您的位置: 首页 > 2025年8月 第40卷 第8期 > 文字全文
2023年7月 第38卷 第7期11
目录

帕金森病眼部临床表现与生物标志物

The ocular manifestations and biomarkers of Parkinson's disease

来源期刊: 眼科学报 | 2025年8月 第40卷 第8期 625-635 发布时间:2025-08-28 收稿时间:2025/8/20 15:08:37 阅读量:34
作者:
关键词:
帕金森病眼科学生物标志物
Parkinson’s disease ophthalmology biomarkers
DOI:
10.12419/25042903
收稿时间:
2025-05-06 
修订日期:
2025-05-17 
接收日期:
2025-06-03 
帕金森病(Parkinson’s disease, PD)作为仅次于阿尔茨海默病的第二大神经退行性疾病,其眼部表现近年来逐渐成为跨学科研究热点。以往医生多关注运动迟缓、静止性震颤和肌强直等PD典型症状,但大量临床研究表明,眼睑异常、眼球运动障碍、视觉功能异常等眼部表现不仅普遍存在于PD患者中,更可能在典型运动症状出现前就已显现。长期以来,这些眼部症状因其他症状的掩盖往往被忽视,进一步降低了患者的生活质量。本综述系统梳理PD患者眼部表现的三大方面:首先,眼睑异常方面,PD患者瞬目频率降低,61.1%患者出现干眼症状,导致PD患者的生活质量进一步下降。其次,眼球运动障碍表现为特征性的阶梯式方波急跳、集合功能减退以及反向扫视错误率增加,其中反向扫视潜伏期延长对步态冻结的发生具有预测价值。最后,视觉功能障碍方面,PD患者可出现视敏度下降、色觉异常、对比敏感度受损和视幻觉。影像学检查观察到视网膜神经节细胞层变薄,伴随视网膜微血管密度降低,这些结构性改变与PD患者的视觉功能障碍有关,作为生物标志物具有独特潜力。神经内科-眼科联合诊疗模式不仅有助于PD的早期诊断和预后评估,更有助于临床医生全面理解PD的疾病机制和表现,为未来诊疗策略的优化提供客观依据。
Parkinson’s disease (PD), the second most common neurodegenerative disorder after Alzheimer’s disease, has increasingly garnered interdisciplinary research attention due to its ocular manifestations. While the classical triad of motor symptoms—bradykinesia, resting tremor, and rigidity—remains the diagnostic hallmark, accumulating clinical evidence indicates that ocular abnormalities, including eyelid dysfunction, oculomotor disturbances, and visual impairments, are not only prevalent in PD patients but may also precede the onset of typical motor symptoms. Historically overlooked due to masking by other clinical features, these ocular manifestations contribute to the deterioration of patients' quality of life. This review systematically examines PD-related ocular abnormalities across three key domains: First, eyelid dysfunction manifests as reduced blink frequency, with 61.1% of PD patients reporting dry eye symptoms, further exacerbating their life quality impairment. Second, oculomotor disturbances are characterized by staircase-pattern square-wave jerks, convergence insufficiency, and increased error rates in antisaccade tasks, with prolonged antisaccade latency serving as a predictive marker for freezing of gait. Third, visual dysfunction encompasses diminished visual acuity, dyschromatopsia, impaired contrast sensitivity, and visual hallucinations. Imaging studies reveal structural alterations such as retinal ganglion cell layer thinning and reduced retinal microvascular density, which correlate with visual deficits and hold promise as potential biomarkers. The establishment of a neuro-ophthalmological collaborative framework not only facilitates early PD diagnosis and prognostic assessment but also enhances clinicians' comprehensive understanding of disease mechanisms. Such an approach provides an objective foundation for optimizing future therapeutic strategies.

文章亮点

1. 关键发现

 • 本论文综述了帕金森病眼部表现的多项关键发现,包括特征性的眼睑异常、眼球运动障碍和视觉功能障碍及其相关生物标志物。帕金森病患者可出现眼睑痉挛、睁眼困难和瞬目频率降低,导致干眼症状。眼球运动方面,反向扫视错误率升高,潜伏期延长可预测步态冻结发生,而阶梯式方波急跳具有帕金森病早期诊断价值。此外,研究证实视幻觉是帕金森病痴呆的独立预测因子,视觉系统评估显示视网膜神经节细胞层变薄伴微血管密度降低,这些结构性改变可能与帕金森病患者的视觉功能障碍直接相关。

2. 已知与发现

 • PD 是仅次于阿尔茨海默病的第二大神经退行性疾病,传统多关注其核心运动症状,近年研究明确表明,眼部受累在 PD患者中普遍存在,且相关症状和检查手段与 PD 的早期诊断、预后评估及鉴别诊断存在重要关联。

3. 意义与改变

 • 本综述从三个方面系统梳理了帕金森病眼部表现的研究进展,总结了已知生物标志物及其应用现状,呼吁临床医生应重视早期帕金森病患者的眼部表现,倡导建立神经内科 - 眼科联合诊疗模式,以更全面地理解 PD 病理机制和临床表现,为优化 PD 诊疗策略提供了重要的客观依据。

       帕金森病(Parkinson's disease,PD)是一种以运动迟缓、静止性震颤和肌强直为典型表现的慢性神经系统退行性疾病,其核心病理特征为α-突触核蛋白异常聚集和中脑黑质多巴胺能神经元进行性退变。近年来研究发现,PD还伴有一系列眼部表现,主要包括眼睑异常、眼球运动障碍、视觉功能障碍等。研究表明,眼部表现在典型运动系统症状出现之前就已存在,但由于其他疾病掩盖而受到忽视,这些眼部异常不仅是导致患者日常生活活动(activities of daily living, ADL)困难的重要因素[1],而且在疾病的早期诊断、进展评估及预后判断中也具有重要意义,尤其是在与其他神经退行性疾病的鉴别方面具有独特价值。本文旨在系统综述PD患者的典型眼部表现,帮助临床医生全面理解PD的眼部症状和体征,从而优化PD的诊疗策略,改善患者生活质量。

1 眼睑异常

       眼睑异常表现为眼睑痉挛、睁眼困难和瞬目减少等。眼睑痉挛常见于PD晚期,阳性率约为1%~13%,在非典型帕金森综合征中更为常见[2]。一般认为,眼睑痉挛与基底神经节内抑制的丧失有关,瞬目减少导致的干眼症和眼表不适也可能是原因之一[3]。睁眼困难与多种锥体外系疾病相关,一项意大利的社区调查发现,整个PD组睁眼困难的患病率为2.1%(其中PD 0.7%,进行性核上性麻痹33.3%),且可能与左旋多巴的用药剂量有关[4]。PD患者的瞬目异常表现为频率降低和幅度减少,在轻中度PD患者中,停药期间的自主和三叉神经反射性瞬目振幅小于正常值,自发性瞬目幅度和瞬目频率之间存在显著的正相关[5]。瞬目减少所致泪膜分布异常、支配泪腺的副交感神经功能障碍、泪液成分和渗透压异常、睑板腺功能障碍、抗胆碱药物不良反应等共同导致干眼和眼部炎症[3, 6],61.1%的PD患者报告主观干眼症状[7]。研究发现,PD患者总体泪液功能异常更常见,平均瞬目频率为(12.7±7.42)次/分,低于对照组的(21.8±7.37)次/分;泪液试验的异常与改良Hoehn-Yahr评分显著相关,但睑板腺功能和泪河高度除外[8]。此外,PD患者还观察到眼睑退缩,且对多巴胺能治疗有反应[9]

2 眼球运动障碍

       眼球运动障碍是PD眼部症状的另一重要表现,主要表现为扫视、平稳追踪、集合和注视异常,是导致阅读和行走困难、深度知觉受损和空间导航能力受损的主要原因[10]

2.1 扫视异常

       扫视(saccade)是指双眼由注视一个物体快速跳跃至另一个物体。扫视的发生通常始于前额叶等皮质扫视中枢,该区域接收视觉信息并将眼球运动的指令投射到上丘,上丘整合多个脑区信息后投射到脑干扫视启动中枢,如脑桥旁正中网状结构,从而激发眼球的扫视运动。PD患者基底节神经通路受损导致的上丘活动异常,可能是PD患者扫视障碍的机制之一(图1)。与健康人相比,PD患者出现扫视中断、扫视轨迹不规则、分段扫视减慢、扫视幅度减小[11],且扫视受损在PD认知障碍患者中更加明显[12];扫视幅度减小的现象在实验室和自然场景下均得到了证实[13]。PD患者的视觉搜索功能受损与扫视异常有关,患者凝视空白场景时的视觉搜索过程中非注视性扫视较少,注视性扫视较多,而在复杂场景下则相反[14]。另外,有学者提出,PD患者的扫视和追踪障碍可能存在任务特异性。研究发现与对照组相比,PD患者在具有固定目标的任务中表现出系统性损伤,而对动态目标的眼球运动则相对保留[15]

