1、Kandasamy AD, Chow AK, Ali MAM, et al. Matrix metalloproteinase-2
and myocardial oxidative stress injury: beyond the matrix[ J].
Cardiovasc Res, 2010, 85(3): 413-423. DOI: 10.1093/cvr/cvp268.Kandasamy AD, Chow AK, Ali MAM, et al. Matrix metalloproteinase-2
and myocardial oxidative stress injury: beyond the matrix[ J].
Cardiovasc Res, 2010, 85(3): 413-423. DOI: 10.1093/cvr/cvp268.
2、Ch u l i á -Pe r i s L , Ca r re re s -R e y C, Gaba s a M , e t a l . Mat r i x
metalloproteinases and their inhibitors in pulmonary fibrosis:
EMMPRIN/CD147 comes into play[ J]. Int J Mol Sci, 2022, 23(13):
6894. DOI: 10.3390/ijms23136894.Ch u l i á -Pe r i s L , Ca r re re s -R e y C, Gaba s a M , e t a l . Mat r i x
metalloproteinases and their inhibitors in pulmonary fibrosis:
EMMPRIN/CD147 comes into play[ J]. Int J Mol Sci, 2022, 23(13):
6894. DOI: 10.3390/ijms23136894.
3、DeL eon-Pennel l KY, Meschiar i C A , Jung M , et al . Matr i x
metalloproteinases in myocardial infarction and heart failure[ J].
Prog Mol Biol Transl Sci, 2017, 147: 75-100. DOI: 10.1016/
bs.pmbts.2017.02.001.DeL eon-Pennel l KY, Meschiar i C A , Jung M , et al . Matr i x
metalloproteinases in myocardial infarction and heart failure[ J].
Prog Mol Biol Transl Sci, 2017, 147: 75-100. DOI: 10.1016/
bs.pmbts.2017.02.001.
4、Myasoedova VA , Chistiakov DA , Grechko AV, et al. Matri x
metalloproteinases in pro-atherosclerotic arterial remodeling[ J]. J Mol
Cell Cardiol, 2018, 123: 159-167. DOI: 10.1016/j.yjmcc.2018.08.026.Myasoedova VA , Chistiakov DA , Grechko AV, et al. Matri x
metalloproteinases in pro-atherosclerotic arterial remodeling[ J]. J Mol
Cell Cardiol, 2018, 123: 159-167. DOI: 10.1016/j.yjmcc.2018.08.026.
5、Cui N, Hu M, Khalil RA. Biochemical and biological attributes of
matrix metalloproteinases[ J]. Prog Mol Biol Transl Sci, 2017, 147: 1-73.
DOI: 10.1016/bs.pmbts.2017.02.005.Cui N, Hu M, Khalil RA. Biochemical and biological attributes of
matrix metalloproteinases[ J]. Prog Mol Biol Transl Sci, 2017, 147: 1-73.
DOI: 10.1016/bs.pmbts.2017.02.005.
6、Shen G, Ma X. High levels of 17β-estradiol are associated with
increased matrix metalloproteinase-2 and metalloproteinase-9 activity
in tears of postmenopausal women with dry eye[ J]. J Ophthalmol,
2016, 2016: 2415867. DOI: 10.1155/2016/2415867.Shen G, Ma X. High levels of 17β-estradiol are associated with
increased matrix metalloproteinase-2 and metalloproteinase-9 activity
in tears of postmenopausal women with dry eye[ J]. J Ophthalmol,
2016, 2016: 2415867. DOI: 10.1155/2016/2415867.
7、Belal A, Elanany MA, Santali EY, et al. Screening a panel of topical
ophthalmic medications against MMP-2 and MMP-9 to investigate
their potential in keratoconus management[ J]. Molecules, 2022,
27(11): 3584. DOI: 10.3390/molecules27113584.Belal A, Elanany MA, Santali EY, et al. Screening a panel of topical
ophthalmic medications against MMP-2 and MMP-9 to investigate
their potential in keratoconus management[ J]. Molecules, 2022,
27(11): 3584. DOI: 10.3390/molecules27113584.
