您的位置: 首页 > 2024年12月 第39卷 第12期 > 文字全文
2023年7月 第38卷 第7期11
目录

Schlemm's canal结构和功能调控的研究进展及其在青光眼治疗中的应用

Research progress on the structure and functional regulation of Schlemm's canal and its application in glaucoma treatment

来源期刊: 眼科学报 | 2024年12月 第39卷 第12期 631-639 发布时间:2024-12-03 收稿时间:2024/12/3 11:08:12 阅读量:582
作者:
关键词:
Schlemm管青光眼房水流出平衡眼压调节
Schlemm's canal glaucoma aqueous outflow balance intraocular pressure regulation
DOI:
10.12419/240102101
收稿时间:
2024-10-21 
修订日期:
2024-11-13 
接收日期:
2024-12-02 
Schlemm管(Schlemm's canal,SC)作为房水流出的主要通道,通过调节房水外排来维持眼内压的平衡,其结构和功能的异常与高眼压及青光眼的发生发展密切相关。对SC的研究有助于阐明房水外排阻滞的发生机制、探索新的途径以增加房水排出,从而为降低眼压和青光眼治疗的新药物开发提供基础。目前,对SC发育和功能的调节机制的认识仍然有限,缺乏针对SC的特异性治疗策略。近年来,关于SC细胞命运决定及其结构发育的细胞学机制逐渐被揭示,功能调控的关键分子靶标也相继被发现,这促进了对SC结构和功能调控的深入理解。此外,作为降眼压药物靶点和针对性手术的创新应用也在不断拓展。文章系统回顾SC的结构与功能研究,总结关键的分子和细胞学调控机制,归纳SC靶向药物和手术疗法的最新进展,为青光眼的临床诊治提供了新的思路。
Schlemm's canal (SC), as the primary pathway for aqueous humor drainage, maintains intraocular pressure balance by regulating aqueous outflow. Abnormalities in its structure and function are closely associated with elevated intraocular pressure and the development of glaucoma. Research on SC aids in elucidating the mechanisms behind outflow resistance and exploring new avenues to enhance aqueous drainage, thereby providing a foundation for the development of new drugs aimed at lowering intraocular pressure and treating glaucoma. Currently, our understanding of the mechanisms regulating SC development and functionality remains limited, with a lack of specific therapeutic strategies targeting SC. In recent years, advancements in measurement and imaging technologies have revealed the molecular and cellular mechanisms underlying SC development, leading to the identification of key regulatory targets. This has enhanced our understanding of SC structural and functional regulation. Furthermore, innovative applications of SC as a target for intraocular pressure-lowering medications and surgical interventions are continually expanding. This article systematically reviews the research on the structure and function of SC, summarizes the key molecular and cellular regulatory mechanisms, and discusses the latest advancements in SC-targeted pharmacological and surgical therapies, providing new insights for the clinical diagnosis and management of glaucoma.

文章亮点

1. 关键发现

Schlemm管(Schlemm's canal,SC)是房水流出的主要通道,其介导的房水引流功能并非被动和不可控。通过不同的分子信号或生物力学刺激,可以靶向其结构和功能,从而实现房水外排和眼压的动态调控。这一系列研究对理解高眼压相关青光眼的发病机制以及开发新型防治策略具有重要意义。

2. 已知与发现

目前,青光眼的治疗主要依赖于控制房水的产生或降低排出,缺乏针对SC的精准化治疗策略。本文系统回顾了SC的结构与功能研究,总结了关键的分子和细胞学调控机制。同时,结合靶向SC的药物、手术及工程学疗法的最新进展,全面阐明了SC在青光眼发病机制及临床防治中的重要作用。