图1 基底节参与调控扫视运动的神经通路
Figure1 Neural pathways for saccade control in the basal ganglia

20250901160816_2866.png
PFEF:前额叶眼动中枢,FEF:额叶眼动中枢,PEF:顶叶眼动中枢,SEF:辅助区眼动中枢。
PFEF: Prefrontal Eye Field, FEF: Frontal Eye Field, PEF: Parietal Eye Field, SEF: Supplementary Eye Field.
       正向扫视(pro-saccade)和反向扫视(anti-saccade)是2种被广泛研究的快速眼动模式,可能是早期诊断PD的潜在生物标志物。前者指当一个新的视觉刺激出现在视野中时,眼球自然而然地快速转向该刺激,是一种反射性的、由刺激驱动的眼球运动,不需要大脑的额外认知控制;后者指当目标出现时,要求被试眼睛跳向与目标位置相反的方向,即抑制对直接视觉刺激的反射性扫视,并自主生成相反方向的扫视。研究发现,PD患者正向扫视和反向扫视表现(包括潜伏期、错误率和准确性)与疾病持续时间、PD统一评分量表评分、Hoehn-Yahr分期、MDS统一帕金森病评分量表(movement disorder society-unified Parkinson disease rating scale,MDS-UPDRS)得分、运动迟缓相关,但与震颤评分无关[16-17];反向扫视潜伏期延长对5年内发生步态冻结(freezing of gait,FOG)具有预测意义[18]。以上发现均提示这些眼动相关指标可能反映PD的严重程度和进展。
       与运动症状不同,急性左旋多巴给药对反向扫视的改善并不显著,但丘脑底核的深部脑刺激可能改善反向扫视的速度和准确性[16]。另一项研究表明,在丘脑底核(subthalamic nucleus,STN)植入深部脑刺激器(deep brain stimulation,DBS)会增加未接受多巴胺替代治疗PD患者的反向扫视错误率,而左旋多巴(L-DOPA)可减轻丘脑底核深部脑刺激对反向扫视错误率的影响,说明丘脑底核的深部脑刺激与多巴胺替代疗法可能存在相互作用[19]。丘脑示踪剂摄取率(specific tracer uptake Ratios,SUR)的减少与扫视潜伏期延长相关,但扫视准确性的降低则与前部和后部壳核的SUR减少相关,提示不同脑区在控制扫视中的复杂分工[20]。 

2.2 平稳追踪异常

       平稳追踪运动(smooth pursuit eye movement, SPEM)是指眼球跟随一个缓慢而平稳运动的视标运动,使视标的影像始终保持在视网膜黄斑中心凹的一种慢速眼球运动[21]。PD患者的平稳追踪异常主要表现为增益(定义为眼球平滑追踪速度除以目标移动速度)降低、准确性降低和扫视性追踪降低[22]。研究发现,PD患者的SPEM增益值显著低于正常对照,且在震颤优势型患者中表现得更为明显,SPEM增益值与震颤评分呈负相关[21]。平稳追踪增益降低与中缝背核的SUR减少有关,但未发现与PD严重程度评分存在关联[20]。扫视性追踪(saccade pursuit)包括预期性扫视(anticipatory saccade)和追逐扫视(chasing saccade)。前者指在平稳追踪过程中,眼球提前向预期目标位置做出的快速运动,导致平稳追踪运动中断,这种现象在PD的早期即可表现出来[23];后者指落后于目标的扫视,主要见于更晚期的PD患者。

2.3 集合功能异常

       人眼看近处物体时,两眼的视轴同时向内会聚、转向被注视物体,这种运动称为集合。研究人员观察到,PD患者视差驱动的视觉集合运动潜伏期增加、速度减慢、增益降低,这可能与小脑深部核团和中脑动眼神经上区病变有关[24-25]。在多巴胺能治疗的“on”和“off”状态下,PD患者的集合能力均差于正常对照,但全身性多巴胺能治疗能够部分改善;与“off”状态相比,“on”状态下患者眼球运动的平均集合幅度和集合近点更佳[26]。为了补偿集合功能的损害以完成注视转移,PD患者可能在集合的同时或先后融入快速眼动(扫视)运动,触发这种与集合同时发生的扫视的机制包括异常集合速度增益和神经门控机制[27]。与扫视任务类似,集合功能同样具备纵向评估PD进展的潜力。集合功能不足的患病率随着PD分期的推进而增加,并与 Hoehn-Yahr分期进展相关[28]

2.4 注视异常

        注视时间、注视稳定性与眼震颤、方波急跳(square-wave jerks, SWJ)的模式等均被发现与PD的早期诊断相关。纵向研究显示,注视时间延长可能是PD胆碱能缺陷的替代标志物[29];对比PD患者和健康对照者在稳定光照条件下的注视稳定性,最长注视时间与PD诊断独立相关[30]。SWJ是指眼球在注视目标时,出现短暂、快速的同向急跳,随后经过一个短暂的间隔(通常为200 ms左右),眼球又快速跳回原来的位置。PD、多发性硬化、小脑病变等疾病患者每次急跳的幅度逐渐增加,形成类似“阶梯”(staircase)的模式[31]
注视异常存在于多种疾病,但PD的注视异常具备一定特异性。一方面,上述阶梯式方波急跳等注视异常与PD早期诊断相关,另一方面,宏大的方波急跳、垂直凝视麻痹、持续凝视诱发的眼球震颤和扫视过度(即超出目标)现象则有助于PD的排除诊断[32]
       综上所述,眼球运动障碍作为PD的潜在生物标志物,近年来得到了越来越多的关注。眼球运动异常联合步态异常用于诊断PD的可行性已得到证明[33]。利用注视稳定性、正向扫视、反向扫视和平稳追踪特征在VR环境中建立诊断模型达到了92.73%的准确率[34]。此外,还有研究者使用基于视频的眼动追踪提取扫视、瞳孔和眨眼作为生物标志物开发了一种预测PD认知功能障碍程度的机器学习模型[35]。该模型达到了较好的灵敏度(83%)和特异度(78%)。这些研究表明眼球运动不仅有助于PD的诊断、分期和预后评估,还具备预测PD患者认知障碍发展的潜力。

3 视觉障碍

       视觉障碍包括视敏度下降、色觉异常、对比敏感度降低、视幻觉等。PD患者视觉功能障碍与视网膜神经节细胞(retinal ganglion cells,RGCs)退化和神经纤维层变薄、多巴胺能神经元损伤、视网膜微血管减少、α-突触核蛋白的沉积以及视觉皮层和相关通路的损伤有关。视觉功能障碍已成为PD不良预后的标志,并具有对PD患者发生痴呆的预测价值。Hamedani及其同事[36]发现,PD患者的视觉功能障碍比非PD更常见,比值比为1.60(95% CI 1.56~1.65),且PD中的中重度视力障碍与抑郁、痴呆和死亡的发生率增加有关,即使调整了年龄等混杂因素也是如此。有学者使用数学建模方法来对PD患者临床、认知和神经影像学指标下降的概率进行排序,发现在痴呆风险升高的患者中,视觉损害是发生率仅次于快速眼动期(rapid eye movement,REM)睡眠行为问题和嗅觉功能障碍的早期事件,视网膜变薄和皮质变薄则相对发生较晚[37]。视觉功能障碍比视网膜厚度变化更有助于预测痴呆的发生[38]

