糖皮质激素(glucocorticoid, GC)由于其抗炎特性被广泛用于治疗眼部炎症,而G C诱导性青光眼(glucocorticoid-induced glaucoma, GIG) 作为一种常见并发症,其发病机制长期受到关注。文章综述了锌在GIG中的关键作用及其调控机制,揭示了锌在青光眼发病机制中的重要角色。锌作为人体中含量第二丰富的过渡金属,对蛋白质结构、酶催化和细胞信号调节至关重要。GC对锌分布的调控作用在不同组织和细胞类型中表现出复杂性,影响锌的摄取和释放,进而参与青光眼的病理过程。锌通过影响小梁网细胞外基质(extracellular matrix, ECM)的降解和重塑,以及视网膜神经节细胞的存活和轴突再生,在GIG的发病机制中发挥着复杂的作用。文章同时介绍了体内锌调控的现有途径,包括补充锌和减少锌的策略,提供了潜在的治疗途径。未来的研究应深入探索锌在青光眼中的作用机制以及与GC的相互作用,评估锌补充或螯合在青光眼治疗中的安全性和有效性,以及开发新型锌递送和螯合系统,有助于全面揭示锌在青光眼中的作用及治疗潜力,以实现更加精准的防治方案,改善患者预后。
Glucocorticoid (GC) is widely used in the treatment of ocular inflammation for its anti-inflammatory propery. However, glucocorticoid-induced glaucoma (GIG) is a common complication, and its pathogenesis has been extensively studied. This review summarizes the crucial role of zinc in GIG and its regulatory mechanisms, highlighting zinc's significant involvement in the pathogenesis of glaucoma. Zinc, the second most abundant transition metal in the human body, is essential for protein structure, enzyme catalysis, and cell signaling regulation. The effects of GC on zinc distribution vary across different tissues and cell types, affecting zinc uptake and release, which may contribute to the pathological processes of glaucoma. Zinc influences the degradation and remodeling of the trabecular meshwork extracellular matrix and the survival and axonal regeneration of retinal ganglion cells, playing complex roles in the pathogenesis of GIG. We discuss available strategies for regulating zinc in vivo, including zinc supplementation and reduction strategies, providing potential therapeutic approaches. Future research should explore the mechanisms of zinc's role in glaucoma and its interaction with glucocorticoids, evaluate the safety and efficacy of zinc supplementation or chelation in glaucoma treatment, and develop novel zinc delivery and chelation systems. These efforts will help fully elucidate the role of zinc in glaucoma and its therapeutic potential, enabling more precise prevention and treatment strategies to improve patient outcomes.
青光眼是一种以视网膜神经节细胞(retinal ganglion cell, RGC)及其轴突的进行性变性和丢失为主要特征的眼病,是导致视力丧失的最常见原因。尽管其具体的发病机制尚未完全明确,但众所周知,眼内压升高是青光眼进展的主要危险因素。目前,通过药物和手术治疗降低眼内压是控制疾病进展的主要手段。他氟前列素因其能有效长期稳定地降低眼内压,且不良反应轻微、患者依从性高、无明显全身不良反应,已成为治疗原发性开角型青光眼及眼高压症的一线治疗药物。近年来的研究表明,他氟前列素除了具有降低眼内压的效果外,还可能具有神经保护作用。文章对他氟前列素的药理作用及其在神经保护方面的潜在效益进行综述,为开发更有效的治疗青光眼药物提供理论依据和科研基础。然而,目前缺乏充分的临床研究证据支持其神经保护效应,未来研究应进一步探索这一领域,以促进针对视神经保护的药物开发和基于视神经再生的视觉功能重建。
Glaucoma is characterized by the progressive degeneration and loss of retinal ganglion cells (RGC) and their axons,making it one of the most common causes of vision loss. Although the exact underlying mechanisms remain unclear, it is well known that elevated intraocular pressure (IOP) is a major risk factor for the progression of glaucoma. Currently, the primary means of controlling glaucoma involves reducing IOP through medication and surgery. Tafluprost, due to its effective and long-term ability to lower IOP, minimal side effects, high patient compliance, and absence of significant systemic side effects, has become the first-line treatment for primary open-angle glaucoma and ocular hypertension. Recent studies suggest that tafluprost may also have neuroprotective effects beyond its IOP-lowering effects. This article aims to review the pharmacological and potential neuroprotective effects of tafluprost, providing a theoretical basis and research foundation for developing more effective drugs for glaucoma treatment. However, there is still a lack of sufficient clinical evidence to support the neuroprotective effects of tafluprost, and further investigations are required to explore in this field to furnish critical theoretical backing for the development of drugs that target optic nerve protection and facilitate vision restoration through optic nerve regeneration.
