MLC,由小胶质细胞、玻璃体细胞和巨噬细胞组成。视网膜层间的MLC构成成分为小胶质细胞和巨噬细胞。小胶质细胞及巨噬细胞主要位于视网膜内,在病理状态下具有快速增殖及迁移至视网膜表面能力[4, 7]。eMLC与MLC功能相同,当组织受损时,它们会迅速活化,在眼底病的发生和发展过程中扮演重要角色。

2 巨噬细胞样细胞的传统观测手段与新的活体成像方法

       MLC细胞具有特异性标志物,如IBA1、CD31及CD68。以往观测MLC的主要利用免疫荧光、免疫组织化学染色(免疫组化)等方法对其标志物进行标记与染色,可研究细胞形态、分布及功能。医学研究的最佳对象是人体,但获取正常人或患者视网膜尤为困难,甚至有悖伦理。此外,体外培养的细胞或动物模型难以真实复现体内疾病的状态。因此,对炎症细胞进行活体成像可能是一种较为理想的研究方法。临床医师常用裂隙灯等手段观测前房及前段玻璃体的炎症细胞,以评估眼内炎症的程度。但由于仪器分辨率较低且视网膜位置深,裂隙灯无法直接用于直接观测视网膜炎症。目前,自适应OCT无需荧光标记即可对eMLC成像,是无创观测视网膜细胞的新技术[8]。利用该技术,研究人员发现eMLC的分布规律为黄斑稀疏而周边较密,在疾病状态亦具有不同的特征[8-10]
        然而,自适应光学成像技术复杂、设备昂贵和操作繁复,极大限制了其在临床诊疗中的普及和应用[11]。普通B扫描OCT也可用于视网膜炎症细胞成像。研究报道糖尿病视网膜病变(diabetic retinopathy, DR)及视网膜静脉阻塞(retinal vein occlusion, RVO)等患者视网膜间的高反射点可能是活化的小胶质细胞[12-13]。然而,脂质渗出及增生的色素上皮细胞亦可有类似影像学表现,故小胶质细胞等炎症细胞易与之混淆[14]。因此,临床上需要一种便捷且更可靠的炎症细胞成像方法。
        En Face OCT由连续、多个断面OCT重组而成,能展示特定深度的视网膜平面图[15]。OCTA会附带生成相对应的结构en face OCT图。随着OCTA的普及,结构en face OCT的价值亦开始广为人知。近年研究发现结构en face OCT可用于观测eMLC[16]。因为脂质渗出和迁移的色素上皮细胞距视网膜表面较远,故检测eMLC可大大减少以上混淆因素的影响。为证实en face OCT所显现的细胞样结构就是MLC,Lavine等[17]利用en face OCT及免疫荧光等手段对同一区域的小鼠视网膜进行研究,他们证实en face OCT 所观测的细胞样结构是由小胶质细胞、玻璃体细胞和巨噬细胞构成。静止状态下的主要成分为小胶质细胞,而在炎症的情况下,其主要成分转变为单核细胞和单核细胞来源的巨噬细胞[17]。因此,结构en face OCT所观测到的视网膜表面的高反射细胞样结构本质为巨噬细胞。利用en face OCT观测到的eMLC可能是眼底病炎症的潜在生物标志物。

3 利用en face OCT 观测及量化eMLC的方法

       En face OCT图像可由OCTA机器扫描获得,根据不同OCTA机器的特点调整en face OCT的显示深度,即可观测到eMLC。最初的研究将en face OCT图显示的深度设定为内界膜至内界膜上3 μm[18]。除了以上3 μm厚的en face OCT图外,内界膜下27 μm厚的视网膜神经纤维层也需用于后续图像处理。详细的eMLC提取方法已在既往研究中报道[18-19]。简而言之,利用 ImageJ对3 μm和27 μm en face OCT图进行二值化、图像降噪。随后对图像进行信号增强以改善对细胞的识别。最后对提取出的eMLC进行测量。不同的课题组对以上方法进行一定的改良,如国内陈长征教授课题组对上述方法做了适应性调整[20]。他们将en face OCT显示的层面设置为内界膜上5~10 μm,随后采用WeKa分割方法对eMLC和背景进行标记,以构建理想的训练模型,最终利用该模型从预处理的图像中提取eMLC。除上述改变外,亦有研究者使用9 μm厚的层面(内界膜下3 μm至内界膜上6 μm或内界膜至内界膜上9 μm)来观测eMLC形态特征[16, 21]。由此可知目前eMLC显示及提取方法多样,缺乏统一标准,进而降低了不同研究间的可比性。目前尚无研究对比不同分层及提取方式对观测和量化eMLC的影响,未来需进一步研究,以明确最佳的分层及提取方式。