3.1 视觉功能障碍的临床表现

       3.1.1 视敏度下降
       视网膜黄斑中心凹是视觉最敏锐的区域,该区域的病变会导致视敏度明显降低,影响患者的阅读、驾驶、识别细节等能力。韩国的一项大型队列研究经过最短5年的随访发现,低视力组发生PD的风险高于高视力组[39]。在年龄和性别匹配的情况下,PD患者(服用或停用药物持续24 h)的高对比度视力在标准Snellen图表和计算机测试中均显著低于正常对照[40]
       3.1.2 色觉异常
       色觉异常是PD的早期症状,并与疾病的进展相关。研究人员对PD患者进行Farnsworth-Munsell 100色觉测试,在调整年龄后,PD患者的总误差评分(total error score,TES)高于特发性震颤患者和正常对照组,且色觉异常与PD运动症状的严重程度,尤其是与中轴症状相关[41]
       3.1.3 对比敏感度降低
       对比敏感度是区分物体与背景的能力,受眼以及丘脑或皮质病变的影响,可以使用Pelli-Robson图(一种字母大小相同但对比度逐渐降低的视力表)或Campbell-Robson光栅进行测试。PD患者早期就可能出现对比敏感度降低,特别是在暗光条件下,因此对比敏感度被认为是早期诊断PD有价值的生物标志物。PD患者在一定空间频率范围内以及中心凹和外围位置都表现出对比敏感度的丧失,这种丧失在L-DOPA治疗后部分可逆[42]。有研究通过中心凹构建对称性、深度和宽度(symmetry, depth and breadth,SBD)模型,将中心凹的整体形态变化与对比敏感度下降相关联,发现颞部-鼻部和下部-上部的视网膜厚度一阶变化趋势在反映PD组与对照组的差异上表现最优[43]。进一步运用数学工具有助于更好地理解PD患者对比灵敏度下降与中心凹重塑的关系。
       3.1.4 视幻觉
       视幻觉通常在疾病的晚期出现,并可能伴有精神症状。PD患者的典型视幻觉多为复杂性,在昏暗环境更容易出现,通常不伴恐惧感,但随着病情进展,患者会逐渐丧失自知力[44]。复杂性视幻觉在PD患者(17%)和PD痴呆患者(89%)中很常见,且PD痴呆患者报告错觉(65%)和存在性幻觉(62%)的频率高于PD患者或对照组,幻觉可能是PD伴发认知障碍的预测因子之一[45]。与不伴视幻觉的PD患者(Parkinson’s disease without visual hallucination,PD-NVH)相比,伴视幻觉的PD患者(Parkinson’s disease with visual hallucination,PD-VH)中男性多见,年龄更大,病程更长,H-Y分期和UPDRS评分更高,姿势不稳/步态障碍型多见,且易伴发其他非运动症状[46]。视幻觉的产生机制可能与视觉和认知相关皮质萎缩、小脑白质体积减小以及大脑的主要视觉皮层和默认模式网络(default mode network,DMN)之间的相互作用有关[47-49]
       3.1.5 立体视觉异常
       立体视觉是通过双眼视差(即左右眼看到的图像略有差异)来感知物体深度和距离的能力,使人能够判断物体的远近、进行精细的空间定位以及完成需要手眼协调的任务。有研究使用3D主动快门系统测量受试者立体视力,发现PD患者的立体视觉明显变差,且与运动症状的严重程度呈正相关,与正常认知状态呈负相关,但2D图片的立体视觉和Titmus立体测试未检测到这种差异[50]

3.2 视觉障碍相关的非侵入性生物标志物

        3.2.1 光学相干断层扫描
       对于发生视觉障碍的PD患者,光学相干断层扫描(optical coherence tomography,OCT)参数是最早和最常应用的生物标志物之一。OCT能够提供精确的神经节细胞层、内丛状层和内核层的厚度,评估PD患者视网膜病变[51]。与对照相比,PD患者OCT测量的平均盘周视网膜神经纤维层(peripapillary  retinal nerve fibers layer,pRNFL)厚度、所有象限pRNFL、神经节细胞内丛状层(ganglion cell-inner plexiform layer,GC-IPL)和内核层(inner nuclear layer,INL)厚度、黄斑中心凹厚度、黄斑处的所有外扇区厚度、黄斑体积和黄斑神经节细胞复合体(ganglion cell complex,GCC)厚度均降低[52-54],其中pRNFL 变薄遵循特定模式,颞下方变薄最明显,鼻侧象限变薄最少[55]。视网膜旁中心凹变薄,尤其是内丛状层变薄与视幻觉存在独立相关[56-57]。值得注意的是,与特发性PD(idiopathic Parkinson’s disease,iPD)相比,LRRK2(leucin rich repeat kinase 2)相关PD的视网膜变薄较不明显[58]
       此外,OCT还可能有助于预测PD的遗传风险。一项研究对来自澳大利亚的受试者进行 OCT 检查并记录其20~28岁之间的纵向变化,发现黄斑区视网膜厚度与PD多基因风险评分显著相关,基因表达分析确定了NSFCRHR1KANSL1等27个PD和视网膜结构完整性受损之间共享的潜在致病基因,主要位于17号染色体上[59]
然而,OCT存在一定局限性:1)PD和青光眼、糖尿病性视网膜病变、年龄相关性黄斑变性等多种疾病的OCT变化存在重叠,这限制了OCT用于PD诊断的特异性[60];2)OCT无法区分早期PD和药物性帕金森综合征(drug-induced Parkinsonism,DIP)[61]。因此,OCT检查需与其他生物标志物相结合才能更好地用于PD的诊断。
       3.2.2 光学相干断层扫描血管造影
      光学相干断层扫描血管造影(optical tomography angiography,OCTA)能够检测PD患者的视网膜微血管变化。PD患者视网膜旁中心凹浅层毛细血管网(superficial capillary plexus,SRCP)和深层毛细血管网(deep capillary plexus,DRCP)的血管密度均低于健康对照者,且DRCP的血管密度与执行功能评分相关[62]。OCTA还观察到PD患者视网膜浅层毛细血管网血管密度(vessel density,VD)、灌注密度(perfusion density,PFD)和脉络膜血管分布指数(choroidal vascularity index,CVI)降低[63],但一项荟萃分析显示,PD患者与健康对照相比脉络膜厚度并无显著差异[64]。此外,研究发现PD患者表现出GCIPL和pRNFL血管密度的双眼不对称变化,其血管损失程度与运动症状评分相关[65-66]。结合OCTA和OCT进行纵向研究是另一个有前景的研究方向,将有助于探索PD的视网膜和脉络膜变化是否进行性的,并区分哪些亚组的疾病更具侵袭性[67]
       3.2.3 电生理检查
       电生理检查可能是比OCT更敏感的方法。研究者在患者和动物模型中记录到视网膜电图(electroretinogram,ERG)的潜伏期延迟和振幅降低,且与OCT观察到的视网膜神经纤维层变薄程度相关[68]。全视野视网膜电图(full-field electroretinogram,ffERG)检测到PD患者振荡电位和明视负反应波(photopic negative response,PhNR)振幅均显著下降,可能在OCT检测到结构异常之前发现PD的视网膜电生理功能变化[69]。此外,PD患者的视觉诱发电位(visual evokes potential,VEP)与对照组相比潜伏期延长[70],视觉诱发电位在评估PD视幻觉视觉传导通路完整性中也具有一定价值[71]
       3.2.4 视网膜高光谱成像
      高光谱成像最早起源于地理空间科学,后来其应用范围扩展到医学等领域。视网膜高光谱成像同时具备了高光谱成像与视网膜成像的优势,已在阿尔茨海默病等疾病的诊断中显示出潜力,但在PD中的研究还非常有限。已有动物实验和人体研究评估PD的视网膜高光谱成像表现,PD组和对照组之间的视网膜反射光谱值在较短的波长范围存在差异,其独特的光谱特征有助于鉴别PD、阿尔茨海默病和正常衰老[72-73]

图2 帕金森病的眼部生物标志物
Figure2 Ocular biomarkers in Parkinson's disease

20250901161056_3273.png
本图基于OpenStax College的 Anatomy & Physiology 插图(CC BY-SA 3.0,http://cnx.org/content/col11496/1.6/)修改,遵循CC BY-SA 3.0协议发布。
This figure is adapted from an illustration by OpenStax College (CC BY-SA 3.0, http://cnx.org/content/col11496/1.6/), modified and released under the same CC BY-SA 3.0 license in Anatomy & Physiology .
       近年来,人工智能和机器学习在眼科图像诊断中的应用越来越成为临床医生和研究人员关注的热点,在PD患者的视网膜损害中也不例外。有研究者系统评估了常规机器学习和深度学习技术从英国生物样本库眼底成像中分辨PD的能力,发现表现最好的深度学习模型是AlexNet(平均AUC为0.77,准确率为 0.68),其次是PPV和NPV;表现最好的常规机器学习模型是RBF支持向量机[74]。此外,有研究人员使用深度学习从眼底图像计算出视网膜年龄(一项衰老的新型生物标志物),视网膜年龄差距增加1年与PD风险增加 10% 相关,显示出识别未来PD高危个体的潜力[75]
       PD患者伴有一系列的眼部表现,多种眼科检查有望成为PD早期诊断和预后评估的生物标志物(表1)。然而,目前关于PD眼部生物标志物的研究仍存在一定局限性。比如,多数研究为横断面设计,需要更多纵向数据验证生物标志物的预测价值;部分新兴技术成本较高,限制了临床应用。未来研究将聚焦于技术创新、多模态数据整合和标准化评估体系的建立,同时推动临床转化乃至跨学科协作,更好地实现PD的精准管理。

表 1 帕金森病中的眼部症状和体征
Table1 Ocular symptoms and signs in Parkinson's disease

症状

发生时间

检测手段

是否与运动症状有关

是否与痴呆有关

鉴别诊断

眼睑异常

 

 

 

 

 

瞬目减少

早期

病史

瞬目反射

床旁瞬目检测

可能

特发性眼睑痉挛

面肌痉挛

药物性帕金森综合征

重症肌无力

进行性核上性麻痹(PSP)

多系统萎缩(MSA)

心因性闭眼

眼睑痉挛

中晚期

病史

诱发试验

睁眼指令

肌电图

视频眼动仪

睁眼困难

中晚期

病史

肉毒毒素诊断性治疗

眼球运动障碍

 

 

 

 

 

扫视异常

早期可有

指令性扫视测试

反向扫视任务

视频眼动仪

PSP

重症肌无力

小脑性共济失调

亨廷顿病(HD)

