1、Wilhelm H. The pupil[ J]. Curr Opin Neurol, 2008, 21(1): 36-42. DOI:
10.1097/wco.0b013e3282f39173.Wilhelm H. The pupil[ J]. Curr Opin Neurol, 2008, 21(1): 36-42. DOI:
10.1097/wco.0b013e3282f39173.
2、Yoo YJ, Yang HK, Hwang JM. Efficacy of digital pupillometry for
diagnosis of Horner syndrome[ J]. PLoS One, 2017, 12(6): e0178361.
DOI: 10.1371/journal.pone.0178361.Yoo YJ, Yang HK, Hwang JM. Efficacy of digital pupillometry for
diagnosis of Horner syndrome[ J]. PLoS One, 2017, 12(6): e0178361.
DOI: 10.1371/journal.pone.0178361.
3、Martin TJ. Horner syndrome: a clinical review[ J]. ACS Chem Neurosci,
2018, 9(2): 177-186. DOI: 10.1021/acschemneuro.7b00405.Martin TJ. Horner syndrome: a clinical review[ J]. ACS Chem Neurosci,
2018, 9(2): 177-186. DOI: 10.1021/acschemneuro.7b00405.
4、Yoo YJ, Hwang JM, Yang HK. Dilute pilocarpine test for diagnosis of
Adie's tonic pupil[ J]. Sci Rep, 2021, 11(1): 10089. DOI: 10.1038/
s41598-021-89148-w.Yoo YJ, Hwang JM, Yang HK. Dilute pilocarpine test for diagnosis of
Adie's tonic pupil[ J]. Sci Rep, 2021, 11(1): 10089. DOI: 10.1038/
s41598-021-89148-w.
5、Fang C, Leavitt JA, Hodge DO, et al. Incidence and etiologies of
acquired third nerve palsy using a population-based method[ J].
JAMA Ophthalmol, 2017, 135(1): 23-28. DOI: 10.1001/
jamaophthalmol.2016.4456.Fang C, Leavitt JA, Hodge DO, et al. Incidence and etiologies of
acquired third nerve palsy using a population-based method[ J].
JAMA Ophthalmol, 2017, 135(1): 23-28. DOI: 10.1001/
jamaophthalmol.2016.4456.
6、Kim HM, Yang HK, Hwang JM. Quantitative analysis of pupillometry
in isolated third nerve palsy[ J]. PLoS One, 2018, 13(11): e0208259.
DOI: 10.1371/journal.pone.0208259.Kim HM, Yang HK, Hwang JM. Quantitative analysis of pupillometry
in isolated third nerve palsy[ J]. PLoS One, 2018, 13(11): e0208259.
DOI: 10.1371/journal.pone.0208259.
7、Shindler KS, Revere K, Dutt M, et al. In vivo detection of experimental
optic neuritis by pupillometry[ J]. Exp Eye Res, 2012, 100: 1-6. DOI:
10.1016/j.exer.2012.04.005.Shindler KS, Revere K, Dutt M, et al. In vivo detection of experimental
optic neuritis by pupillometry[ J]. Exp Eye Res, 2012, 100: 1-6. DOI:
10.1016/j.exer.2012.04.005.
8、Schmidt FA, Connolly F, Maas MB, et al. Objective assessment of a
relative afferent pupillary defect by B-mode ultrasound[ J]. PLoS One,
2018, 13(8): e0202774. DOI: 10.1371/journal.pone.0202774.Schmidt FA, Connolly F, Maas MB, et al. Objective assessment of a
relative afferent pupillary defect by B-mode ultrasound[ J]. PLoS One,
2018, 13(8): e0202774. DOI: 10.1371/journal.pone.0202774.
