1、Wynn TA, Chawla A, Pollard JW. Macrophage biology in development,
homeostasis and disease[ J]. Nature, 2013, 496(7446): 445-455.
DOI:10.1038/nature12034.Wynn TA, Chawla A, Pollard JW. Macrophage biology in development,
homeostasis and disease[ J]. Nature, 2013, 496(7446): 445-455.
DOI:10.1038/nature12034.
2、Gordon S, Taylor PR. Monocyte and macrophage heterogeneity[ J]. Nat
Rev Immunol, 2005, 5(12): 953-964. DOI:10.1038/nri1733.Gordon S, Taylor PR. Monocyte and macrophage heterogeneity[ J]. Nat
Rev Immunol, 2005, 5(12): 953-964. DOI:10.1038/nri1733.
3、Davies LC, Jenkins SJ, Allen JE, et al. Tissue-resident macrophages[ J].
Nat Immunol, 2013, 14(10): 986-995. DOI:10.1038/ni.2705.Davies LC, Jenkins SJ, Allen JE, et al. Tissue-resident macrophages[ J].
Nat Immunol, 2013, 14(10): 986-995. DOI:10.1038/ni.2705.
4、Sakamoto%20T%2C%20Ishibashi%20T.%20Hyalocytes%3A%20essential%20cells%20of%20the%20vitreous%20cavity%20%0Ain%20vitreoretinal%20pathophysiology%3F%5B%20J%5D.%20Retina%2C%202011%2C%2031(2)%3A%20222-228.%20%0ADOI%3A10.1097%2FIAE.0b013e3181facfa9.Sakamoto%20T%2C%20Ishibashi%20T.%20Hyalocytes%3A%20essential%20cells%20of%20the%20vitreous%20cavity%20%0Ain%20vitreoretinal%20pathophysiology%3F%5B%20J%5D.%20Retina%2C%202011%2C%2031(2)%3A%20222-228.%20%0ADOI%3A10.1097%2FIAE.0b013e3181facfa9.
5、R ashid K , Wol f A , L angmann T. Microgl ia act ivat ion and
immunomodulatory therapies for retinal degenerations[ J]. Front Cell
Neurosci, 2018, 12: 176. DOI:10.3389/fncel.2018.00176.R ashid K , Wol f A , L angmann T. Microgl ia act ivat ion and
immunomodulatory therapies for retinal degenerations[ J]. Front Cell
Neurosci, 2018, 12: 176. DOI:10.3389/fncel.2018.00176.
6、Nayak D, Roth TL, McGavern DB. Microglia development and
function[ J]. Annu Rev Immunol, 2014, 32: 367-402. DOI:10.1146/
annurev-immunol-032713-120240.Nayak D, Roth TL, McGavern DB. Microglia development and
function[ J]. Annu Rev Immunol, 2014, 32: 367-402. DOI:10.1146/
annurev-immunol-032713-120240.
7、Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy:
inflammation, microvasculature defects and neurodegeneration[ J]. Int J
Mol Sci, 2018, 19(1): 110. DOI:10.3390/ijms19010110.Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy:
inflammation, microvasculature defects and neurodegeneration[ J]. Int J
Mol Sci, 2018, 19(1): 110. DOI:10.3390/ijms19010110.
8、Hammer DX, Agrawal A, Villanueva R, et al. Label-free adaptive optics
imaging of human retinal macrophage distribution and dynamics[ J].
Proc Natl Acad Sci USA, 2020, 117(48): 30661-30669. DOI:10.1073/
pnas.2010943117.Hammer DX, Agrawal A, Villanueva R, et al. Label-free adaptive optics
imaging of human retinal macrophage distribution and dynamics[ J].
Proc Natl Acad Sci USA, 2020, 117(48): 30661-30669. DOI:10.1073/
pnas.2010943117.