平稳追踪异常

早期可有

正弦波追踪测试

视频眼动仪

集合功能障碍

 

 

 

 

 

集合功能异常

早期可有

集合近点测试(NPC)

交替遮盖试验

视频眼动仪

PSP

核间性眼肌麻痹

视觉功能障碍

 

 

 

 

 

视敏度下降

早期

Snellen等各类视力表

视觉诱发电位

老年性白内障

糖尿病视网膜病变

年龄相关性黄斑变性(AMD)

PSP

药物性视力障碍

对比敏感度下降

早期

Pelli-Robson图

Campbell-Robson光栅

色觉异常

早期

Farnsworth-Munsell测试

AMD

视神经炎

维生素A缺乏

视幻觉

中晚期

病史

神经精神问卷(NPI)

帕金森病幻觉问卷(PDHQ)

阿尔海默病

精神分裂症

枕叶癫痫

立体视觉异常

各时期

随机点立体图(RDS)

TNO测试

立体视敏度测试

PSP

斜视

枕叶卒中

4 结语

       PD的眼部受累加重了患者的疾病负担,有效识别PD眼部表现对于疾病的早期诊断、进展评估及预后判断具有重要意义,值得患者、医生和研究者重视。在临床工作中,神经内科医生需要提高对帕金森患者眼部表现的重视,眼科医生需要提高从以眼科症状为首发症状或主诉的患者中识别PD的意识。深入研究眼部表现与PD之间的关系,有助于加深临床医生对PD的理解、为疾病诊疗提供新的线索,从而减轻患者的疾病负担,改善其生活质量。