9、Bitirgen G, Akpinar Z, Turk HB, et al. Abnormal dynamic pupillometry
relates to neurologic disability and retinal axonal loss in patients with
multiple sclerosis[ J]. Transl Vis Sci Technol, 2021, 10(4): 30. DOI:
10.1167/tvst.10.4.30.Bitirgen G, Akpinar Z, Turk HB, et al. Abnormal dynamic pupillometry
relates to neurologic disability and retinal axonal loss in patients with
multiple sclerosis[ J]. Transl Vis Sci Technol, 2021, 10(4): 30. DOI:
10.1167/tvst.10.4.30.
10、Moura ALA, Nagy BV, La Morgia C, et al. The pupil light reflex in
Leber's hereditary optic neuropathy: evidence for preservation of melanopsin-expressing retinal ganglion cells[ J]. Invest Ophthalmol Vis
Sci, 2013, 54(7): 4471-4477. DOI: 10.1167/iovs.12-11137.Moura ALA, Nagy BV, La Morgia C, et al. The pupil light reflex in
Leber's hereditary optic neuropathy: evidence for preservation of melanopsin-expressing retinal ganglion cells[ J]. Invest Ophthalmol Vis
Sci, 2013, 54(7): 4471-4477. DOI: 10.1167/iovs.12-11137.
11、Satou%20T%2C%20Goseki%20T%2C%20Asakawa%20K%2C%20et%20al.%20Effects%20of%20age%20and%20sex%20on%20values%20%0Aobtained%20by%20RAPDx%C2%AE%20pupillometer%2C%20and%20determined%20the%20standard%20%0Avalues%20for%20detecting%20relative%20afferent%20pupillary%20defect%5B%20J%5D.%20Transl%20Vis%20Sci%20%0ATechnol%2C%202016%2C%205(2)%3A%2018.%20DOI%3A%2010.1167%2Ftvst.5.2.18.Satou%20T%2C%20Goseki%20T%2C%20Asakawa%20K%2C%20et%20al.%20Effects%20of%20age%20and%20sex%20on%20values%20%0Aobtained%20by%20RAPDx%C2%AE%20pupillometer%2C%20and%20determined%20the%20standard%20%0Avalues%20for%20detecting%20relative%20afferent%20pupillary%20defect%5B%20J%5D.%20Transl%20Vis%20Sci%20%0ATechnol%2C%202016%2C%205(2)%3A%2018.%20DOI%3A%2010.1167%2Ftvst.5.2.18.
12、Lee HJ, Kim SJ. Factors associated with visual fatigue from curved
monitor use: a prospective study of healthy subjects[ J]. PLoS One,
2016, 11(10): e0164022. DOI: 10.1371/journal.pone.0164022.Lee HJ, Kim SJ. Factors associated with visual fatigue from curved
monitor use: a prospective study of healthy subjects[ J]. PLoS One,
2016, 11(10): e0164022. DOI: 10.1371/journal.pone.0164022.
13、Henson DB, Emuh T. Monitoring vigilance during perimetry by using
pupillography[ J]. Invest Ophthalmol Vis Sci, 2010, 51(7): 3540-3543.
DOI: 10.1167/iovs.09-4413.Henson DB, Emuh T. Monitoring vigilance during perimetry by using
pupillography[ J]. Invest Ophthalmol Vis Sci, 2010, 51(7): 3540-3543.
DOI: 10.1167/iovs.09-4413.
14、Zhu MJ, Ding L, Du LL, et al. Photopic pupil size change in myopic
orthokeratology and its influence on axial length elongation[ J]. Int J
Ophthalmol, 2022, 15(8): 1322-1330. DOI: 10.18240/ijo.2022.08.15.Zhu MJ, Ding L, Du LL, et al. Photopic pupil size change in myopic
orthokeratology and its influence on axial length elongation[ J]. Int J
Ophthalmol, 2022, 15(8): 1322-1330. DOI: 10.18240/ijo.2022.08.15.