谷氨酸是哺乳动物中枢神经系统中的主要兴奋性神经递质,谷氨酸酶系统的持续激活会导致神经元的兴奋性毒性,进而引起神经元损伤和细胞死亡。兴奋性氨基酸转运体家族成员是一种多次跨膜蛋白,位于突触前膜、突触囊泡和神经胶质细胞膜上,也是一种高亲和力的钠钾依赖性载体,能够不断清除细胞外残留的谷氨酸,维持正常的突触内外谷氨酸水平和细胞内氧化还原稳态,对于保护细胞免受兴奋性毒性以及氧化应激损伤至关重要,兴奋性氨基酸转运体家族成员表水平达的失调与多种中枢神经系统疾病神经退行性变的发生和发展密切相关。在视网膜组织中,兴奋性氨基酸转运体家族成员广泛表达。目前大量研究表明,兴奋性氨基酸转运体家族成员广泛参与了青光眼、视网膜缺血再灌注损伤、年龄相关性黄斑变性等眼部疾病的发病,但具体机制有待进一步阐明。为此,文章综述了兴奋性氨基酸转运体家族成员的生理功能及其在相关眼科疾病发生和发展中作用的研究进展,为进一步阐明相关眼病发病的分子机制及新的防治靶点的发现提供新的视角。
SGlutamate is the primary excitatory neurotransmitter in the mammalian central nervous system. Persistent activation of the glutamatergic system can lead to excitotoxicity, resulting in neuronal damage and cell death. Members of the excitatory amino acid transporter (EAAT) family are multi-transmembrane proteins located on the presynaptic membrane, synaptic vesicles, and glial cell membranes. They function as high-affinity, sodium-potassium-dependent transporters, continuously clearing extracellular residual glutamate to maintain normal intra- and extracellular glutamate levels and intracellular redox homeostasis. This process is crucial for protecting cells from excitotoxicity and oxidative stress-induced damage. Dysregulation of EAATs is closely associated with the onset and progression of neurodegenerative diseases in the central nervous system. EAAT family members are widely expressed in retina. Numerous studies have demonstrated that these transporters are extensively involved in the pathogenesis of ocular diseases, including glaucoma, retinal ischemia-reperfusion injury, and age-related macular degeneration, although the specific mechanisms remain to be elucidated. Therefore, this article reviews the physiological functions of EAAT family members and their role in the development and progression of related ophthalmic diseases, providing new perspectives for further understanding the molecular mechanisms underlying these conditions and identifying novel therapeutic targets.