声明

在本作品的准备过程中,作者使用了DeepSeek V3进行语言润色和部分文献调研。使用此工具后,作者根据需要对内容进行了审查和编辑,并对出版物的内容承担全部责任。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。
1、Guo L, Normando EM, Shah PA, et al. Oculo-visual abnormalities in Parkinson's disease: Possible value as biomarkers[ J]. Mov Disord, 2018, 33(9): 1390-1406. DOI: 10.1002/mds.27454.Guo L, Normando EM, Shah PA, et al. Oculo-visual abnormalities in Parkinson's disease: Possible value as biomarkers[ J]. Mov Disord, 2018, 33(9): 1390-1406. DOI: 10.1002/mds.27454.
2、Rana AQ, Kabir A, Dogu O, et al. Prevalence of blepharospasm and apraxia of eyelid opening in patients with Parkinsonism, cervical dystonia and essential tremor[ J]. Eur Neurol, 2012, 68(5): 318-321. DOI: 10.1159/000341621.Rana AQ, Kabir A, Dogu O, et al. Prevalence of blepharospasm and apraxia of eyelid opening in patients with Parkinsonism, cervical dystonia and essential tremor[ J]. Eur Neurol, 2012, 68(5): 318-321. DOI: 10.1159/000341621.
3、Choi JH, Kim JM, Yang HK , et al. Clinical perspectives of Parkinson's disease for ophthalmologists, otorhinolaryngologists, cardiologists, dentists, gastroenterologists, urologists, physiatrists, and psychiatrists[ J]. J Korean Med Sci, 2020, 35(28): e230. DOI: 10.3346/ jkms.2020.35.e230.Choi JH, Kim JM, Yang HK , et al. Clinical perspectives of Parkinson's disease for ophthalmologists, otorhinolaryngologists, cardiologists, dentists, gastroenterologists, urologists, physiatrists, and psychiatrists[ J]. J Korean Med Sci, 2020, 35(28): e230. DOI: 10.3346/ jkms.2020.35.e230.
4、Lamberti P, De Mari M, Zenzola A, et al. Frequency of apraxia of eyelid opening in the general population and in patients with extrapyramidal disorders[ J]. Neurol Sci, 2002, 23(Suppl 2): S81-S82. DOI: 10.1007/ s100720200080.Lamberti P, De Mari M, Zenzola A, et al. Frequency of apraxia of eyelid opening in the general population and in patients with extrapyramidal disorders[ J]. Neurol Sci, 2002, 23(Suppl 2): S81-S82. DOI: 10.1007/ s100720200080.
5、Korosec M, Zidar I, Reits D, et al. Eyelid movements during blinking in patients with Parkinson's disease[ J]. Mov Disord, 2006, 21(8): 1248- 1251. DOI: 10.1002/mds.20930.Korosec M, Zidar I, Reits D, et al. Eyelid movements during blinking in patients with Parkinson's disease[ J]. Mov Disord, 2006, 21(8): 1248- 1251. DOI: 10.1002/mds.20930.
6、Thacker M, Wong KY, Zhou L, et al. Exploring ocular disorders in Parkinson's disease: a comprehensive review and future perspectives[ J]. Exp Eye Res, 2025, 251: 110225. DOI: 10.1016/j.exer.2024.110225.Thacker M, Wong KY, Zhou L, et al. Exploring ocular disorders in Parkinson's disease: a comprehensive review and future perspectives[ J]. Exp Eye Res, 2025, 251: 110225. DOI: 10.1016/j.exer.2024.110225.
7、Nagino K, Sung J, Oyama G, et al. Prevalence and characteristics of dry eye disease in Parkinson's disease: a systematic review and metaanalysis[ J]. Sci Rep, 2022, 12(1): 18348. DOI: 10.1038/s41598-022- 22037-y.Nagino K, Sung J, Oyama G, et al. Prevalence and characteristics of dry eye disease in Parkinson's disease: a systematic review and metaanalysis[ J]. Sci Rep, 2022, 12(1): 18348. DOI: 10.1038/s41598-022- 22037-y.
8、Tamer C, Melek IM, Duman T, et al. Tear film tests in Parkinson's disease patients[ J]. Ophthalmology, 2005, 112(10): 1795. DOI: 10.1016/j.ophtha.2005.04.025.Tamer C, Melek IM, Duman T, et al. Tear film tests in Parkinson's disease patients[ J]. Ophthalmology, 2005, 112(10): 1795. DOI: 10.1016/j.ophtha.2005.04.025.
9、Onofrj M, Monaco D, Bonanni L, et al. Eyelid retraction in dementia with Lewy bodies and Parkinson's disease[ J]. J Neurol, 2011, 258(8): 1542-1544. DOI: 10.1007/s00415-011-5942-z.Onofrj M, Monaco D, Bonanni L, et al. Eyelid retraction in dementia with Lewy bodies and Parkinson's disease[ J]. J Neurol, 2011, 258(8): 1542-1544. DOI: 10.1007/s00415-011-5942-z.
10、Sun%20YR%2C%20Beylergil%20SB%2C%20Gupta%20P%2C%20et%20al.%20Monitoring%20eye%20movement%20in%20%0Apatients%20with%20Parkinson's%20disease%3A%20what%20can%20it%20tell%20us%3F%5B%20J%5D.%20Eye%20Brain%2C%202023%2C%2015%3A%20101-112.%20DOI%3A%2010.2147%2FEB.S384763.Sun%20YR%2C%20Beylergil%20SB%2C%20Gupta%20P%2C%20et%20al.%20Monitoring%20eye%20movement%20in%20%0Apatients%20with%20Parkinson's%20disease%3A%20what%20can%20it%20tell%20us%3F%5B%20J%5D.%20Eye%20Brain%2C%202023%2C%2015%3A%20101-112.%20DOI%3A%2010.2147%2FEB.S384763.
11、Shaikh AG, Ghasia FF. Saccades in Parkinson's disease: Hypometric, slow, and maladaptive[ J]. Prog Brain Res, 2019, 249: 81-94. DOI: 10.1016/bs.pbr.2019.05.001.Shaikh AG, Ghasia FF. Saccades in Parkinson's disease: Hypometric, slow, and maladaptive[ J]. Prog Brain Res, 2019, 249: 81-94. DOI: 10.1016/bs.pbr.2019.05.001.
12、胡晓丹, 蒙云, 吕思娆, 等. 视频眼震电图扫视检查对帕金森病 轻度认知障碍患者的诊断价值[ J]. 医学信息, 2025, 38(3): 85-90. DOI: 10.3969/j.issn.1006-1959.2025.03.016.
Hu X D, Meng Y, Ly u SR , et al . Diagnost ic value of v ideo nystagmography in patients with mild cognitive impairment in Parkinson's disease[ J]. J Med Inf, 2025, 38(3): 85-90. DOI: 10.3969/ j.issn.1006-1959.2025.03.016.
Hu X D, Meng Y, Ly u SR , et al . Diagnost ic value of v ideo nystagmography in patients with mild cognitive impairment in Parkinson's disease[ J]. J Med Inf, 2025, 38(3): 85-90. DOI: 10.3969/ j.issn.1006-1959.2025.03.016.
13、Gibbs MC, Huxley J, Readman MR, et al. Naturalistic eye movement tasks in Parkinson's disease: a systematic review[ J]. J Parkinsons Dis, 2024, 14(7): 1369-1386. DOI: 10.3233/JPD-240092.Gibbs MC, Huxley J, Readman MR, et al. Naturalistic eye movement tasks in Parkinson's disease: a systematic review[ J]. J Parkinsons Dis, 2024, 14(7): 1369-1386. DOI: 10.3233/JPD-240092.
14、Beylergil SB, Kilbane C, Shaikh AG, et al. Eye movements in Parkinson's disease during visual search[ J]. J Neurol Sci, 2022, 440: 120299. DOI: 10.1016/j.jns.2022.120299.Beylergil SB, Kilbane C, Shaikh AG, et al. Eye movements in Parkinson's disease during visual search[ J]. J Neurol Sci, 2022, 440: 120299. DOI: 10.1016/j.jns.2022.120299.
15、Fooken J, Patel P, Jones CB, et al. Preservation of eye movements in Parkinson's disease is stimulus- and task-specific[ J]. J Neurosci, 2022, 42(3): 487-499. DOI: 10.1523/JNEUROSCI.1690-21.2021.Fooken J, Patel P, Jones CB, et al. Preservation of eye movements in Parkinson's disease is stimulus- and task-specific[ J]. J Neurosci, 2022, 42(3): 487-499. DOI: 10.1523/JNEUROSCI.1690-21.2021.
16、Waldthaler J, Stock L, Student J, et al. Antisaccades in Parkinson's disease: a meta-analysis[ J]. Neuropsychol Rev, 2021, 31(4): 628-642. DOI: 10.1007/s11065-021-09489-1.Waldthaler J, Stock L, Student J, et al. Antisaccades in Parkinson's disease: a meta-analysis[ J]. Neuropsychol Rev, 2021, 31(4): 628-642. DOI: 10.1007/s11065-021-09489-1.
17、Reiner J, Franken L, Raveh E, et al. Oculometric measures as a tool for assessment of clinical symptoms and severity of Parkinson's disease[ J]. J Neural Transm (Vienna), 2023, 130(10): 1241-1248. DOI: 10.1007/ s00702-023-02681-y.Reiner J, Franken L, Raveh E, et al. Oculometric measures as a tool for assessment of clinical symptoms and severity of Parkinson's disease[ J]. J Neural Transm (Vienna), 2023, 130(10): 1241-1248. DOI: 10.1007/ s00702-023-02681-y.
18、Gallea C, Wicki B, Ewenczyk C, et al. Antisaccade, a predictive marker for freezing of gait in Parkinson's disease and gait/gaze network connectivity[ J]. Brain, 2021, 144(2): 504-514. DOI: 10.1093/brain/ awaa407.Gallea C, Wicki B, Ewenczyk C, et al. Antisaccade, a predictive marker for freezing of gait in Parkinson's disease and gait/gaze network connectivity[ J]. Brain, 2021, 144(2): 504-514. DOI: 10.1093/brain/ awaa407.
19、Bakhtiari S, Altinkaya A, Pack CC, et al. The role of the subthalamic nucleus in inhibitory control of oculomotor behavior in Parkinson's disease[ J]. Sci Rep, 2020, 10(1): 5429. DOI: 10.1038/s41598-020- 61572-4.Bakhtiari S, Altinkaya A, Pack CC, et al. The role of the subthalamic nucleus in inhibitory control of oculomotor behavior in Parkinson's disease[ J]. Sci Rep, 2020, 10(1): 5429. DOI: 10.1038/s41598-020- 61572-4.