15、Berntsen DA, Ticak A, Sinnott LT, et al. Peripheral defocus, pupil size,
and axial eye growth in children wearing soft multifocal contact lenses
in the BLINK study[ J]. Invest Ophthalmol Vis Sci, 2023, 64(14): 3.
DOI: 10.1167/iovs.64.14.3.Berntsen DA, Ticak A, Sinnott LT, et al. Peripheral defocus, pupil size,
and axial eye growth in children wearing soft multifocal contact lenses
in the BLINK study[ J]. Invest Ophthalmol Vis Sci, 2023, 64(14): 3.
DOI: 10.1167/iovs.64.14.3.
16、Bang JW, Heo H, Choi JS, et al. Assessment of eye fatigue caused by 3D
displays based on multimodal measurements[ J]. Sensors (Basel), 2014,
14(9): 16467-16485. DOI: 10.3390/s140916467.Bang JW, Heo H, Choi JS, et al. Assessment of eye fatigue caused by 3D
displays based on multimodal measurements[ J]. Sensors (Basel), 2014,
14(9): 16467-16485. DOI: 10.3390/s140916467.
17、Lin SY, Su HR, Lo CC, et al. Effects of extended viewing distance on
accommodative response and pupil size of myopic adults by using a
double-mirror system[ J]. Int J Environ Res Public Health, 2022, 19(5):
2942. DOI: 10.3390/ijerph19052942.Lin SY, Su HR, Lo CC, et al. Effects of extended viewing distance on
accommodative response and pupil size of myopic adults by using a
double-mirror system[ J]. Int J Environ Res Public Health, 2022, 19(5):
2942. DOI: 10.3390/ijerph19052942.
18、Kim T, Lee EC. Experimental verification of objective visual fatigue
measurement based on accurate pupil detection of infrared eye image
and multi-feature analysis[ J]. Sensors (Basel), 2020, 20(17): 4814.
DOI: 10.3390/s20174814.Kim T, Lee EC. Experimental verification of objective visual fatigue
measurement based on accurate pupil detection of infrared eye image
and multi-feature analysis[ J]. Sensors (Basel), 2020, 20(17): 4814.
DOI: 10.3390/s20174814.
19、Najjar RP, Rukmini AV, Finkelstein MT, et al. Handheld chromatic
pupillometry can accurately and rapidly reveal functional loss in
glaucoma[ J]. Br J Ophthalmol, 2023, 107(5): 663-670. DOI: 10.1136/
bjophthalmol-2021-319938.Najjar RP, Rukmini AV, Finkelstein MT, et al. Handheld chromatic
pupillometry can accurately and rapidly reveal functional loss in
glaucoma[ J]. Br J Ophthalmol, 2023, 107(5): 663-670. DOI: 10.1136/
bjophthalmol-2021-319938.
20、Volpe NJ, Plotkin ES, Maguire MG, et al. Portable pupillography of the swinging flashlight test to detect afferent pupillary defects[ J].
Ophthalmology, 2000, 107(10): 1913-1921;discussion1922. DOI:
10.1016/s0161-6420(00)00354-7.Volpe NJ, Plotkin ES, Maguire MG, et al. Portable pupillography of the swinging flashlight test to detect afferent pupillary defects[ J].
Ophthalmology, 2000, 107(10): 1913-1921;discussion1922. DOI:
10.1016/s0161-6420(00)00354-7.
21、Jason McAnany J, Smith BM, Garland A , et al. iPhone-based
pupillometry: a novel approach for assessing the pupillary light
reflex[ J]. Optom Vis Sci, 2018, 95(10): 953-958. DOI: 10.1097/
OPX.0000000000001289.Jason McAnany J, Smith BM, Garland A , et al. iPhone-based
pupillometry: a novel approach for assessing the pupillary light
reflex[ J]. Optom Vis Sci, 2018, 95(10): 953-958. DOI: 10.1097/
OPX.0000000000001289.