4 eMLC在正常眼底及眼底病中的应用与研究进展

       利用en face OCT观测眼底病eMLC的研究逐渐增多。目前,该技术已被应用于正常人、糖尿病视网膜病变、视网膜血管阻塞、葡萄膜炎等多种眼底疾病的eMLC观测研究中。eMLC在不同眼底病中具有不同的特征,具有无创评估眼底炎症程度、指导临床诊疗、指示血管渗漏程度的潜力,且有助于研究者探索眼底病的致病机制。

4.1 正常人eMLC的特征

       静息状态下eMLC体积较小且突起较多[8, 22]。既往研究利用自适应OCT发现黄斑中心eMLC密度较低,而周围eMLC密度较高[8]。此外,eMLC的密度随着年龄增长而逐年下降,平均每年减少约2%[8]
        Castanos等[19]通过en face OCT对正常人黄斑区和视盘进行的研究也得出了相似的结论。他们还发现正常人黄斑区及视盘eMLC密度个体差异大。此外,通过对比相同解剖位置上第1天与第3天的eMLC的变化,他们发现eMLC位置发生改变,提示en face OCT观测到eMLC具有活动能力。为确定en face OCT上eMLC的构成成分,有学者通过对比发生玻璃体后脱离及玻璃体无后脱离情况下黄斑eMLC的差异,发现玻璃体后脱离组黄斑eMLC密度并无显著下降[23]。因此,该研究指出大部分eMLC并不是玻璃体后皮质中的玻璃体细胞,而是小胶质细胞。后续的组织病理学研究为此推断提供了有力证据,Lavine等发现在静息状态下,这些eMLC主要成分为小胶质细胞,次要成分包括玻璃体细胞及巨噬细胞[17]

4.2 eMLC在揭示眼底病致病机制中的应用

       缺血缺氧或免疫炎症下,MLC会出现募集及活化现象。通过en face OCT研究者能在活体状态下观测eMLC的变化特征,有助于揭示疾病的致病机制。DR、RVO及视网膜动脉阻塞(retinal artery occlusion, RAO)是常见的视网膜血管性疾病之一,炎症深度参与了其病理过程。利用en face OCT,初始的研究表明增殖期DR(proliferative diabetic retinopathy, PDR)患者eMLC密度较正常个体及非增殖期DR(non proliferative diabetic retinopathy, NPDR)患者高2.8~ 3.8 倍[18]。 随着研究的深入,有报道称早期DR视网膜就可观察到eMLC密度及形态等隐匿性改变,但显著的eMLC密度及形态变化始于中度NPDR,而不是既往报道的重度NPDR或
PDR,提示eMLC参与了早期糖尿病视网膜损害的致病过程[24]。RVO患者亦显著出现eMLC密度增加的现象[20, 24-25]。 视网膜中央动脉阻塞(Central retinal artery occlusion, CRAO)所导致的缺血、缺氧比RVO及DR更急、更严重。视网膜是中枢神经系统的延伸,当出现动脉阻塞时,其病理过程与脑组织类似,故CRAO是卒中的一种[26-29]。由此可推测,视网膜可以充当研究人卒中相关炎症反应的窗口。利用OCTA及en face OCT技术,研究者发现急性CRAO患者视盘及黄斑eMLC密度显著增加,且eMLC密度与病程、视网膜缺血程度显著正相关[30]。此外,CRAO患眼的eMLC体积更大、形态变圆,提示eMLC的活化。因此,en face OCT可充当研究中枢神经系统缺血损伤相关神经炎症的工具。
        eMLC除密度变化外,其在空间分布上亦有相应特征。NPDR和PDR患者中,eMLC主要分布于血管,且eMLC增加最显著的区域是血管表面及周围,而缺血区域的增加程度较低[18]。RVO患者eMLC分布与DR相类似。研究表明,RVO无灌注区的eMLC密度较灌注较好区域明显较低[25]。这可能与血液中的巨噬细胞无法及时输送到缺乏血管的区域相关。此外,有研究表明,MLC的激活有赖于血管内皮细胞的糖酵解,故MLC倾向于聚集在非缺血区域而不是缺血区域[18, 31]
        因此,en face OCT可揭示炎症细胞募集的来源,有助
于研究者理解眼底病的致病过程。数量及分布规律的改变往往伴有eMLC形态变化。研究表明,各种炎症情况下eMLC均可出现体积变大、形态变圆的表现,提示细胞活化[19, 21, 25, 30, 32-34]。利用en face OCT,研究者在活体视网膜中观测到eMLC数量、分布及形态均发生特征性变化,eMLC可能参与了如DR发生发展、黄斑水肿形成等病理过程。eMLC可应用于揭示疾病炎症特点、反映炎症变化过程,具有揭示疾病的致病机制的潜力。