8、Schmitt R , Tscheuschler A, Laschinski P, et al. A potential key
mechanism in ascending aortic aneurysm development: Detection of a
linear relationship between MMP-14/TIMP-2 ratio and active MMP-
2[ J]. PLoS One, 2019, 14(2): e0212859. DOI: 10.1371/journal. pone.0212859.Schmitt R , Tscheuschler A, Laschinski P, et al. A potential key
mechanism in ascending aortic aneurysm development: Detection of a
linear relationship between MMP-14/TIMP-2 ratio and active MMP-
2[ J]. PLoS One, 2019, 14(2): e0212859. DOI: 10.1371/journal. pone.0212859.
9、Costanzo L, Soto B, Meier R, et al. The biology and function of tissue
inhibitor of metalloproteinase 2 in the lungs[ J]. Pulm Med, 2022,
2022: 3632764. DOI: 10.1155/2022/3632764.Costanzo L, Soto B, Meier R, et al. The biology and function of tissue
inhibitor of metalloproteinase 2 in the lungs[ J]. Pulm Med, 2022,
2022: 3632764. DOI: 10.1155/2022/3632764.
10、English JL, Kassiri Z, Koskivirta I, et al. Individual Timp deficiencies
differentially impact pro-MMP-2 activation[ J]. J Biol Chem, 2006,
281(15): 10337-10346. DOI: 10.1074/jbc.M512009200.English JL, Kassiri Z, Koskivirta I, et al. Individual Timp deficiencies
differentially impact pro-MMP-2 activation[ J]. J Biol Chem, 2006,
281(15): 10337-10346. DOI: 10.1074/jbc.M512009200.
11、Yosef G, Arkadash V, Papo N. Targeting the MMP-14/MMP-2/integrin
αvβ3 axis with multispecific N-TIMP2-based antagonists for cancer
therapy[ J]. J Biol Chem, 2018, 293(34): 13310-13326. DOI: 10.1074/
jbc.RA118.004406.Yosef G, Arkadash V, Papo N. Targeting the MMP-14/MMP-2/integrin
αvβ3 axis with multispecific N-TIMP2-based antagonists for cancer
therapy[ J]. J Biol Chem, 2018, 293(34): 13310-13326. DOI: 10.1074/
jbc.RA118.004406.
12、Looker KJ, Magaret AS, May MT, et al. Global and regional estimates
of prevalent and incident herpes simplex virus type 1 infections in
2012[ J]. PLoS One, 2015, 10(10): e0140765. DOI: 10.1371/journal.
pone.0140765.Looker KJ, Magaret AS, May MT, et al. Global and regional estimates
of prevalent and incident herpes simplex virus type 1 infections in
2012[ J]. PLoS One, 2015, 10(10): e0140765. DOI: 10.1371/journal.
pone.0140765.
13、Koganti R, Yadavalli T, Shukla D. Current and emerging therapies for
ocular herpes simplex virus type-1 infections[ J]. Microorganisms,
2019, 7(10): 429. DOI: 10.3390/microorganisms7100429.Koganti R, Yadavalli T, Shukla D. Current and emerging therapies for
ocular herpes simplex virus type-1 infections[ J]. Microorganisms,
2019, 7(10): 429. DOI: 10.3390/microorganisms7100429.
14、McCormick I, James C, Welton NJ, et al. Incidence of herpes
simplex virus keratitis and other ocular disease: global review and
estimates[ J]. Ophthalmic Epidemiol, 2022, 29(4): 353-362. DOI:
10.1080/09286586.2021.1962919.McCormick I, James C, Welton NJ, et al. Incidence of herpes
simplex virus keratitis and other ocular disease: global review and
estimates[ J]. Ophthalmic Epidemiol, 2022, 29(4): 353-362. DOI:
10.1080/09286586.2021.1962919.