3. 意义与改变

解析SC的结构发育及功能重塑的分子机制,探究其微环境的精细调控方式,对于深入理解青光眼的发病机制具有深远影响,也将为青光眼的早期诊断和临床治疗提供全新的策略。

       Schlemm管(Schlemm’s canal,SC)是一种环绕角膜的环形管道,由内皮细胞构成。该结构于1830年由德国解剖学家弗里德里希·施莱姆首次发现并命名[1]。SC面向前房一侧的细胞直接与组成小梁网的间质细胞相连,靠近巩膜表层的外壁通过集合管与巩膜表层的静脉连接,可将小梁网过滤的房水经集水通道最终输送至静脉循环。该流出途径被称为常规或小梁流出途径,约占房水流出量的70%~95%,在眼压维持中发挥着关键的调控作用[2-4]。一旦SC-小梁网途径发生结构或功能性损伤,会阻碍房水流出效率,进而引起眼压升高,最终导致青光眼发生、发展。这是一种以进行性视神经病变和不可逆视觉损伤为特征的破坏性疾病,严重影响人类视觉健康[5-6]。越来越多的研究报道了青光眼患者眼球SC的收缩、塌陷、僵硬和内壁孔隙减少等结构性改变[7-8],针对性地机械扩张SC或切除其内壁以降低眼压的手术方式也逐渐应用于青光眼治疗[9-10]。然而,目前青光眼的常规治疗策略仍然主要依赖于减少房水分泌或促进房水外流,仅有少数几种抗青光眼疗法是针对病变部位的,尽管SC-小梁网途径在房水外流阻力中的重要性已得到证实。因此,SC作为一种独特而复杂的房水流出关键通道,负责维持眼内体液平衡,了解其结构和形成机制对治疗决策至关重要。本文就SC的结构与功能研究进行了系统回顾,对其关键的分子和细胞学调控机制进行总结,并结合SC相关药物和手术疗法的最新进展阐明了SC在眼压控制方面的重要性,为青光眼的临床治疗提供基础支撑和新的思路。

1 Schlemm管的发育形成

       SC位于角膜缘处的巩膜实质内,呈环形结构,其内衬是小梁网,二者共同构成传统的房水流出通道。SC由单层内皮细胞组成,具有多个水通道分支,其宏观位置决定了微观结构的特征。根据其与小梁网的关系,紧贴小梁网一侧的内皮细胞被称为内壁,而靠近巩膜一侧的则为外壁。如图1所示,SC内、外壁的内皮细胞在形态、细胞特异性标志物及功能上均存在差异[11-12]。与外壁不同,内壁的内皮细胞位于不连续的基底膜上,具有淋巴管内皮细胞的属性,能够通过巨型空泡(giant vacuoles)等方式吸收和转运房水,以应对小梁网所面临的压力梯度[13]。此外,SC内壁的内皮细胞具有多个被称为“孔”(pores)的微米级通道,目前已知有I-pores和B-pores两种,二者在位置、敏感性及形成机制上各不相同[14-16]。既往研究强调,小梁网细胞的功能退化以及小梁网组织的僵硬度增加是房水外流的主要阻力[7]。然而近年来的研究发现,小梁网深层组织与相邻SC内皮细胞层的组织僵硬度最高[17],提示SC作为房水外排的最后一道屏障,其内皮细胞层对房水透过的效率是控制房水排出量的关键因素之一。