4.3 eMLC在指导临床诊疗中的应用

       eMLC具有指导黄斑水肿临床诊疗的潜力。研究表明,DR与RVO患者eMLC密度与黄斑厚度显著正相关,提示eMLC参与了血视网膜屏障功能的破坏,进而导致黄斑水肿[24-25]。此外,RVO黄斑水肿患者eMLC数量与抗VEGF药物注射次数正相关,而与视力负相关,提示高eMLC者抗VEGF疗效及视力预后更差[35]
       eMLC密度可能是糖尿病性黄斑水肿及RVO黄斑水肿治疗的潜在临床生物标志物。开发干预eMLC活化和募集的方法,可能是治疗RVO黄斑水肿的新策略。观察眼内炎症细胞有助于评估炎症程度并指导治疗,这在葡萄膜炎等免疫炎性疾病中尤为重要。葡萄膜炎最常见的表现之一是视网膜血管炎。利用en face OCT,有研究证实葡萄膜炎患者eMLC密度显著升高,同时伴有细胞形态变化[33, 36]。在白塞病性葡萄膜炎中,eMLC密度与视网膜血管荧光素渗漏程度显著正相关,提示eMLC密度可能是提示视网膜血管渗漏及血管炎严重程度的指标[36]。既往,荧光素眼底血管造影是评估白塞病性葡萄膜炎视网膜炎症的金标准[37]。然而,荧光素眼底血管造影具有一定侵入性,故其不是评估视网膜炎症动态变化的最优解。 en face OCT无创且重复性强,使密切监测视网膜炎症情况成为可能。基于en face OCT在葡萄膜炎患者中检测eMLC的研究不多,且样本量低,未来需对不同葡萄膜炎进行更大样本研究,以明确eMLC在葡萄膜炎中的特征及意义。

5 总结与展望

       利用en face OCT探究eMLC逐渐为人所知。目前检测eMLC的机器、提取方法、算法缺乏统一标准,大大降低了类似研究的可比性。眼底病种类繁多,但目前针对eMLC的研究主要集中在视网膜血管性疾病。eMLC在不同疾病中主要表现为密度增加和形态变化,但其具体特点因疾病而异。eMLC具有评估眼底炎症程度、无创评估视网膜血管渗漏程度、指导临床诊疗及揭示致病机制等潜力。未来,研究者需要进一步探索疾病中eMLC的本质、分布规律以及其与临床指标的相关性,以便更好地理解眼底疾病的发病机制,并为开发新的治疗策略提供创新思路。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议 (Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。