15、Shah A, Joshi P, Bhusal B, et al. Clinical pattern and visual impairment
associated with herpes simplex keratitis[ J]. Clin Ophthalmol, 2019, 13:
2211-2215. DOI: 10.2147/OPTH.S219184.Shah A, Joshi P, Bhusal B, et al. Clinical pattern and visual impairment
associated with herpes simplex keratitis[ J]. Clin Ophthalmol, 2019, 13:
2211-2215. DOI: 10.2147/OPTH.S219184.
16、Grube%C5%A1i%20P%2C%20Jurak%20I%2C%20aljku%C5%A1i%20-Mance%20T%2C%20et%20al.%20Clinical%20and%20demographic%20%0Acharacteristics%20of%20her%20petic%20keratitis%20patients-ter%20tiar%20y%20centre%20%0Aexperience%5B%20J%5D.%20Medicina%20(Kaunas)%2C%202024%2C%2060(4)%3A%20577.%20DOI%3A%2010.3390%2F%0Amedicina60040577.Grube%C5%A1i%20P%2C%20Jurak%20I%2C%20aljku%C5%A1i%20-Mance%20T%2C%20et%20al.%20Clinical%20and%20demographic%20%0Acharacteristics%20of%20her%20petic%20keratitis%20patients-ter%20tiar%20y%20centre%20%0Aexperience%5B%20J%5D.%20Medicina%20(Kaunas)%2C%202024%2C%2060(4)%3A%20577.%20DOI%3A%2010.3390%2F%0Amedicina60040577.
17、Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex
keratitis: the host cell response and ocular surface sequelae to infection
and inflammation[ J]. Ocul Surf, 2019, 17(1): 40-49. DOI: 10.1016/
j.jtos.2018.10.002.Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex
keratitis: the host cell response and ocular surface sequelae to infection
and inflammation[ J]. Ocul Surf, 2019, 17(1): 40-49. DOI: 10.1016/
j.jtos.2018.10.002.
18、Hinz B. Myofibroblasts[ J]. Exp Eye Res, 2016, 142: 56-70. DOI:
10.1016/j.exer.2015.07.009.Hinz B. Myofibroblasts[ J]. Exp Eye Res, 2016, 142: 56-70. DOI:
10.1016/j.exer.2015.07.009.
19、García-López C, Rodríguez-Calvo-de-Mora M, Borroni D, et
al. The role of matrix metalloproteinases in infectious corneal
ulcers[ J]. Surv Ophthalmol, 2023, 68(5): 929-939. DOI: 10.1016/
j.survophthal.2023.06.007.García-López C, Rodríguez-Calvo-de-Mora M, Borroni D, et
al. The role of matrix metalloproteinases in infectious corneal
ulcers[ J]. Surv Ophthalmol, 2023, 68(5): 929-939. DOI: 10.1016/
j.survophthal.2023.06.007.
20、Yang YN, Wang F, Zhou W, et al. TNF-α stimulates MMP-2 and
MMP-9 activities in human corneal epithelial cells via the activation of
FAK/ERK signaling[ J]. Ophthalmic Res, 2012, 48(4): 165-170. DOI:
10.1159/000338819.Yang YN, Wang F, Zhou W, et al. TNF-α stimulates MMP-2 and
MMP-9 activities in human corneal epithelial cells via the activation of
FAK/ERK signaling[ J]. Ophthalmic Res, 2012, 48(4): 165-170. DOI:
10.1159/000338819.
21、Ke L, Yang Y, Li JW, et al. Modulation of corneal FAK/PI3K/A k t s ig na l i ng e x p re s s i o n an d o f m e t a l l o p ro te i na s e - 2 an d
metalloproteinase-9 during the development of herpes simplex
kerat it i s[ J]. Biomed R es Int , 2019, 2019: 4143981. DOI:
10.1155/2019/4143981.Ke L, Yang Y, Li JW, et al. Modulation of corneal FAK/PI3K/A k t s ig na l i ng e x p re s s i o n an d o f m e t a l l o p ro te i na s e - 2 an d
metalloproteinase-9 during the development of herpes simplex
kerat it i s[ J]. Biomed R es Int , 2019, 2019: 4143981. DOI:
10.1155/2019/4143981.