20、Woo KA, Joun JH, Yoon EJ, et al. Monoaminergic degeneration and ocular motor abnormalities in de novo Parkinson's disease[ J]. Mov Disord, 2023, 38(12): 2291-2301. DOI: 10.1002/mds.29623.Woo KA, Joun JH, Yoon EJ, et al. Monoaminergic degeneration and ocular motor abnormalities in de novo Parkinson's disease[ J]. Mov Disord, 2023, 38(12): 2291-2301. DOI: 10.1002/mds.29623.
21、应黎, 耿翔, 陈旭. 帕金森病患者眼球平稳追踪运动的临床研究 [ J]. 中华老年心脑血管病杂志, 2018, 20(1): 46-49. DOI: 10.3969/ j.issn.1009-0126.2018.01.012.
Ying L, Geng X, Chen X. Clinical significance of smooth pursuit eye movement in PD patients[ J]. Chin J Geriatr Heart Brain Vessel Dis, 2018, 20(1): 46-49. DOI: 10.3969/j.issn.1009-0126.2018.01.012.
Ying L, Geng X, Chen X. Clinical significance of smooth pursuit eye movement in PD patients[ J]. Chin J Geriatr Heart Brain Vessel Dis, 2018, 20(1): 46-49. DOI: 10.3969/j.issn.1009-0126.2018.01.012.
22、Li H, Zhang X, Yang Y, et al. Abnormal eye movements in Parkinson's disease: From experimental study to clinical application[J]. Parkinsonism Relat Disord, 2023, 115: 105791. DOI: 10.1016/j.parkreldis.2023.105791.Li H, Zhang X, Yang Y, et al. Abnormal eye movements in Parkinson's disease: From experimental study to clinical application[J]. Parkinsonism Relat Disord, 2023, 115: 105791. DOI: 10.1016/j.parkreldis.2023.105791.
23、Gorges M, Pinkhardt EH, Kassubek J. Alterations of eye movement control in neurodegenerative movement disorders[ J]. J Ophthalmol, 2014, 2014: 658243. DOI: 10.1155/2014/658243.Gorges M, Pinkhardt EH, Kassubek J. Alterations of eye movement control in neurodegenerative movement disorders[ J]. J Ophthalmol, 2014, 2014: 658243. DOI: 10.1155/2014/658243.
24、Gupta P, Beylergil S, Murray J, et al. Effects of parkinson disease on blur-driven and disparity-driven vergence eye movements[ J]. J Neuroophthalmol, 2021, 41(4): 442-451. DOI: 10.1097/ WNO.0000000000001422.Gupta P, Beylergil S, Murray J, et al. Effects of parkinson disease on blur-driven and disparity-driven vergence eye movements[ J]. J Neuroophthalmol, 2021, 41(4): 442-451. DOI: 10.1097/ WNO.0000000000001422.
25、Hanu%C5%A1ka%20J%2C%20Bonnet%20C%2C%20Rusz%20J%2C%20et%20al.%20Fast%20vergence%20eye%20movements%20%0Aare%20disrupted%20in%20Parkinson's%20disease%3A%20a%20video-oculography%20study%5B%20J%5D.%20%0AParkinsonism%20Relat%20Disord%2C%202015%2C%2021(7)%3A%20797-799.%20DOI%3A%2010.1016%2F%0Aj.parkreldis.2015.04.014.Hanu%C5%A1ka%20J%2C%20Bonnet%20C%2C%20Rusz%20J%2C%20et%20al.%20Fast%20vergence%20eye%20movements%20%0Aare%20disrupted%20in%20Parkinson's%20disease%3A%20a%20video-oculography%20study%5B%20J%5D.%20%0AParkinsonism%20Relat%20Disord%2C%202015%2C%2021(7)%3A%20797-799.%20DOI%3A%2010.1016%2F%0Aj.parkreldis.2015.04.014.
26、Almer Z, Klein KS, Marsh L, et al. Ocular motor and sensory function in Parkinson's disease[ J]. Ophthalmology, 2012, 119(1): 178-182. DOI: 10.1016/j.ophtha.2011.06.040.Almer Z, Klein KS, Marsh L, et al. Ocular motor and sensory function in Parkinson's disease[ J]. Ophthalmology, 2012, 119(1): 178-182. DOI: 10.1016/j.ophtha.2011.06.040.
27、Gupta P, Beylergil S, Murray J, et al. Computational models to delineate 3D gaze-shift strategies in Parkinson's disease[ J]. J Neural Eng, 2021, 18(4). DOI: 10.1088/1741-2552/ac123e. DOI: 10.1088/1741-2552/ ac123e.Gupta P, Beylergil S, Murray J, et al. Computational models to delineate 3D gaze-shift strategies in Parkinson's disease[ J]. J Neural Eng, 2021, 18(4). DOI: 10.1088/1741-2552/ac123e. DOI: 10.1088/1741-2552/ ac123e.
28、Herrero-Gracia A, Hernández-Andrés R, Luque MJ, et al. Convergence insufficiency and Parkinson's disease progression[ J]. Park Relat Disord, 2025, 133: 107341. DOI: 10.1016/j.parkreldis.2025.107341.Herrero-Gracia A, Hernández-Andrés R, Luque MJ, et al. Convergence insufficiency and Parkinson's disease progression[ J]. Park Relat Disord, 2025, 133: 107341. DOI: 10.1016/j.parkreldis.2025.107341.
29、Wong OW, Chan A, Wong A, et al. Prolonged visual fixation as a surrogate marker of cholinergic deficit in Parkinson's disease: a 2-year follow-up study[ J]. Parkinsonism Relat Disord, 2020, 81: 60-66. DOI: 10.1016/j.parkreldis.2020.10.019.Wong OW, Chan A, Wong A, et al. Prolonged visual fixation as a surrogate marker of cholinergic deficit in Parkinson's disease: a 2-year follow-up study[ J]. Parkinsonism Relat Disord, 2020, 81: 60-66. DOI: 10.1016/j.parkreldis.2020.10.019.
30、Tsitsi%20P%2C%20Benfatto%20MN%2C%20Seimyr%20G%C3%96%2C%20et%20al.%20Fixation%20duration%20and%20pupil%20%0Asize%20as%20diagnostic%20tools%20in%20Parkinson's%20disease%5B%20J%5D.%20J%20Parkinsons%20Dis%2C%20%0A2021%2C%2011(2)%3A%20865-875.%20DOI%3A%2010.3233%2FJPD-202427.Tsitsi%20P%2C%20Benfatto%20MN%2C%20Seimyr%20G%C3%96%2C%20et%20al.%20Fixation%20duration%20and%20pupil%20%0Asize%20as%20diagnostic%20tools%20in%20Parkinson's%20disease%5B%20J%5D.%20J%20Parkinsons%20Dis%2C%20%0A2021%2C%2011(2)%3A%20865-875.%20DOI%3A%2010.3233%2FJPD-202427.
31、Shaikh AG, Xu-Wilson M, Grill S, et al. 'Staircase' square-wave jerks in early Parkinson's disease[ J]. Br J Ophthalmol, 2011, 95(5): 705-709. DOI: 10.1136/bjo.2010.179630.Shaikh AG, Xu-Wilson M, Grill S, et al. 'Staircase' square-wave jerks in early Parkinson's disease[ J]. Br J Ophthalmol, 2011, 95(5): 705-709. DOI: 10.1136/bjo.2010.179630.
32、Antoniades CA, Spering M. Eye movements in Parkinson's disease: from neurophysiological mechanisms to diagnostic tools[ J]. Trends Neurosci, 2024, 47(1): 71-83. DOI: 10.1016/j.tins.2023.11.001.Antoniades CA, Spering M. Eye movements in Parkinson's disease: from neurophysiological mechanisms to diagnostic tools[ J]. Trends Neurosci, 2024, 47(1): 71-83. DOI: 10.1016/j.tins.2023.11.001.
33、Li H, Ma W, Li C, et al. Combined diagnosis for Parkinson's disease via gait and eye movement disorders[ J]. Parkinsonism Relat Disord, 2024, 123: 106979. DOI: 10.1016/j.parkreldis.2024.106979.Li H, Ma W, Li C, et al. Combined diagnosis for Parkinson's disease via gait and eye movement disorders[ J]. Parkinsonism Relat Disord, 2024, 123: 106979. DOI: 10.1016/j.parkreldis.2024.106979.
34、Jiang M, Liu Y, Cao Y, et al. Diagnosis of Parkinson's disease by eliciting trait-specific eye movements in multi-visual tasks[ J]. J Transl Med, 2025, 23(1): 65. DOI: 10.1186/s12967-024-06044-3.Jiang M, Liu Y, Cao Y, et al. Diagnosis of Parkinson's disease by eliciting trait-specific eye movements in multi-visual tasks[ J]. J Transl Med, 2025, 23(1): 65. DOI: 10.1186/s12967-024-06044-3.
35、Brien DC, Riek HC, Yep R, et al. Classification and staging of Parkinson's disease using video-based eye tracking[J]. Parkinsonism Relat Disord, 2023, 110: 105316. DOI: 10.1016/j.parkreldis.2023.105316.Brien DC, Riek HC, Yep R, et al. Classification and staging of Parkinson's disease using video-based eye tracking[J]. Parkinsonism Relat Disord, 2023, 110: 105316. DOI: 10.1016/j.parkreldis.2023.105316.
36、Hamedani AG, Abraham DS, Maguire MG, et al. Visual impairment is more common in Parkinson's disease and is a risk factor for poor health outcomes[ J]. Mov Disord, 2020, 35(9): 1542-1549. DOI: 10.1002/ mds.28182.Hamedani AG, Abraham DS, Maguire MG, et al. Visual impairment is more common in Parkinson's disease and is a risk factor for poor health outcomes[ J]. Mov Disord, 2020, 35(9): 1542-1549. DOI: 10.1002/ mds.28182.
37、Oxtoby NP, Leyland LA, Aksman LM, et al. Sequence of clinical and neurodegeneration events in Parkinson's disease progression[ J]. Brain, 2021, 144(3): 975-988. DOI: 10.1093/brain/awaa461.Oxtoby NP, Leyland LA, Aksman LM, et al. Sequence of clinical and neurodegeneration events in Parkinson's disease progression[ J]. Brain, 2021, 144(3): 975-988. DOI: 10.1093/brain/awaa461.
38、Hannaway N, Zarkali A, Leyland LA, et al. Visual dysfunction is a better predictor than retinal thickness for dementia in Parkinson's disease[ J]. J Neurol Neurosurg Psychiatry, 2023, 94(9): 742-750. DOI: 10.1136/ jnnp-2023-331083.Hannaway N, Zarkali A, Leyland LA, et al. Visual dysfunction is a better predictor than retinal thickness for dementia in Parkinson's disease[ J]. J Neurol Neurosurg Psychiatry, 2023, 94(9): 742-750. DOI: 10.1136/ jnnp-2023-331083.
39、Han G, Han J, Han K , et al. Visual acuity and development of Parkinson's disease: a nationwide cohort study[ J]. Mov Disord, 2020, 35(9): 1532-1541. DOI: 10.1002/mds.28184.Han G, Han J, Han K , et al. Visual acuity and development of Parkinson's disease: a nationwide cohort study[ J]. Mov Disord, 2020, 35(9): 1532-1541. DOI: 10.1002/mds.28184.