22、Neice AE, Fowler C, Jaffe RA, et al. Feasibility study of a smartphone
pupillometer and evaluation of its accuracy[ J]. J Clin Monit Comput,
2021, 35(6): 1269-1277. DOI: 10.1007/s10877-020-00592-x.Neice AE, Fowler C, Jaffe RA, et al. Feasibility study of a smartphone
pupillometer and evaluation of its accuracy[ J]. J Clin Monit Comput,
2021, 35(6): 1269-1277. DOI: 10.1007/s10877-020-00592-x.
23、Chang DS, Arora KS, Boland MV, et al. Development and validation
of an associative model for the detection of glaucoma using
pupillography[ J]. Am J Ophthalmol, 2013, 156(6): 1285-1296.e2.
DOI: 10.1016/j.ajo.2013.07.026.Chang DS, Arora KS, Boland MV, et al. Development and validation
of an associative model for the detection of glaucoma using
pupillography[ J]. Am J Ophthalmol, 2013, 156(6): 1285-1296.e2.
DOI: 10.1016/j.ajo.2013.07.026.
24、Gracitelli CPB, Tatham AJ, Zangwill LM, et al. Asymmetric macular
structural damage is associated with relative afferent pupillary defects
in patients with glaucoma[ J]. Invest Ophthalmol Vis Sci, 2016, 57(4):
1738-1746. DOI: 10.1167/iovs.15-18079.Gracitelli CPB, Tatham AJ, Zangwill LM, et al. Asymmetric macular
structural damage is associated with relative afferent pupillary defects
in patients with glaucoma[ J]. Invest Ophthalmol Vis Sci, 2016, 57(4):
1738-1746. DOI: 10.1167/iovs.15-18079.
25、Kostic C, Crippa SV, Leon L, et al. Quantification of the early pupillary
dilation kinetic to assess rod and cone activity[ J]. Sci Rep, 2021, 11(1):
9549. DOI: 10.1038/s41598-021-88915-z.Kostic C, Crippa SV, Leon L, et al. Quantification of the early pupillary
dilation kinetic to assess rod and cone activity[ J]. Sci Rep, 2021, 11(1):
9549. DOI: 10.1038/s41598-021-88915-z.
26、Nakamura M, Sakamoto M, Ueda K, et al. Detection of relative afferent
pupillary defect and its correlation with structural and functional
asymmetry in patients with glaucoma using hitomiru, a novel handheld pupillometer[ J]. J Clin Med, 2023, 12(12): 3936. DOI: 10.3390/
jcm12123936.Nakamura M, Sakamoto M, Ueda K, et al. Detection of relative afferent
pupillary defect and its correlation with structural and functional
asymmetry in patients with glaucoma using hitomiru, a novel handheld pupillometer[ J]. J Clin Med, 2023, 12(12): 3936. DOI: 10.3390/
jcm12123936.
27、Krejtz K, Z
3
urawska J, Duchowski AT, et al. Pupillary and microsaccadic
responses to cognitive effort and emotional arousal during complex
decision making[ J]. J Eye Mov Res, 2020, 13(5): 10.16910/
jemr.13.5.2. DOI: 10.16910/jemr.13.5.2.Krejtz K, Z
3
urawska J, Duchowski AT, et al. Pupillary and microsaccadic
responses to cognitive effort and emotional arousal during complex
decision making[ J]. J Eye Mov Res, 2020, 13(5): 10.16910/
jemr.13.5.2. DOI: 10.16910/jemr.13.5.2.
28、Fehringer BCOF. Optimizing the usage of pupillary based indicators
for cognitive workload[ J]. J Eye Mov Res, 2021, 14(2): 10.16910/
jemr.14.2.4. DOI: 10.16910/jemr.14.2.4.Fehringer BCOF. Optimizing the usage of pupillary based indicators
for cognitive workload[ J]. J Eye Mov Res, 2021, 14(2): 10.16910/
jemr.14.2.4. DOI: 10.16910/jemr.14.2.4.