1、Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease[ J]. Nature, 2013, 496(7446): 445-455. DOI:10.1038/nature12034.Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease[ J]. Nature, 2013, 496(7446): 445-455. DOI:10.1038/nature12034.
2、Gordon S, Taylor PR. Monocyte and macrophage heterogeneity[ J]. Nat Rev Immunol, 2005, 5(12): 953-964. DOI:10.1038/nri1733.Gordon S, Taylor PR. Monocyte and macrophage heterogeneity[ J]. Nat Rev Immunol, 2005, 5(12): 953-964. DOI:10.1038/nri1733.
3、Davies LC, Jenkins SJ, Allen JE, et al. Tissue-resident macrophages[ J]. Nat Immunol, 2013, 14(10): 986-995. DOI:10.1038/ni.2705.Davies LC, Jenkins SJ, Allen JE, et al. Tissue-resident macrophages[ J]. Nat Immunol, 2013, 14(10): 986-995. DOI:10.1038/ni.2705.
4、Sakamoto%20T%2C%20Ishibashi%20T.%20Hyalocytes%3A%20essential%20cells%20of%20the%20vitreous%20cavity%20%0Ain%20vitreoretinal%20pathophysiology%3F%5B%20J%5D.%20Retina%2C%202011%2C%2031(2)%3A%20222-228.%20%0ADOI%3A10.1097%2FIAE.0b013e3181facfa9.Sakamoto%20T%2C%20Ishibashi%20T.%20Hyalocytes%3A%20essential%20cells%20of%20the%20vitreous%20cavity%20%0Ain%20vitreoretinal%20pathophysiology%3F%5B%20J%5D.%20Retina%2C%202011%2C%2031(2)%3A%20222-228.%20%0ADOI%3A10.1097%2FIAE.0b013e3181facfa9.
5、R ashid K , Wol f A , L angmann T. Microgl ia act ivat ion and immunomodulatory therapies for retinal degenerations[ J]. Front Cell Neurosci, 2018, 12: 176. DOI:10.3389/fncel.2018.00176.R ashid K , Wol f A , L angmann T. Microgl ia act ivat ion and immunomodulatory therapies for retinal degenerations[ J]. Front Cell Neurosci, 2018, 12: 176. DOI:10.3389/fncel.2018.00176.
6、Nayak D, Roth TL, McGavern DB. Microglia development and function[ J]. Annu Rev Immunol, 2014, 32: 367-402. DOI:10.1146/ annurev-immunol-032713-120240.Nayak D, Roth TL, McGavern DB. Microglia development and function[ J]. Annu Rev Immunol, 2014, 32: 367-402. DOI:10.1146/ annurev-immunol-032713-120240.
7、Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration[ J]. Int J Mol Sci, 2018, 19(1): 110. DOI:10.3390/ijms19010110.Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration[ J]. Int J Mol Sci, 2018, 19(1): 110. DOI:10.3390/ijms19010110.
8、Hammer DX, Agrawal A, Villanueva R, et al. Label-free adaptive optics imaging of human retinal macrophage distribution and dynamics[ J]. Proc Natl Acad Sci USA, 2020, 117(48): 30661-30669. DOI:10.1073/ pnas.2010943117.Hammer DX, Agrawal A, Villanueva R, et al. Label-free adaptive optics imaging of human retinal macrophage distribution and dynamics[ J]. Proc Natl Acad Sci USA, 2020, 117(48): 30661-30669. DOI:10.1073/ pnas.2010943117.
9、Miller DT, Kurokawa K. Cellular-scale imaging of transparent retinal structures and processes using adaptive optics optical coherence tomography[ J]. Annu Rev Vis Sci, 2020, 6: 115-148. DOI:10.1146/ annurev-vision-030320-041255.Miller DT, Kurokawa K. Cellular-scale imaging of transparent retinal structures and processes using adaptive optics optical coherence tomography[ J]. Annu Rev Vis Sci, 2020, 6: 115-148. DOI:10.1146/ annurev-vision-030320-041255.
10、Etebar F, Harkin DG, White AR, et al. Non-invasive in vivo imaging of brain and retinal microglia in neurodegenerative diseases[ J]. Front Cell Neurosci, 2024, 18: 1355557. DOI:10.3389/fncel.2024.1355557.Etebar F, Harkin DG, White AR, et al. Non-invasive in vivo imaging of brain and retinal microglia in neurodegenerative diseases[ J]. Front Cell Neurosci, 2024, 18: 1355557. DOI:10.3389/fncel.2024.1355557.
11、Akyol E, Hagag AM, Sivaprasad S, et al. Adaptive optics: principles and applications in ophthalmology[ J]. Eye, 2021, 35(1): 244-264. DOI:10.1038/s41433-020-01286-z.Akyol E, Hagag AM, Sivaprasad S, et al. Adaptive optics: principles and applications in ophthalmology[ J]. Eye, 2021, 35(1): 244-264. DOI:10.1038/s41433-020-01286-z.