随着移植技术逐年发展,异基因造血干细胞移植患者的生存期延长,长期并发症成为影响患者预后及生活质量的主要原因。眼移植物抗宿主病是异基因造血干细胞移植术后最常见的眼部并发症,发生率可高达50%以上。根据发病时间可分为急性及慢性眼移植物抗宿主病,临床上最常以慢性炎症及眼表组织纤维化为特点,主要表现为干眼和不同程度的角结膜炎,治疗较为棘手,可不同程度影响患者视觉质量及生活质量,严重可致盲。近年来眼移植物抗宿主病越来越受到国内外学者重视,其发病机制、临床特点、诊断及治疗相关研究逐渐深入,文章针对眼移植物抗宿主病的临床诊疗新进展进行综述。总体而言,眼移植物抗宿主病早期识别仍较为困难,早期诊断策略有待进一步探索。目前治疗对眼移植物抗宿主病的效果较为有限,或缺乏充足的循证医学证据,临床上缺乏针对不同严重程度及疾病活动度的分级诊疗策略,未来有待进一步探索新的治疗靶点及疾病活动监测指标,将有助于改善患者长期预后及生活质量。
Despite advancements in allogeneic hematopoietic stem cell transplantation techniques leading to improved overall survival rates, long-term complications have emerged as the primary contributors to poor prognosis and diminished quality of life. Ocular graft-versus-host disease (oGVHD), a prevalent complication affecting over 50% of patients post-transplantation, frequently manifests as refractory dry eye, often accompanied by keratoconjunctivitis. Patients with oGVHD routinely suffer from visual impairment and a decline in their quality of life.Currently, research into the mechanisms, clinical features, diagnosis, and treatment of oGVHD has progressively deepened. This article reviews the latest advancements in the clinical diagnosis and management of oGVHD. Notably, there is a pressing need for strategies focused on early diagnosis and treatment, as early recognition of oGVHD remains challenging. Existing treatments for oGVHD either exhibit limited efficacy or lack robust clinical evidence to support their use as the best available options.Further research is imperative to develop tiered diagnostic and treatment approaches, including the exploration of novel therapeutic targets and biomarkers for disease detection. Such endeavors hold the promise of enhancing patients' long-term prognosis and quality of life.
Ⅱ期人工晶状体(intraocular lens,IOL)植入常用于矫正先天性白内障摘除术后无晶状体眼状态。IOL屈光力计算是影响儿童Ⅱ期IOL植入术后视功能发育和改善的关键因素之一。现有IOL屈光力计算公式是基于成人有晶状体眼的数据研发,能准确预测成人眼IOL植入的屈光力,但是对儿童Ⅱ期IOL植入的屈光力预测准确性欠佳,主要原因包括:1)儿童II期植入术前为无晶状体眼,缺乏部分公式定义中的有晶状体眼的前房深度(是指从角膜前表面中央顶点到晶状体前表面的距离)和晶状体厚度。2)公式根据囊袋内植入IOL预测屈光力,但儿童Ⅱ期IOL睫状沟植入术在临床上应用更为广泛。当IOL植入睫状沟时有效晶状体位置发生前移,可能引起屈光预测误差。3)成人眼的发育已完成,目标屈光度多为正视或近视眼(-3.00 ~ +1.00 D),但是儿童眼仍在发育,需针对其特性测算合适的远视目标屈光度(+0.50 ~ +12.00 D)以适应眼球发育引起的屈光变化。为使Ⅱ期IOL植入患儿达到术前预设的目标屈光度,对现有公式进行选择与优化至关重要。
Secondary intraocular lens (IOL) implantation is a common treatment for pediatric aphakia. The accurate prediction of IOL power calculation plays a pivotal role in the postoperative development and improvement of visual function for pediatric secondary IOL implantation. Current IOL power calculation formulas were developed based on data from adult phakic eyes and displayed good performance in adult population. However, the formulas showed poor performance in pediatric aphakic population due to the following reasons: 1) In these pediatric aphakic patients, the unavailability of phakic anterior chamber depth (the distance from corneal epithelium to the anterior surface of the lens) and lens thickness (LT) greatly limits the application of some IOL power calculation formulas. 2) IOL power calculation formulas predict the effective lens position on the basis of in-the-bag IOL implantation, whereas sulcus implantation is more widely used in pediatric secondary implantation. Effective lens position in capsular placement is more posterior to ciliary sulcus IOL placement. When applying the initial IOL power calculated for capsular implantation to sulcus implantation, it can lead to refractive errors. 3) Adult eyes have completed their development, with target refractions often being emmetropic or myopic (-3.00 ~ +1.00 D), while pediatric eyes are still developing, necessitating the calculation of an appropriate hyperopic (+0.50 ~ +12.00 D) target refraction to accommodate refractive changes due to ocular growth.To achieve the predetermined target refractive outcomes, the selection and optimization of IOL power calculation formulas is critically important for pediatric secondary IOL implantation.