9、Miller DT, Kurokawa K. Cellular-scale imaging of transparent retinal
structures and processes using adaptive optics optical coherence
tomography[ J]. Annu Rev Vis Sci, 2020, 6: 115-148. DOI:10.1146/
annurev-vision-030320-041255.Miller DT, Kurokawa K. Cellular-scale imaging of transparent retinal
structures and processes using adaptive optics optical coherence
tomography[ J]. Annu Rev Vis Sci, 2020, 6: 115-148. DOI:10.1146/
annurev-vision-030320-041255.
10、Etebar F, Harkin DG, White AR, et al. Non-invasive in vivo imaging of brain and retinal microglia in neurodegenerative diseases[ J]. Front Cell
Neurosci, 2024, 18: 1355557. DOI:10.3389/fncel.2024.1355557.Etebar F, Harkin DG, White AR, et al. Non-invasive in vivo imaging of brain and retinal microglia in neurodegenerative diseases[ J]. Front Cell
Neurosci, 2024, 18: 1355557. DOI:10.3389/fncel.2024.1355557.
11、Akyol E, Hagag AM, Sivaprasad S, et al. Adaptive optics: principles
and applications in ophthalmology[ J]. Eye, 2021, 35(1): 244-264.
DOI:10.1038/s41433-020-01286-z.Akyol E, Hagag AM, Sivaprasad S, et al. Adaptive optics: principles
and applications in ophthalmology[ J]. Eye, 2021, 35(1): 244-264.
DOI:10.1038/s41433-020-01286-z.
12、Ogino K, Murakami T, Tsujikawa A, et al. Characteristics of optical
coherence tomographic hyperreflective foci in retinal vein occlusion[ J].
Retina, 2012, 32(1): 77-85. DOI:10.1097/iae.0b013e318217ffc7.Ogino K, Murakami T, Tsujikawa A, et al. Characteristics of optical
coherence tomographic hyperreflective foci in retinal vein occlusion[ J].
Retina, 2012, 32(1): 77-85. DOI:10.1097/iae.0b013e318217ffc7.
13、Lee H, Jang H, Choi YA, et al. Association between soluble CD14
in the aqueous humor and hyperreflective foci on optical coherence
tomography in patients with diabetic macular edema[ J]. Invest
Ophthalmol Vis Sci, 2018, 59(2): 715. DOI:10.1167/iovs.17-23042.Lee H, Jang H, Choi YA, et al. Association between soluble CD14
in the aqueous humor and hyperreflective foci on optical coherence
tomography in patients with diabetic macular edema[ J]. Invest
Ophthalmol Vis Sci, 2018, 59(2): 715. DOI:10.1167/iovs.17-23042.
14、Do JR, Park SJ, Shin JP, et al. Assessment of hyperreflective foci after
bevacizumab or dexamethasone treatment according to duration of
macular edema in patients with branch retinal vein occlusion[ J]. Retina,
2021, 41(2): 355-365. DOI:10.1097/iae.0000000000002826.Do JR, Park SJ, Shin JP, et al. Assessment of hyperreflective foci after
bevacizumab or dexamethasone treatment according to duration of
macular edema in patients with branch retinal vein occlusion[ J]. Retina,
2021, 41(2): 355-365. DOI:10.1097/iae.0000000000002826.
15、Leitgeb RA. En face optical coherence tomography: a technology
review[ J]. Biomed Opt Express, 2019, 10(5): 2177-2201. DOI:10.1364/
BOE.10.002177.Leitgeb RA. En face optical coherence tomography: a technology
review[ J]. Biomed Opt Express, 2019, 10(5): 2177-2201. DOI:10.1364/
BOE.10.002177.
16、Grondin C, Au A, Wang D, et al. Identification and characterization of
epivascular glia using en face optical coherence tomography[ J]. Am J
Ophthalmol, 2021, 229: 108-119. DOI:10.1016/j.ajo.2021.03.014.Grondin C, Au A, Wang D, et al. Identification and characterization of
epivascular glia using en face optical coherence tomography[ J]. Am J
Ophthalmol, 2021, 229: 108-119. DOI:10.1016/j.ajo.2021.03.014.