12、Ogino K, Murakami T, Tsujikawa A, et al. Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion[ J]. Retina, 2012, 32(1): 77-85. DOI:10.1097/iae.0b013e318217ffc7.Ogino K, Murakami T, Tsujikawa A, et al. Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion[ J]. Retina, 2012, 32(1): 77-85. DOI:10.1097/iae.0b013e318217ffc7.
13、Lee H, Jang H, Choi YA, et al. Association between soluble CD14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema[ J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 715. DOI:10.1167/iovs.17-23042.Lee H, Jang H, Choi YA, et al. Association between soluble CD14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema[ J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 715. DOI:10.1167/iovs.17-23042.
14、Do JR, Park SJ, Shin JP, et al. Assessment of hyperreflective foci after bevacizumab or dexamethasone treatment according to duration of macular edema in patients with branch retinal vein occlusion[ J]. Retina, 2021, 41(2): 355-365. DOI:10.1097/iae.0000000000002826.Do JR, Park SJ, Shin JP, et al. Assessment of hyperreflective foci after bevacizumab or dexamethasone treatment according to duration of macular edema in patients with branch retinal vein occlusion[ J]. Retina, 2021, 41(2): 355-365. DOI:10.1097/iae.0000000000002826.
15、Leitgeb RA. En face optical coherence tomography: a technology review[ J]. Biomed Opt Express, 2019, 10(5): 2177-2201. DOI:10.1364/ BOE.10.002177.Leitgeb RA. En face optical coherence tomography: a technology review[ J]. Biomed Opt Express, 2019, 10(5): 2177-2201. DOI:10.1364/ BOE.10.002177.
16、Grondin C, Au A, Wang D, et al. Identification and characterization of epivascular glia using en face optical coherence tomography[ J]. Am J Ophthalmol, 2021, 229: 108-119. DOI:10.1016/j.ajo.2021.03.014.Grondin C, Au A, Wang D, et al. Identification and characterization of epivascular glia using en face optical coherence tomography[ J]. Am J Ophthalmol, 2021, 229: 108-119. DOI:10.1016/j.ajo.2021.03.014.
17、Rajesh A, Droho S, Lavine JA. Macrophages in close proximity to the vitreoretinal interface are potential biomarkers of inflammation during retinal vascular disease[ J]. J Neuroinflammation, 2022, 19(1): 203. DOI:10.1186/s12974-022-02562-3.Rajesh A, Droho S, Lavine JA. Macrophages in close proximity to the vitreoretinal interface are potential biomarkers of inflammation during retinal vascular disease[ J]. J Neuroinflammation, 2022, 19(1): 203. DOI:10.1186/s12974-022-02562-3.
18、Ong JX, Nesper PL, Fawzi AA, et al. Macrophage-like cell density is increased in proliferative diabetic retinopathy characterized by optical coherence tomography angiography[ J]. Invest Ophthalmol Vis Sci, 2021, 62(10): 2. DOI:10.1167/iovs.62.10.2.Ong JX, Nesper PL, Fawzi AA, et al. Macrophage-like cell density is increased in proliferative diabetic retinopathy characterized by optical coherence tomography angiography[ J]. Invest Ophthalmol Vis Sci, 2021, 62(10): 2. DOI:10.1167/iovs.62.10.2.
19、Castanos MV, Zhou DB, Linderman RE, et al. Imaging of macrophagelike cells in living human retina using clinical OCT[ J]. Invest Ophthalmol Vis Sci, 2020, 61(6): 48. DOI:10.1167/iovs.61.6.48.Castanos MV, Zhou DB, Linderman RE, et al. Imaging of macrophagelike cells in living human retina using clinical OCT[ J]. Invest Ophthalmol Vis Sci, 2020, 61(6): 48. DOI:10.1167/iovs.61.6.48.
20、Wang W, Sun G, He L, et al. Increased macrophage-like cell density in retinal vein occlusion as characterized by en face optical coherence tomography[ J]. J Clin Med, 2022, 11(19): 5636. DOI:10.3390/ jcm11195636.Wang W, Sun G, He L, et al. Increased macrophage-like cell density in retinal vein occlusion as characterized by en face optical coherence tomography[ J]. J Clin Med, 2022, 11(19): 5636. DOI:10.3390/ jcm11195636.