图1  Schlemm管位置和结构示意图
Figure 1 The location and structure of Schlemm's canal
(A)Schlemm管位于角膜缘实质处,呈环状小管结构,与角膜缘血管分布相邻;(B)Schlemm管的内壁与小梁网相邻,而外壁则与巩膜静脉相连,是房水经小梁网流至巩膜静脉循环中的关键结构。
(A) The Schlemm's canal is located at the corneal limbus, presenting a circumferential tubular structure adjacent to the limbal vessels. (B) The inner wall of the Schlemm's canal is adjacent to the trabecular meshwork, while the outer wall connects to the episcleral veins, serving as a crucial structure in the circulation of aqueous humor from the trabecular meshwork to the episcleral veins.
       SC起源于巩膜静脉,是逐渐发展并获得淋巴管和血管属性的混合内皮结构。人类的SC发育始于出生前第17周,并在第24周完成,而小鼠的SC在出生后才开始发育[18-20]。SC的器官发生是一个循序渐进的过程,涉及SC祖细胞的命运分化、侧向发芽、管腔化和静脉血管分离等多个阶段[12]。以小鼠为例(图2),SC的形成始于出生后第0天,来自角膜缘和脉络膜血管的内皮细胞开始向深层SC形成区域迁移,并在角膜缘周围形成短暂的跨巩膜血管。在出生后第1~3天,这些短暂的跨巩膜血管在带有丝状突起的尖端细胞的引导下逐渐向侧方延伸,形成细胞簇,最终合并成没有管腔结构的原始SC丛。原始SC中的内皮细胞表达常见的血管内皮细胞标记物,如血管内皮钙黏蛋白(Vascular endothelial -cadherin,VE-cadherin)、内皮黏蛋白(Endomucin,EMCN)、血管内皮生长因子受体2(Vascular Endothelial Growth Factor Receptor 2,VEGFR2)和血小板-内皮细胞黏附分子(Platelet Endothelial Cell Adhesion Molecule-1,PECAM-1/ CD31)。随着原始SC的进一步萌发和扩张,转录因子 Prospero相关同源异形盒蛋白1(Prospero Homeobox Protein 1, PROX1)在出生后第3天左右开始表达,使原始SC丛具备淋巴管属性[20-21]。PROX1阳性的SC内皮细胞随后表达VEGFR3,并在出生后第5~9天期间继续生长为扁平的管状形态。到第10天,发育中的SC面积明显增大,逐渐成熟并开始形成管腔,且PROX1在内壁特征性地极化表达,内、外壁细胞属性逐渐显现[22]。到第15天,SC发育达到初步成熟状态,内、外壁的细胞形态明显不同,随后仍持续保持动态重塑[20]。这些发育过程对于理解SC的功能及其在眼内压力调节中的作用至关重要。
图2 Schlemm管发育形成的时间轨迹
Figure 2. Timeline of Schlemm's Canal Development
该图总结了Schlemm管(Schlemm’s canal,SC)发育形成的关键阶段:静脉血管内皮细胞自出生后第0天(P0)开始出芽并向深层迁移,形成原始SC丛并开始生长;第3天(P3)部分内皮细胞逐渐获得Prospero相关同源异形盒蛋白1(prospero homeobox protein 1, PROX1)表达,并起始淋巴管相关标志基因的表达;随着细胞簇的持续生长,第10天(P10) PROX1在内壁出现特征性极化,管腔逐渐开始形成;直至第15天(P15),SC发育初步成熟,表现出明显的内、外壁细胞极化特征。
This figure summarizes the key stages in the development of Schlemm's canal (SC): Beginning on postnatal day 0 (P0), endothelial cells of the venous vessels start to bud and migrate inward, forming the primitive SC plexus and initiating growth. By day 3 (P3), some endothelial cells gradually acquire prospero homeobox protein 1 (PROX1) expression and begin expressing lymphatic-associated marker genes. As the cell clusters continue to grow, by day 10 (P10), PROX1 exhibits characteristic polarization in the inner wall, and the lumen begins to form. By day 15 (P15), the development of SC reaches initial maturity, displaying distinct polarization features in both the inner and outer walls.

2 Schlemm管与房水外排

       房水是一种循环流动的体液,借助房角镜可以清晰地观察到它是以搏动方式由前房经SC最终汇入静脉,眼压的瞬时波动为房水的这种搏动外流提供了主要动力[23]。相比于传统的滤筛理论所认为的SC内皮细胞上的孔洞和邻管组织区细胞外基质孔隙是房水外流的主要阻力[23],这种“泵”功能理论更强调了小梁网-SC通路在房水外排过程中的主观调控功能。同样地,房水的这种搏动外流引起的周期性震荡和瞬时应力等也会导致包括小梁网和SC内皮细胞在内的一系列弹性结构发生改变,通过流体力学刺激等反过来实现对房水外排通道的调控。另一方面,通过观察眼部色素和灌流标志物的分布情况,研究者发现房水在SC中的运输并非均一的,而是呈分段式,同一时间仅部分SC管腔被应用于房水运输[18,24]。这种分段式的排水方式并非人类特有,也广泛存在于包括小鼠、猪、牛和猴子等诸多物种中[25-27]。眼压的升高会加剧房水不均匀地分段式外排,SC中有效滤过面积的减少又进一步阻碍房水流出,最终导致眼压持续升高[28]
       为了响应如此复杂的房水外排方式,SC作为关键的滤过通道,它的结构和功能也因所处的力学环境而发生一系列改变。实际上,SC内皮细胞中,压力梯度从细胞基底向顶端分布,这一现象与淋巴管所处的力学微环境相似[5,20],而与血管所处的基底膜及周围组织的支撑环境截然不同,后者能够减少细胞的周向和径向应力。与淋巴管不同的是,SC的内皮细胞之间需要通过紧密连接相连,以维持眼球与巩膜外静脉之间的压力差[29]。这种细胞底部向顶端的压力梯度所产生的力学环境可能导致内壁细胞发生形变,使其脱离基底膜,从而在内壁靠近管腔一侧形成了巨型空泡[5,30]。这些结构特征表明,SC所处的生物力学环境对内、外壁细胞的形态表征形成和功能维持具有重要作用。另一方面,SC结构特征也会随着眼压的波动而动态变化。在SC内,剪切力作为眼压机械感受调控的重要信号,其变化与小梁网的硬度密切相关[17,30]。具体而言,当眼压升高时,小梁网会变宽,而SC管腔则会相应变窄。这种变化与SC内壁巨型空泡的形成以及细胞外基质面积的增加、管腔内外壁距离的缩短密切相关[31]。此外,随着眼压的升高,SC的管腔壁可能会发生塌陷,从而显著增加房水流出通道的阻力[17-18]。这种动态变化对房水的流出和眼内压力的调节具有重要影响。如此,SC内皮细胞通过突触介导与邻管组织和小梁网等细胞的力学传导,共同形成了一个功能单元,能够迅速感应压力变化,并通过形变发生等方式来实现对房水外排的动态调控。