人工智能(artificial intelligence, AI)在医学领域的广泛应用为探索眼部与全身健康的关系提供了新的机遇。文章回顾了眼科AI在心血管健康、神经系统健康、肾脏健康和衰老过程中的应用。在心血管健康方面,AI能够通过分析眼底图像预测心血管疾病风险因素和未来心血管事件,并提供了简便、有效的风险分层方法。在神经系统健康方面,眼科AI在阿尔茨海默病早期诊断和帕金森病识别方面显示出潜力,尽管对未来事件预测仍具挑战性。针对多发性硬化,眼科AI在诊断和预测残疾进程上展现了良好效果。在肾脏健康中,眼科AI技术通过分析视网膜图像可预测肾功能相关指标、直接检测肾病事件,展示了其在改善肾病筛查方式和减轻医疗负担方面的潜力。在衰老过程中,AI能够利用眼部图像预测生物年龄、视网膜年龄差和晶状体年龄等参数提供了生物衰老指标,为理解衰老与眼部健康的关联提供了新视角。
The widespread application of artificial intelligence (AI) in the medical field has provided new opportunities to explore the relationship between eye and whole body health. This article reviews the application of ophthalmic AI in cardiovascular health, neurological health and aging. In terms of cardiovascular health, AI can predict cardiovascular disease risk factors and future cardiovascular events by analyzing fundus images, and provides a simple and effective risk stratification method. In terms of neurological health, ophthalmic AI shows potential in early diagnosis of Alzheimer's disease and identification of Parkinson's disease, although the prediction of future events remains challenging. For multiple sclerosis, ophthalmic AI has shown good results in diagnosing and predicting the progression of disability. In kidney health, ophthalmic AI technology can predict kidney function-related parameters and detect kidney disease events by analyzing retinal images, demonstrating its potential in improving kidney disease screening methods and reducing medical burdens. In the aging process, AI can use eye images to predict biological age. Parameters such as retinal age gap and LensAge provide biological aging indicators, providing a new perspective for understanding the relationship between aging and eye health.
“锌”在青光眼研究舞台上正扮演着越来越重要的角色。糖皮质激素,作为人体内重要的激素之一,其对锌的调控已在诸多系统中被证实。研究发现,在糖皮质激素的影响下,小梁网中的锌离子转运受阻,导致细胞外基质降解失衡,从而干扰小梁网正常流出道功能,加重青光眼的病情。而视神经损伤后,锌离子在神经突触间的异常传递、不平衡分布与胞内异常累积影响视网膜神经节细胞存活和轴突的再生能力,进而损害视功能,可能成为青光眼视神经损伤发病及进展的关键因素。这些研究进展为视神经保护策略提供了新的视角,“锌”作为治疗靶点的潜力正在被逐步挖掘,通过调节锌水平来干预青光眼病理进程成为可能治疗手段。
本期封面中将汉字“锌”设计为飞天舞者,其超越时空的永恒美感,呼应了“锌”在青光眼研究中突破传统、开辟新程的角色。轻盈与自由的飞天舞者,象征着“锌”在细胞内外穿梭,精妙调控生理功能,维系细胞的和谐与平衡,为青光眼患者带来新的治疗希望。
“锌”在青光眼研究舞台上正扮演着越来越重要的角色。糖皮质激素,作为人体内重要的激素之一,其对锌的调控已在诸多系统中被证实。研究发现,在糖皮质激素的影响下,小梁网中的锌离子转运受阻,导致细胞外基质降解失衡,从而干扰小梁网正常流出道功能,加重青光眼的病情。而视神经损伤后,锌离子在神经突触间的异常传递、不平衡分布与胞内异常累积影响视网膜神经节细胞存活和轴突的再生能力,进而损害视功能,可能成为青光眼视神经损伤发病及进展的关键因素。这些研究进展为视神经保护策略提供了新的视角,“锌”作为治疗靶点的潜力正在被逐步挖掘,通过调节锌水平来干预青光眼病理进程成为可能治疗手段。本期封面中将汉字“锌”设计为飞天舞者,其超越时空的永恒美感,呼应了“锌”在青光眼研究中突破传统、开辟新程的角色。轻盈与自由的飞天舞者,象征着“锌”在细胞内外穿梭,精妙调控生理功能,维系细胞的和谐与平衡,为青光眼患者带来新的治疗希望。