22、Heiligenhaus A, Li HF, Yang Y, et al. Transplantation of amniotic
membrane in murine herpes stromal keratitis modulates matrix
metalloproteinases in the cornea[ J]. Invest Ophthalmol Vis Sci, 2005,
46(11): 4079-4085. DOI: 10.1167/iovs.05-0192.Heiligenhaus A, Li HF, Yang Y, et al. Transplantation of amniotic
membrane in murine herpes stromal keratitis modulates matrix
metalloproteinases in the cornea[ J]. Invest Ophthalmol Vis Sci, 2005,
46(11): 4079-4085. DOI: 10.1167/iovs.05-0192.
23、Singh A, Maurya OPS, Jagannadhan MV, et al. Matrix metalloproteinases
(MMP-2 and MMP-9) activity in corneal ulcer and ocular surface disorders
determined by gelatin zymography[J]. J Ocul Biol Dis Inform, 2012, 5(2):
31-35. DOI: 10.1007/s12177-012-9096-8.Singh A, Maurya OPS, Jagannadhan MV, et al. Matrix metalloproteinases
(MMP-2 and MMP-9) activity in corneal ulcer and ocular surface disorders
determined by gelatin zymography[J]. J Ocul Biol Dis Inform, 2012, 5(2):
31-35. DOI: 10.1007/s12177-012-9096-8.
24、Huang ST, Chang CC, Pang JS, et al. Drynaria fortunei promoted
angiogenesis associated with modified MMP-2/TIMP-2 balance and
activation of VEGF ligand/receptors expression[ J]. Front Pharmacol,
2018, 9: 979. DOI: 10.3389/fphar.2018.00979.Huang ST, Chang CC, Pang JS, et al. Drynaria fortunei promoted
angiogenesis associated with modified MMP-2/TIMP-2 balance and
activation of VEGF ligand/receptors expression[ J]. Front Pharmacol,
2018, 9: 979. DOI: 10.3389/fphar.2018.00979.
25、Kvanta A , Sarman S, Fagerholm P, et al. Expression of matrix
metalloproteinase-2 (MMP-2) and vascular endothelial growth factor
(VEGF) in inflammation-associated corneal neovascularization[ J]. Exp
Eye Res, 2000, 70(4): 419-428. DOI: 10.1006/exer.1999.0790.Kvanta A , Sarman S, Fagerholm P, et al. Expression of matrix
metalloproteinase-2 (MMP-2) and vascular endothelial growth factor
(VEGF) in inflammation-associated corneal neovascularization[ J]. Exp
Eye Res, 2000, 70(4): 419-428. DOI: 10.1006/exer.1999.0790.
26、Chou TY, Hong BY. Ganciclovir ophthalmic gel 0.15% for the treatment
of acute herpetic keratitis: background, effectiveness, tolerability, safety,
and future applications[ J]. Ther Clin Risk Manag, 2014, 10: 665-681.
DOI: 10.2147/TCRM.S58242.Chou TY, Hong BY. Ganciclovir ophthalmic gel 0.15% for the treatment
of acute herpetic keratitis: background, effectiveness, tolerability, safety,
and future applications[ J]. Ther Clin Risk Manag, 2014, 10: 665-681.
DOI: 10.2147/TCRM.S58242.
27、Patil V, Ramaraj PN, Sharma M, et al. Effects of intraoperative
placement of tetracycline, tetracycline + gelatin sponge, and placebo on
postoperative pain after mandibular molar extraction: a comparative
prospective study[ J]. Natl J Maxillofac Surg, 2021, 12(2): 211-218.
DOI: 10.4103/njms.NJMS_47_20.Patil V, Ramaraj PN, Sharma M, et al. Effects of intraoperative
placement of tetracycline, tetracycline + gelatin sponge, and placebo on
postoperative pain after mandibular molar extraction: a comparative
prospective study[ J]. Natl J Maxillofac Surg, 2021, 12(2): 211-218.