40、Jones RD, Donaldson IM, Timmings PL. Impairment of high-contrast visual acuity in Parkinson's disease[ J]. Mov Disord, 1992, 7(3): 232- 238. DOI: 10.1002/mds.870070308.Jones RD, Donaldson IM, Timmings PL. Impairment of high-contrast visual acuity in Parkinson's disease[ J]. Mov Disord, 1992, 7(3): 232- 238. DOI: 10.1002/mds.870070308.
41、Oh YS, Kim JS, Chung SW, et al. Color vision in Parkinson's disease and essential tremor[ J]. Eur J Neurol, 2011, 18(4): 577-583. DOI: 10.1111/j.1468-1331.2010.03206.x.Oh YS, Kim JS, Chung SW, et al. Color vision in Parkinson's disease and essential tremor[ J]. Eur J Neurol, 2011, 18(4): 577-583. DOI: 10.1111/j.1468-1331.2010.03206.x.
42、Weil RS, Schrag AE, Warren JD, et al. Visual dysfunction in Parkinson's disease[ J]. Brain, 2016, 139(11): 2827-2843. DOI: 10.1093/brain/ aww175.Weil RS, Schrag AE, Warren JD, et al. Visual dysfunction in Parkinson's disease[ J]. Brain, 2016, 139(11): 2827-2843. DOI: 10.1093/brain/ aww175.
43、Pinkhardt EH, Ding Y, Slotnick S, et al. The intrinsically restructured fovea is correlated with contrast sensitivity loss in Parkinson's disease[ J]. J Neural Transm (Vienna), 2020, 127(9): 1275-1283. DOI: 10.1007/s00702-020-02224-9.Pinkhardt EH, Ding Y, Slotnick S, et al. The intrinsically restructured fovea is correlated with contrast sensitivity loss in Parkinson's disease[ J]. J Neural Transm (Vienna), 2020, 127(9): 1275-1283. DOI: 10.1007/s00702-020-02224-9.
44、仲敏, 朱骏, 张丽. 不同疾病中视幻觉临床特点的比较及管理 [ J]. 中国临床神经科学, 2021, 29(2): 187-192.
Zhong M, Zhu J, Zhang L. Comparison and management of visual hallucinations in different diseases[ J]. Chin J Clin Neurosci, 2021, 29(2): 187-192.
Zhong M, Zhu J, Zhang L. Comparison and management of visual hallucinations in different diseases[ J]. Chin J Clin Neurosci, 2021, 29(2): 187-192.
45、Guo Y, Liu FT, Hou XH, et al. Predictors of cognitive impairment in Parkinson's disease: a systematic review and meta-analysis of prospective cohort studies[ J]. J Neurol, 2021, 268(8): 2713-2722. DOI: 10.1007/s00415-020-09757-9.Guo Y, Liu FT, Hou XH, et al. Predictors of cognitive impairment in Parkinson's disease: a systematic review and meta-analysis of prospective cohort studies[ J]. J Neurol, 2021, 268(8): 2713-2722. DOI: 10.1007/s00415-020-09757-9.
46、李冬英, 沈婷婷, 吴乾昌, 等. 帕金森病伴发视幻觉患者的临床特 征及相关因素分析[ J]. 中国临床神经科学, 2024, 32(5): 529-535.
Li DY, Shen TT, Wu QC, et al. Analysis of clinical features and related factors in Parkinson's disease with visual hallucinations[ J]. Chin J Clin Neurosci, 2024, 32(5): 529-535.
Li DY, Shen TT, Wu QC, et al. Analysis of clinical features and related factors in Parkinson's disease with visual hallucinations[ J]. Chin J Clin Neurosci, 2024, 32(5): 529-535.
47、顾茹辛, 仲敏, 张丽. 帕金森病视幻觉发生机制研究进展[ J]. 南 京医科大学学报(自然科学版), 2021, 41(9): 1406-1410.
Gu RX, Zhong M, Zhang L. Research progress on pathogenesis of visual hallucination in Parkinson's disease[ J]. J Nanjing Med Univ Nat Sci, 2021, 41(9): 1406-1410.
Gu RX, Zhong M, Zhang L. Research progress on pathogenesis of visual hallucination in Parkinson's disease[ J]. J Nanjing Med Univ Nat Sci, 2021, 41(9): 1406-1410.
48、Lawn T, Ffytche D. Cerebellar correlates of visual hallucinations in Parkinson's disease and Charles Bonnet Syndrome[ J]. Cortex, 2021, 135: 311-325. DOI: 10.1016/j.cortex.2020.10.024.Lawn T, Ffytche D. Cerebellar correlates of visual hallucinations in Parkinson's disease and Charles Bonnet Syndrome[ J]. Cortex, 2021, 135: 311-325. DOI: 10.1016/j.cortex.2020.10.024.
49、Walpola IC, Muller AJ, Hall JM, et al. Mind-wandering in Parkinson's disease hallucinations reflects primary visual and default network coupling[ J]. Cortex, 2020, 125: 233-245. DOI: 10.1016/j.cortex.2019.12.023.Walpola IC, Muller AJ, Hall JM, et al. Mind-wandering in Parkinson's disease hallucinations reflects primary visual and default network coupling[ J]. Cortex, 2020, 125: 233-245. DOI: 10.1016/j.cortex.2019.12.023.
50、Ba F, Sang TT, He W, et al. Stereopsis and eye movement abnormalities in Parkinson's disease and their clinical implications[ J]. Front Aging Neurosci, 2022, 14: 783773. DOI: 10.3389/fnagi.2022.783773.Ba F, Sang TT, He W, et al. Stereopsis and eye movement abnormalities in Parkinson's disease and their clinical implications[ J]. Front Aging Neurosci, 2022, 14: 783773. DOI: 10.3389/fnagi.2022.783773.
51、Ringel MJ, Tang EM, Tao YK. Advances in multimodal imaging in ophthalmology[J]. Ther Adv Ophthalmol, 2021, 13: 25158414211002400. DOI: 10.1177/25158414211002400.Ringel MJ, Tang EM, Tao YK. Advances in multimodal imaging in ophthalmology[J]. Ther Adv Ophthalmol, 2021, 13: 25158414211002400. DOI: 10.1177/25158414211002400.
52、Zhou WC, Tao JX, Li J. Optical coherence tomography measurements as potential imaging biomarkers for Parkinson’s disease: a systematic review and meta-analysis[J]. Eur J Neurol, 2021, 28(3): 763-774. DOI: 10.1111/ene.14613.Zhou WC, Tao JX, Li J. Optical coherence tomography measurements as potential imaging biomarkers for Parkinson’s disease: a systematic review and meta-analysis[J]. Eur J Neurol, 2021, 28(3): 763-774. DOI: 10.1111/ene.14613.
53、Wagner SK, Romero-Bascones D, Cortina-Borja M, et al. Retinal optical coherence tomography features associated with incident and prevalent parkinson disease[J]. Neurology, 2023, 101(16): e1581-e1593. DOI: 10.1212/WNL.0000000000207727. Wagner SK, Romero-Bascones D, Cortina-Borja M, et al. Retinal optical coherence tomography features associated with incident and prevalent parkinson disease[J]. Neurology, 2023, 101(16): e1581-e1593. DOI: 10.1212/WNL.0000000000207727.
54、Huang L, Zhang D, Ji J, et al. Central retina changes in Parkinson’s disease: a systematic review and meta-analysis[J]. J Neurol, 2021, 268(12): 4646-4654. DOI: 10.1007/s00415-020-10304-9. Huang L, Zhang D, Ji J, et al. Central retina changes in Parkinson’s disease: a systematic review and meta-analysis[J]. J Neurol, 2021, 268(12): 4646-4654. DOI: 10.1007/s00415-020-10304-9.
55、Huang L, Wang C, Wang W, et al. The specific pattern of retinal nerve fiber layer thinning in Parkinson’s disease: a systematic review and meta-analysis[J]. J Neurol, 2021, 268(11): 4023-4032. DOI: 10.1007/s00415-020-10094-0.Huang L, Wang C, Wang W, et al. The specific pattern of retinal nerve fiber layer thinning in Parkinson’s disease: a systematic review and meta-analysis[J]. J Neurol, 2021, 268(11): 4023-4032. DOI: 10.1007/s00415-020-10094-0.
56、Marques A, Beze S, Pereira B, et al. Visual hallucinations and illusions in Parkinson’s disease: the role of ocular pathology[J]. J Neurol, 2020, 267(10): 2829-2841. DOI: 10.1007/s00415-020-09925-x.Marques A, Beze S, Pereira B, et al. Visual hallucinations and illusions in Parkinson’s disease: the role of ocular pathology[J]. J Neurol, 2020, 267(10): 2829-2841. DOI: 10.1007/s00415-020-09925-x.
57、Visser F, Apostolov VI, Vlaar AMM, et al. Visual hallucinations in Parkinson’s disease are associated with thinning of the inner retina[J]. Sci Rep, 2020, 10(1): 21110. DOI: 10.1038/s41598-020-77833-1.Visser F, Apostolov VI, Vlaar AMM, et al. Visual hallucinations in Parkinson’s disease are associated with thinning of the inner retina[J]. Sci Rep, 2020, 10(1): 21110. DOI: 10.1038/s41598-020-77833-1.
58、Cerveró A, Sánchez-Rodríguez A, Rivera-Sánchez M, et al. Analysis of retinal nerve layers in idiopathic, LRRK2-associated Parkinson’s disease and unaffected carriers of G2019S mutation[J]. Parkinsonism Relat Disord, 2023, 106: 105246. DOI: 10.1016/j.parkreldis.2022.105246.Cerveró A, Sánchez-Rodríguez A, Rivera-Sánchez M, et al. Analysis of retinal nerve layers in idiopathic, LRRK2-associated Parkinson’s disease and unaffected carriers of G2019S mutation[J]. Parkinsonism Relat Disord, 2023, 106: 105246. DOI: 10.1016/j.parkreldis.2022.105246.
59、Diaz-Torres S, Lee SS, Ogonowski NS, et al. Macular structural integrity estimates are associated with Parkinson’s disease genetic risk[J]. Acta Neuropathol Commun, 2024, 12(1): 130. DOI: 10.1186/s40478-024-01841-9.Diaz-Torres S, Lee SS, Ogonowski NS, et al. Macular structural integrity estimates are associated with Parkinson’s disease genetic risk[J]. Acta Neuropathol Commun, 2024, 12(1): 130. DOI: 10.1186/s40478-024-01841-9.