21、Maltsev DS, Kulikov AN, Volkova YV, et al. Retinal macrophage-like cells as a biomarker of inflammation in retinal vein occlusions[ J]. J Clin Med, 2022, 11(24): 7470. DOI:10.3390/jcm11247470.Maltsev DS, Kulikov AN, Volkova YV, et al. Retinal macrophage-like cells as a biomarker of inflammation in retinal vein occlusions[ J]. J Clin Med, 2022, 11(24): 7470. DOI:10.3390/jcm11247470.
22、Santos AM, Calvente R, Tassi M, et al. Embryonic and postnatal development of microglial cells in the mouse retina[ J]. J Comp Neurol, 2008, 506(2): 224-239. DOI:10.1002/cne.21538.Santos AM, Calvente R, Tassi M, et al. Embryonic and postnatal development of microglial cells in the mouse retina[ J]. J Comp Neurol, 2008, 506(2): 224-239. DOI:10.1002/cne.21538.
23、Wang JM, Ong JX, Nesper PL, et al. Macrophage-like cells are still detectable on the retinal surface after posterior vitreous detachment[ J]. Sci Rep, 2022, 12: 12864. DOI:10.1038/s41598-022-17229-5.Wang JM, Ong JX, Nesper PL, et al. Macrophage-like cells are still detectable on the retinal surface after posterior vitreous detachment[ J]. Sci Rep, 2022, 12: 12864. DOI:10.1038/s41598-022-17229-5.
24、Zeng Y, Wen F, Zhuang X , et al. Epiretinal macrophage-like cells on optical coherence tomography: potential inflammatory imaging biomarker of severity in diabetic retinopathy[ J]. Retina, 2024,44(8):1314-1322. DOI:10.1097/iae.0000000000004100.Zeng Y, Wen F, Zhuang X , et al. Epiretinal macrophage-like cells on optical coherence tomography: potential inflammatory imaging biomarker of severity in diabetic retinopathy[ J]. Retina, 2024,44(8):1314-1322. DOI:10.1097/iae.0000000000004100.
25、Zeng Y, Zhang X, Mi L, et al. Characterization of macrophage-like cells in retinal vein occlusion using en face optical coherence tomography[ J]. Front Immunol, 2022, 13: 855466. DOI:10.3389/fimmu.2022.855466.Zeng Y, Zhang X, Mi L, et al. Characterization of macrophage-like cells in retinal vein occlusion using en face optical coherence tomography[ J]. Front Immunol, 2022, 13: 855466. DOI:10.3389/fimmu.2022.855466.
26、Mac Grory B, Schrag M, Biousse V, et al. Management of central retinal artery occlusion: a scientific statement from the American heart association[ J]. Stroke, 2021, 52(6): e282-e294. DOI:10.1161/ STR.0000000000000366.Mac Grory B, Schrag M, Biousse V, et al. Management of central retinal artery occlusion: a scientific statement from the American heart association[ J]. Stroke, 2021, 52(6): e282-e294. DOI:10.1161/ STR.0000000000000366.
27、Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century[ J]. Stroke, 2013, 44(7): 2064-2089. DOI:10.1161/ str.0b013e318296aeca.Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century[ J]. Stroke, 2013, 44(7): 2064-2089. DOI:10.1161/ str.0b013e318296aeca.
28、London A, Benhar I, Schwartz M. The retina as a window to the brainfrom eye research to CNS disorders[ J]. Nat Rev Neurol, 2013, 9(1): 44- 53. DOI:10.1038/nrneurol.2012.227.London A, Benhar I, Schwartz M. The retina as a window to the brainfrom eye research to CNS disorders[ J]. Nat Rev Neurol, 2013, 9(1): 44- 53. DOI:10.1038/nrneurol.2012.227.
29、Dattilo M, Newman NJ, Biousse V. Acute retinal arterial ischemia[ J]. Ann Eye Sci, 2018, 3: 28. DOI:10.21037/aes.2018.05.04.Dattilo M, Newman NJ, Biousse V. Acute retinal arterial ischemia[ J]. Ann Eye Sci, 2018, 3: 28. DOI:10.21037/aes.2018.05.04.
30、Zeng Y, Wen F, Mi L, et al. Changes in macrophage-like cells characterized by en face optical coherence tomography after retinal stroke[ J]. Front Immunol, 2022, 13: 987836. DOI:10.3389/fimmu.2022.987836.Zeng Y, Wen F, Mi L, et al. Changes in macrophage-like cells characterized by en face optical coherence tomography after retinal stroke[ J]. Front Immunol, 2022, 13: 987836. DOI:10.3389/fimmu.2022.987836.