17、Rajesh A, Droho S, Lavine JA. Macrophages in close proximity to the
vitreoretinal interface are potential biomarkers of inflammation during
retinal vascular disease[ J]. J Neuroinflammation, 2022, 19(1): 203.
DOI:10.1186/s12974-022-02562-3.Rajesh A, Droho S, Lavine JA. Macrophages in close proximity to the
vitreoretinal interface are potential biomarkers of inflammation during
retinal vascular disease[ J]. J Neuroinflammation, 2022, 19(1): 203.
DOI:10.1186/s12974-022-02562-3.
18、Ong JX, Nesper PL, Fawzi AA, et al. Macrophage-like cell density is
increased in proliferative diabetic retinopathy characterized by optical
coherence tomography angiography[ J]. Invest Ophthalmol Vis Sci, 2021,
62(10): 2. DOI:10.1167/iovs.62.10.2.Ong JX, Nesper PL, Fawzi AA, et al. Macrophage-like cell density is
increased in proliferative diabetic retinopathy characterized by optical
coherence tomography angiography[ J]. Invest Ophthalmol Vis Sci, 2021,
62(10): 2. DOI:10.1167/iovs.62.10.2.
19、Castanos MV, Zhou DB, Linderman RE, et al. Imaging of macrophagelike cells in living human retina using clinical OCT[ J]. Invest Ophthalmol
Vis Sci, 2020, 61(6): 48. DOI:10.1167/iovs.61.6.48.Castanos MV, Zhou DB, Linderman RE, et al. Imaging of macrophagelike cells in living human retina using clinical OCT[ J]. Invest Ophthalmol
Vis Sci, 2020, 61(6): 48. DOI:10.1167/iovs.61.6.48.
20、Wang W, Sun G, He L, et al. Increased macrophage-like cell density
in retinal vein occlusion as characterized by en face optical coherence
tomography[ J]. J Clin Med, 2022, 11(19): 5636. DOI:10.3390/
jcm11195636.Wang W, Sun G, He L, et al. Increased macrophage-like cell density
in retinal vein occlusion as characterized by en face optical coherence
tomography[ J]. J Clin Med, 2022, 11(19): 5636. DOI:10.3390/
jcm11195636.
21、Maltsev DS, Kulikov AN, Volkova YV, et al. Retinal macrophage-like cells
as a biomarker of inflammation in retinal vein occlusions[ J]. J Clin Med,
2022, 11(24): 7470. DOI:10.3390/jcm11247470.Maltsev DS, Kulikov AN, Volkova YV, et al. Retinal macrophage-like cells
as a biomarker of inflammation in retinal vein occlusions[ J]. J Clin Med,
2022, 11(24): 7470. DOI:10.3390/jcm11247470.
22、Santos AM, Calvente R, Tassi M, et al. Embryonic and postnatal
development of microglial cells in the mouse retina[ J]. J Comp Neurol,
2008, 506(2): 224-239. DOI:10.1002/cne.21538.Santos AM, Calvente R, Tassi M, et al. Embryonic and postnatal
development of microglial cells in the mouse retina[ J]. J Comp Neurol,
2008, 506(2): 224-239. DOI:10.1002/cne.21538.
23、Wang JM, Ong JX, Nesper PL, et al. Macrophage-like cells are still
detectable on the retinal surface after posterior vitreous detachment[ J].
Sci Rep, 2022, 12: 12864. DOI:10.1038/s41598-022-17229-5.Wang JM, Ong JX, Nesper PL, et al. Macrophage-like cells are still
detectable on the retinal surface after posterior vitreous detachment[ J].
Sci Rep, 2022, 12: 12864. DOI:10.1038/s41598-022-17229-5.