60、Moons L, De Groef L. Multimodal retinal imaging to detect and understand Alzheimer’s and Parkinson’s disease[J]. Curr Opin Neurobiol, 2022, 72: 1-7. DOI: 10.1016/j.conb.2021.07.007. Moons L, De Groef L. Multimodal retinal imaging to detect and understand Alzheimer’s and Parkinson’s disease[J]. Curr Opin Neurobiol, 2022, 72: 1-7. DOI: 10.1016/j.conb.2021.07.007.
61、Suh W, Baek SU, Oh JS, et al. Retinal thickness and its interocular asymmetry between Parkinson’s disease and drug-induced Parkinsonism[J]. J Korean Med Sci, 2023, 38(11): e86. DOI: 10.3346/jkms.2023.38.e86. Suh W, Baek SU, Oh JS, et al. Retinal thickness and its interocular asymmetry between Parkinson’s disease and drug-induced Parkinsonism[J]. J Korean Med Sci, 2023, 38(11): e86. DOI: 10.3346/jkms.2023.38.e86.
62、Li Y, Wang X, Zhang Y, et al. Retinal microvascular impairment in Parkinson’s disease with cognitive dysfunction[J]. Parkinsonism Relat Disord, 2022, 98: 27-31. DOI: 10.1016/j.parkreldis.2022.03.008.Li Y, Wang X, Zhang Y, et al. Retinal microvascular impairment in Parkinson’s disease with cognitive dysfunction[J]. Parkinsonism Relat Disord, 2022, 98: 27-31. DOI: 10.1016/j.parkreldis.2022.03.008.
63、Robbins CB, Thompson AC, Bhullar PK, et al. Characterization of retinal microvascular and choroidal structural changes in parkinson disease[J]. JAMA Ophthalmol, 2021, 139(2): 182-188. DOI: 10.1001/jamaophthalmol.2020.5730.Robbins CB, Thompson AC, Bhullar PK, et al. Characterization of retinal microvascular and choroidal structural changes in parkinson disease[J]. JAMA Ophthalmol, 2021, 139(2): 182-188. DOI: 10.1001/jamaophthalmol.2020.5730.
64、Fekrazad S, Hassanzadeh G, Esmaeili Z, et al. Choroidal thickness in the eyes of Parkinson’s disease patients measured using optical coherence tomography: a systematic review and meta-analysis[J]. J Neurol Sci, 2024, 467: 123294. DOI: 10.1016/j.jns.2024.123294.Fekrazad S, Hassanzadeh G, Esmaeili Z, et al. Choroidal thickness in the eyes of Parkinson’s disease patients measured using optical coherence tomography: a systematic review and meta-analysis[J]. J Neurol Sci, 2024, 467: 123294. DOI: 10.1016/j.jns.2024.123294.
65、Zhang Y, Li Y, Lai C, et al. Interocular asymmetry of retinal change in Parkinson’s disease[J]. Parkinsonism Relat Disord, 2024, 125: 107037. DOI: 10.1016/j.parkreldis.2024.107037. Zhang Y, Li Y, Lai C, et al. Interocular asymmetry of retinal change in Parkinson’s disease[J]. Parkinsonism Relat Disord, 2024, 125: 107037. DOI: 10.1016/j.parkreldis.2024.107037.
66、Baek SU, Kang SY, Kwon S, et al. Motor asymmetry and interocular retinal thickness in Parkinson’s disease[J]. J Korean Med Sci, 2021, 36(6): e50. DOI: 10.3346/jkms.2021.36.e50. Baek SU, Kang SY, Kwon S, et al. Motor asymmetry and interocular retinal thickness in Parkinson’s disease[J]. J Korean Med Sci, 2021, 36(6): e50. DOI: 10.3346/jkms.2021.36.e50.
67、Lin JB, Apte RS. Seeing parkinson disease in the retina[J]. JAMA Ophthalmol, 2021, 139(2): 189-190. DOI: 10.1001/jamaophthalmol.2020.5719. Lin JB, Apte RS. Seeing parkinson disease in the retina[J]. JAMA Ophthalmol, 2021, 139(2): 189-190. DOI: 10.1001/jamaophthalmol.2020.5719.
68、Alves%20JN%2C%20Westner%20BU%2C%20H%C3%B8jlund%20A%2C%20et%20al.%20Structural%20and%20functional%20changes%20in%20the%20retina%20in%20Parkinson%E2%80%99s%20disease%5BJ%5D.%20J%20Neurol%20Neurosurg%20Psychiatry%2C%202023%2C%2094(6)%3A%20448-456.%20DOI%3A%2010.1136%2Fjnnp-2022-329342.Alves%20JN%2C%20Westner%20BU%2C%20H%C3%B8jlund%20A%2C%20et%20al.%20Structural%20and%20functional%20changes%20in%20the%20retina%20in%20Parkinson%E2%80%99s%20disease%5BJ%5D.%20J%20Neurol%20Neurosurg%20Psychiatry%2C%202023%2C%2094(6)%3A%20448-456.%20DOI%3A%2010.1136%2Fjnnp-2022-329342.
69、Mello LGM, Paraguay IBB, de Souza Andrade T, et al. Electroretinography reveals retinal dysfunction in Parkinson’s disease despite normal high-resolution optical coherence tomography findings[J]. Parkinsonism Relat Disord, 2022, 101: 90-95. DOI: 10.1016/j.parkreldis.2022.06.018. Mello LGM, Paraguay IBB, de Souza Andrade T, et al. Electroretinography reveals retinal dysfunction in Parkinson’s disease despite normal high-resolution optical coherence tomography findings[J]. Parkinsonism Relat Disord, 2022, 101: 90-95. DOI: 10.1016/j.parkreldis.2022.06.018.
70、尚媛媛, 韩玺河, 张宇恒, 等. 早期帕金森病患者脑干听觉诱发电位及视觉诱发电位研究[J]. 兵团医学, 2024(1): 4-6.
Shang YY, Han XH, Zhang YH, et al. Study on brainstem auditory evoked potential and visual evoked potential in patients with early Parkinson’s disease[J]. J BingTuan Med, 2024(1): 4-6.
Shang YY, Han XH, Zhang YH, et al. Study on brainstem auditory evoked potential and visual evoked potential in patients with early Parkinson’s disease[J]. J BingTuan Med, 2024(1): 4-6.
71、李向, 张琪林, 陈菲, 等. 视觉诱发电位评估帕金森病视幻觉视觉传导通路临床价值[J]. 中国神经精神疾病杂志, 2024, 50(5): 257-262. DOI: 10.3969/j.issn.1002-0152.2024.05.001.
Li X, Zhang QL, Chen F, et al. The clinical value of visual evoked potential in assessing visual pathway of visual hallucinations in Parkinson disease[J]. Chin J Nerv Ment Dis, 2024, 50(5): 257-262. DOI: 10.3969/j.issn.1002-0152.2024.05.001.
Li X, Zhang QL, Chen F, et al. The clinical value of visual evoked potential in assessing visual pathway of visual hallucinations in Parkinson disease[J]. Chin J Nerv Ment Dis, 2024, 50(5): 257-262. DOI: 10.3969/j.issn.1002-0152.2024.05.001.
72、Ueda E, Watanabe M, Nakamura D, et al. Distinct retinal reflectance spectra from retinal hyperspectral imaging in Parkinson’s disease[J]. J Neurol Sci, 2024, 461: 123061. DOI: 10.1016/j.jns.2024.123061. Ueda E, Watanabe M, Nakamura D, et al. Distinct retinal reflectance spectra from retinal hyperspectral imaging in Parkinson’s disease[J]. J Neurol Sci, 2024, 461: 123061. DOI: 10.1016/j.jns.2024.123061.
73、Trlin P, Gong J, Tran KKN, et al. Retinal hyperspectral imaging in mouse models of Parkinson’s disease and healthy aging[J]. Sci Rep, 2024, 14(1): 16089. DOI: 10.1038/s41598-024-66284-7.Trlin P, Gong J, Tran KKN, et al. Retinal hyperspectral imaging in mouse models of Parkinson’s disease and healthy aging[J]. Sci Rep, 2024, 14(1): 16089. DOI: 10.1038/s41598-024-66284-7.
74、Tran C, Shen K, Liu K, et al. Deep learning predicts prevalent and incident Parkinson’s disease from UK Biobank fundus imaging[J]. Sci Rep, 2024, 14(1): 3637. DOI: 10.1038/s41598-024-54251-1. Tran C, Shen K, Liu K, et al. Deep learning predicts prevalent and incident Parkinson’s disease from UK Biobank fundus imaging[J]. Sci Rep, 2024, 14(1): 3637. DOI: 10.1038/s41598-024-54251-1.
75、Hu W, Wang W, Wang Y, et al. Retinal age gap as a predictive biomarker of future risk of Parkinson’s disease[J]. Age Ageing, 2022, 51(3): afac062. DOI: 10.1093/ageing/afac062. Hu W, Wang W, Wang Y, et al. Retinal age gap as a predictive biomarker of future risk of Parkinson’s disease[J]. Age Ageing, 2022, 51(3): afac062. DOI: 10.1093/ageing/afac062.
1、科技部重点研发计划(2022YFF1202901),国家自然科学基金(82171404),广东省自然科学基金项目(2023A1515011529),广州市科技计划项目(2023A03J0181, 2024A04J6481),中央高校基本科研业务费专项资金(22yklj04),中山大学科研启动基金(人才基金〔2020〕18)。
This work was supported by the Key Research and Development Program of the Ministry of Science and Technology (2022YFF1202901), the National Natural Science Foundation of China (82171404), the Natural Science Foundation of Guangdong Province of China (2023A1515011529), the Science and Technology Planning Project of Guangzhou City (2023A03J0181, 2024A04J6481), the Fundamental Research Funds for the Central Universities (22yklj04) and the Research Start-up Founds of Sun Yat-sen University (Funded Talent 〔2020〕18).
This work was supported by the Key Research and Development Program of the Ministry of Science and Technology (2022YFF1202901), the National Natural Science Foundation of China (82171404), the Natural Science Foundation of Guangdong Province of China (2023A1515011529), the Science and Technology Planning Project of Guangzhou City (2023A03J0181, 2024A04J6481), the Fundamental Research Funds for the Central Universities (22yklj04) and the Research Start-up Founds of Sun Yat-sen University (Funded Talent 〔2020〕18). ( )
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
目录

点击右上角菜单,浏览器打开下载

我知道了