31、Liu Z, Xu J, Ma Q, et al. Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche[ J]. Sci Transl Med, 2020, 12(555): eaay1371. DOI:10.1126/scitranslmed.aay1371.Liu Z, Xu J, Ma Q, et al. Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche[ J]. Sci Transl Med, 2020, 12(555): eaay1371. DOI:10.1126/scitranslmed.aay1371.
32、Otero-Marquez O, Fayad M, Pinhas A, et al. Retinal surface macrophage changes in thyroid eye disease before and after treatment with teprotumumab[ J]. Case Rep Ophthalmol Med, 2022, 2022: 5275309. DOI:10.1155/2022/5275309.Otero-Marquez O, Fayad M, Pinhas A, et al. Retinal surface macrophage changes in thyroid eye disease before and after treatment with teprotumumab[ J]. Case Rep Ophthalmol Med, 2022, 2022: 5275309. DOI:10.1155/2022/5275309.
33、Pichi F, Neri P, Aljeneibi S, et al. In vivo visualization of macrophagelike cells in patients with uveitis by use of En FaceSwept source optical coherence tomography[ J]. Ocul Immunol Inflamm, 2024, 32(8): 1532- 1538. DOI:10.1080/09273948.2023.2254369.Pichi F, Neri P, Aljeneibi S, et al. In vivo visualization of macrophagelike cells in patients with uveitis by use of En FaceSwept source optical coherence tomography[ J]. Ocul Immunol Inflamm, 2024, 32(8): 1532- 1538. DOI:10.1080/09273948.2023.2254369.
34、Schatz MJ, Otero-Marquez O, Rosen RB, et al. Multimodal imaging and macular hyalocyte count in a patient with acute macular neuroretinopathy[ J]. Case Rep Ophthalmol Med, 2022, 2022: 2855191. DOI:10.1155/2022/2855191.Schatz MJ, Otero-Marquez O, Rosen RB, et al. Multimodal imaging and macular hyalocyte count in a patient with acute macular neuroretinopathy[ J]. Case Rep Ophthalmol Med, 2022, 2022: 2855191. DOI:10.1155/2022/2855191.
35、Rangwani SM, Hawn S, Sklar NC, et al. Macrophage-like cells are increased in retinal vein occlusion and correlate with more intravitreal injections and worse visual acuity outcomes[ J]. J Pers Med, 2022, 13(1): 45. DOI:10.3390/jpm13010045.Rangwani SM, Hawn S, Sklar NC, et al. Macrophage-like cells are increased in retinal vein occlusion and correlate with more intravitreal injections and worse visual acuity outcomes[ J]. J Pers Med, 2022, 13(1): 45. DOI:10.3390/jpm13010045.
36、Zeng%20Y%2C%20Zhang%20X%2C%20Mi%20L%2C%20et%20al.%20Macrophage-like%20cells%20characterized%20by%20%0Aen%20face%20optical%20coherence%20tomography%20was%20associated%20with%20fluorescein%20%0Avascular%20leakage%20in%20beh%C3%A7et's%20uveitis%5B%20J%5D.%20Ocul%20Immunol%20Inflamm%2C%202023%2C%20%0A31(5)%3A%20999-1005.%20DOI%3A10.1080%2F09273948.2022.2080719.Zeng%20Y%2C%20Zhang%20X%2C%20Mi%20L%2C%20et%20al.%20Macrophage-like%20cells%20characterized%20by%20%0Aen%20face%20optical%20coherence%20tomography%20was%20associated%20with%20fluorescein%20%0Avascular%20leakage%20in%20beh%C3%A7et's%20uveitis%5B%20J%5D.%20Ocul%20Immunol%20Inflamm%2C%202023%2C%20%0A31(5)%3A%20999-1005.%20DOI%3A10.1080%2F09273948.2022.2080719.
37、Tugal-Tutkun%20I%2C%20Onal%20S%2C%20Altan-Yaycioglu%20R%2C%20et%20al.%20Uveitis%20in%20Beh%C3%A7et%20disease%3A%20%0Aan%20analysis%20of%20880%20patients%5B%20J%5D.%20Am%20J%20Ophthalmol%2C%202004%2C%20138(3)%3A%20373-380.%20%0ADOI%3A10.1016%2Fj.ajo.2004.03.022.Tugal-Tutkun%20I%2C%20Onal%20S%2C%20Altan-Yaycioglu%20R%2C%20et%20al.%20Uveitis%20in%20Beh%C3%A7et%20disease%3A%20%0Aan%20analysis%20of%20880%20patients%5B%20J%5D.%20Am%20J%20Ophthalmol%2C%202004%2C%20138(3)%3A%20373-380.%20%0ADOI%3A10.1016%2Fj.ajo.2004.03.022.
1、广州市教育局高校科研项目(2024312084)。
This work was supported by Guangzhou Municipal Education Bureau University Research Projects (2024312084).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录