24、Zeng Y, Wen F, Zhuang X , et al. Epiretinal macrophage-like
cells on optical coherence tomography: potential inflammatory imaging biomarker of severity in diabetic retinopathy[ J]. Retina,
2024,44(8):1314-1322. DOI:10.1097/iae.0000000000004100.Zeng Y, Wen F, Zhuang X , et al. Epiretinal macrophage-like
cells on optical coherence tomography: potential inflammatory imaging biomarker of severity in diabetic retinopathy[ J]. Retina,
2024,44(8):1314-1322. DOI:10.1097/iae.0000000000004100.
25、Zeng Y, Zhang X, Mi L, et al. Characterization of macrophage-like cells
in retinal vein occlusion using en face optical coherence tomography[ J].
Front Immunol, 2022, 13: 855466. DOI:10.3389/fimmu.2022.855466.Zeng Y, Zhang X, Mi L, et al. Characterization of macrophage-like cells
in retinal vein occlusion using en face optical coherence tomography[ J].
Front Immunol, 2022, 13: 855466. DOI:10.3389/fimmu.2022.855466.
26、Mac Grory B, Schrag M, Biousse V, et al. Management of central
retinal artery occlusion: a scientific statement from the American
heart association[ J]. Stroke, 2021, 52(6): e282-e294. DOI:10.1161/
STR.0000000000000366.Mac Grory B, Schrag M, Biousse V, et al. Management of central
retinal artery occlusion: a scientific statement from the American
heart association[ J]. Stroke, 2021, 52(6): e282-e294. DOI:10.1161/
STR.0000000000000366.
27、Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke
for the 21st century[ J]. Stroke, 2013, 44(7): 2064-2089. DOI:10.1161/
str.0b013e318296aeca.Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke
for the 21st century[ J]. Stroke, 2013, 44(7): 2064-2089. DOI:10.1161/
str.0b013e318296aeca.
28、London A, Benhar I, Schwartz M. The retina as a window to the brainfrom eye research to CNS disorders[ J]. Nat Rev Neurol, 2013, 9(1): 44-
53. DOI:10.1038/nrneurol.2012.227.London A, Benhar I, Schwartz M. The retina as a window to the brainfrom eye research to CNS disorders[ J]. Nat Rev Neurol, 2013, 9(1): 44-
53. DOI:10.1038/nrneurol.2012.227.
29、Dattilo M, Newman NJ, Biousse V. Acute retinal arterial ischemia[ J].
Ann Eye Sci, 2018, 3: 28. DOI:10.21037/aes.2018.05.04.Dattilo M, Newman NJ, Biousse V. Acute retinal arterial ischemia[ J].
Ann Eye Sci, 2018, 3: 28. DOI:10.21037/aes.2018.05.04.
30、Zeng Y, Wen F, Mi L, et al. Changes in macrophage-like cells characterized
by en face optical coherence tomography after retinal stroke[ J]. Front
Immunol, 2022, 13: 987836. DOI:10.3389/fimmu.2022.987836.Zeng Y, Wen F, Mi L, et al. Changes in macrophage-like cells characterized
by en face optical coherence tomography after retinal stroke[ J]. Front
Immunol, 2022, 13: 987836. DOI:10.3389/fimmu.2022.987836.
31、Liu Z, Xu J, Ma Q, et al. Glycolysis links reciprocal activation of myeloid
cells and endothelial cells in the retinal angiogenic niche[ J]. Sci Transl
Med, 2020, 12(555): eaay1371. DOI:10.1126/scitranslmed.aay1371.Liu Z, Xu J, Ma Q, et al. Glycolysis links reciprocal activation of myeloid
cells and endothelial cells in the retinal angiogenic niche[ J]. Sci Transl
Med, 2020, 12(555): eaay1371. DOI:10.1126/scitranslmed.aay1371.
32、Otero-Marquez O, Fayad M, Pinhas A, et al. Retinal surface macrophage
changes in thyroid eye disease before and after treatment with
teprotumumab[ J]. Case Rep Ophthalmol Med, 2022, 2022: 5275309.
DOI:10.1155/2022/5275309.Otero-Marquez O, Fayad M, Pinhas A, et al. Retinal surface macrophage
changes in thyroid eye disease before and after treatment with
teprotumumab[ J]. Case Rep Ophthalmol Med, 2022, 2022: 5275309.