DOI: 10.4103/njms.NJMS_47_20.
28、Saeed M, Arun MZ, Guzeloglu M, et al. Low-dose doxycycline inhibits
hydrogen peroxide-induced oxidative stress, MMP-2 up-regulation and
contractile dysfunction in human saphenous vein grafts[ J]. Drug Des
Devel Ther, 2019, 13: 1791-1801. DOI: 10.2147/DDDT.S187842.Saeed M, Arun MZ, Guzeloglu M, et al. Low-dose doxycycline inhibits
hydrogen peroxide-induced oxidative stress, MMP-2 up-regulation and
contractile dysfunction in human saphenous vein grafts[ J]. Drug Des
Devel Ther, 2019, 13: 1791-1801. DOI: 10.2147/DDDT.S187842.
29、Zeydanli EN, Kandilci HB, Turan B. Doxycycline ameliorates vascular
endothelial and contractile dysfunction in the thoracic aorta of diabetic
rats[ J]. Cardiovasc Toxicol, 2011, 11(2): 134-147. DOI: 10.1007/
s12012-011-9107-1.Zeydanli EN, Kandilci HB, Turan B. Doxycycline ameliorates vascular
endothelial and contractile dysfunction in the thoracic aorta of diabetic
rats[ J]. Cardiovasc Toxicol, 2011, 11(2): 134-147. DOI: 10.1007/
s12012-011-9107-1.
30、He MX, Zhang JF, Yang L, et al. Doxycycline suppresses vasculogenic
mimicry in human pterygium fibroblasts[ J]. Curr Eye Res, 2022,
47(10): 1381-1388. DOI: 10.1080/02713683.2022.2108455.He MX, Zhang JF, Yang L, et al. Doxycycline suppresses vasculogenic
mimicry in human pterygium fibroblasts[ J]. Curr Eye Res, 2022,
47(10): 1381-1388. DOI: 10.1080/02713683.2022.2108455.
31、Horwitz V, Dachir S, Cohen M, et al. The beneficial effects of doxycycline,
an inhibitor of matrix metalloproteinases, on sulfur mustard-induced
ocular pathologies depend on the injury stage[ J]. Curr Eye Res, 2014,
39(8): 803-812. DOI: 10.3109/02713683.2013.874443.Horwitz V, Dachir S, Cohen M, et al. The beneficial effects of doxycycline,
an inhibitor of matrix metalloproteinases, on sulfur mustard-induced
ocular pathologies depend on the injury stage[ J]. Curr Eye Res, 2014,
39(8): 803-812. DOI: 10.3109/02713683.2013.874443.
32、Pham TL, Bazan HEP. Docosanoid signaling modulates corneal
nerve regeneration: effect on tear secretion, wound healing, and
neuropathic pain[ J]. J Lipid Res, 2021, 62: 100033. DOI: 10.1194/jlr.
TR120000954.Pham TL, Bazan HEP. Docosanoid signaling modulates corneal
nerve regeneration: effect on tear secretion, wound healing, and
neuropathic pain[ J]. J Lipid Res, 2021, 62: 100033. DOI: 10.1194/jlr.
TR120000954.
33、Zong L, Li J, Chen X, et al. Lipoxin A4 attenuates cell invasion
b y i n h i b i t i n g R O S / E R K / M M P p a t h w a y i n p a n c r e a t i c
cancer[ J]. Oxid Med Cell Longev, 2016, 2016: 6815727. DOI:
10.1155/2016/6815727.Zong L, Li J, Chen X, et al. Lipoxin A4 attenuates cell invasion
b y i n h i b i t i n g R O S / E R K / M M P p a t h w a y i n p a n c r e a t i c
cancer[ J]. Oxid Med Cell Longev, 2016, 2016: 6815727. DOI:
10.1155/2016/6815727.