DOI:10.1155/2022/5275309.
33、Pichi F, Neri P, Aljeneibi S, et al. In vivo visualization of macrophagelike cells in patients with uveitis by use of En FaceSwept source optical
coherence tomography[ J]. Ocul Immunol Inflamm, 2024, 32(8): 1532-
1538. DOI:10.1080/09273948.2023.2254369.Pichi F, Neri P, Aljeneibi S, et al. In vivo visualization of macrophagelike cells in patients with uveitis by use of En FaceSwept source optical
coherence tomography[ J]. Ocul Immunol Inflamm, 2024, 32(8): 1532-
1538. DOI:10.1080/09273948.2023.2254369.
34、Schatz MJ, Otero-Marquez O, Rosen RB, et al. Multimodal imaging
and macular hyalocyte count in a patient with acute macular
neuroretinopathy[ J]. Case Rep Ophthalmol Med, 2022, 2022: 2855191.
DOI:10.1155/2022/2855191.Schatz MJ, Otero-Marquez O, Rosen RB, et al. Multimodal imaging
and macular hyalocyte count in a patient with acute macular
neuroretinopathy[ J]. Case Rep Ophthalmol Med, 2022, 2022: 2855191.
DOI:10.1155/2022/2855191.
35、Rangwani SM, Hawn S, Sklar NC, et al. Macrophage-like cells are
increased in retinal vein occlusion and correlate with more intravitreal
injections and worse visual acuity outcomes[ J]. J Pers Med, 2022, 13(1):
45. DOI:10.3390/jpm13010045.Rangwani SM, Hawn S, Sklar NC, et al. Macrophage-like cells are
increased in retinal vein occlusion and correlate with more intravitreal
injections and worse visual acuity outcomes[ J]. J Pers Med, 2022, 13(1):
45. DOI:10.3390/jpm13010045.
36、Zeng%20Y%2C%20Zhang%20X%2C%20Mi%20L%2C%20et%20al.%20Macrophage-like%20cells%20characterized%20by%20%0Aen%20face%20optical%20coherence%20tomography%20was%20associated%20with%20fluorescein%20%0Avascular%20leakage%20in%20beh%C3%A7et's%20uveitis%5B%20J%5D.%20Ocul%20Immunol%20Inflamm%2C%202023%2C%20%0A31(5)%3A%20999-1005.%20DOI%3A10.1080%2F09273948.2022.2080719.Zeng%20Y%2C%20Zhang%20X%2C%20Mi%20L%2C%20et%20al.%20Macrophage-like%20cells%20characterized%20by%20%0Aen%20face%20optical%20coherence%20tomography%20was%20associated%20with%20fluorescein%20%0Avascular%20leakage%20in%20beh%C3%A7et's%20uveitis%5B%20J%5D.%20Ocul%20Immunol%20Inflamm%2C%202023%2C%20%0A31(5)%3A%20999-1005.%20DOI%3A10.1080%2F09273948.2022.2080719.
37、Tugal-Tutkun%20I%2C%20Onal%20S%2C%20Altan-Yaycioglu%20R%2C%20et%20al.%20Uveitis%20in%20Beh%C3%A7et%20disease%3A%20%0Aan%20analysis%20of%20880%20patients%5B%20J%5D.%20Am%20J%20Ophthalmol%2C%202004%2C%20138(3)%3A%20373-380.%20%0ADOI%3A10.1016%2Fj.ajo.2004.03.022.Tugal-Tutkun%20I%2C%20Onal%20S%2C%20Altan-Yaycioglu%20R%2C%20et%20al.%20Uveitis%20in%20Beh%C3%A7et%20disease%3A%20%0Aan%20analysis%20of%20880%20patients%5B%20J%5D.%20Am%20J%20Ophthalmol%2C%202004%2C%20138(3)%3A%20373-380.%20%0ADOI%3A10.1016%2Fj.ajo.2004.03.022.