34、He J, Pham TL, Kakazu AH, et al. Lipoxin A4 (LXA4) reduces alkaliinduced corneal inflammation and neovascularization and upregulates
a repair transcriptome[ J]. Biomolecules, 2023, 13(5): 831. DOI:
10.3390/biom13050831.He J, Pham TL, Kakazu AH, et al. Lipoxin A4 (LXA4) reduces alkaliinduced corneal inflammation and neovascularization and upregulates
a repair transcriptome[ J]. Biomolecules, 2023, 13(5): 831. DOI:
10.3390/biom13050831.
35、Zhou HY, Hao JL, Bi MM, et al. Molecular mechanism of the
inhibition effect of Lipoxin A4 on corneal dissolving pathology
process[ J]. Int J Ophthalmol, 2013, 6(1): 39-43. DOI: 10.3980/
j.issn.2222-3959.2013.01.08.Zhou HY, Hao JL, Bi MM, et al. Molecular mechanism of the
inhibition effect of Lipoxin A4 on corneal dissolving pathology
process[ J]. Int J Ophthalmol, 2013, 6(1): 39-43. DOI: 10.3980/
j.issn.2222-3959.2013.01.08.
36、Gall FM, Hohl D, Frasson D, et al. Drug design inspired by nature:
crystallographic detection of an auto-tailored protease inhibitor
template[ J]. Angew Chem Int Ed, 2019, 58(12): 4051-4055. DOI:10.1002/anie.201812348.Gall FM, Hohl D, Frasson D, et al. Drug design inspired by nature:
crystallographic detection of an auto-tailored protease inhibitor
template[ J]. Angew Chem Int Ed, 2019, 58(12): 4051-4055. DOI:10.1002/anie.201812348.
37、Neidhart B, Kowalska M, Valentin JDP, et al. Tissue inhibitor of
metalloproteinase (TIMP) peptidomimetic as an adjunctive therapy
for infectious keratitis[ J]. Biomacromolecules, 2021, 22(2): 629-639.
DOI: 10.1021/acs.biomac.0c01473.Neidhart B, Kowalska M, Valentin JDP, et al. Tissue inhibitor of
metalloproteinase (TIMP) peptidomimetic as an adjunctive therapy
for infectious keratitis[ J]. Biomacromolecules, 2021, 22(2): 629-639.
DOI: 10.1021/acs.biomac.0c01473.
38、Jirsova K , Jones GLA. Amniotic membrane in ophthalmology:
properties, preparation, storage and indications for grafting-a review[ J].
Cell Tissue Bank, 2017, 18(2): 193-204. DOI: 10.1007/s10561-017-
9618-5.Jirsova K , Jones GLA. Amniotic membrane in ophthalmology:
properties, preparation, storage and indications for grafting-a review[ J].
Cell Tissue Bank, 2017, 18(2): 193-204. DOI: 10.1007/s10561-017-
9618-5.
39、Takahashi H, Igarashi T, Fujimoto C, et al. Immunohistochemical
observation of amniotic membrane patching on a corneal alkali burn in
vivo[ J]. Jpn J Ophthalmol, 2007, 51(1): 3-9. DOI: 10.1007/s10384-
006-0389-y.Takahashi H, Igarashi T, Fujimoto C, et al. Immunohistochemical
observation of amniotic membrane patching on a corneal alkali burn in
vivo[ J]. Jpn J Ophthalmol, 2007, 51(1): 3-9. DOI: 10.1007/s10384-
006-0389-y.
40、Rodriguez-Garcia A, Alfaro-Rangel R, Bustamante-Arias A, et al. In vivo
corneal microstructural changes in herpetic stromal keratitis: a spectral
domain optical coherence tomography analysis[ J]. J Ophthalmic Vis
Res, 2020, 15(3): 279-288. DOI: 10.18502/jovr.v15i3.7446.Rodriguez-Garcia A, Alfaro-Rangel R, Bustamante-Arias A, et al. In vivo
corneal microstructural changes in herpetic stromal keratitis: a spectral
domain optical coherence tomography analysis[ J]. J Ophthalmic Vis
Res, 2020, 15(3): 279-288. DOI: 10.18502/jovr.v15i3.7446.