3 Schlemm管结构和功能的关键调控信号

       PROX1是控制淋巴管生成的主要转录因子,其表达对血管内皮细胞向淋巴管内皮细胞的转分化至关重要[8]。SC所具备的淋巴管内皮属性,与其在发育过程中接触的房水环境密切相关,这种环境诱导了淋巴转录因子PROX1表达,进而促进诸如VEGFR3和叉头框C2(forkhead box C2, FOXC2)等淋巴管特异性标志物的持续表达和功能发挥。PROX1在SC中的表达具有较高保真性,广泛存在于人类、斑马鱼和小鼠体内[22]。研究者发现,通过手术方式在小鼠出生后第5天降低房水体积和眼压,淋巴转录因子PROX1的表达水平显著下降,这直接影响了SC的发育以及相关淋巴管特异性标志物的表达,进一步证明了PROX1在SC发育形成的关键调控作用[21]。此外,PROX1的表达与房水引流改变也密切相关,当房水分泌随年龄增加而进行性减少时,PROX1表达也会显著下调[32]
       血管内皮生长因子(vascular endothelial growth factor, VEGF)家族,包括VEGFA~D等,广泛表达于多种类型细胞中,是调节内皮细胞行为发生的主要信号。VEGF通过与其酪氨酸激酶受体VEGFR和共受体结合,催化激酶活性,启动细胞内信号传导,产生一系列生物学效应。SC的内皮细胞同时表达VEGFR2和VEGFR3,表明其兼具血管和淋巴管内皮细胞属性[33]。VEGFR3能够与VEGF-C和VEGF-D结合,除了决定淋巴管内皮细胞的属性外,也促进血管内皮细胞的迁移以及巩膜静脉血管的形成[22]。有研究发现,VEGF-C杂合子会延缓SC自静脉内皮细胞的出芽和小管融合,而眼内单次低剂量注射VEGF-C则可增强SC内皮细胞的出芽和增殖,有助于眼压维持[22]。值得注意的是,VEGF-A的注射反而会导致眼压显著升高,并使SC结构异常[34]。这些相反的结果可能与不同类型细胞表达的VEGF受体不同有关,表明VEGF介导的内皮细胞行为在眼部具有复杂的调控方式。因此,在应用相关抗体进行治疗时,需要谨慎考虑这些调控机制。
       血管生成素(Angioprotein,ANG)及其具有免疫球蛋白和表皮生长因子同源性结构域的酪氨酸蛋白激酶受体(tyrosine kinase receptors with immunoglobulin and EGF homology domains, TIE)在内皮细胞行为发生和功能调节中也发挥着重要作用,尤其是在SC的发育和功能方面。ANG1与TIE2受体介导的酪氨酸激酶通路是调控SC发育的关键信号之一,该通路的缺失会严重影响小鼠SC的形成,导致眼压升高[35]。在原发性开角型青光眼患者的研究中,发现ANGPT1的变异与该疾病的发生密切相关;TIE2的杂合子功能缺失变异也发现与儿童原发性先天性青光眼相关,进一步证实了ANG1/TIE2信号在青光眼发病机制中的重要性[35-36]。与TIE2不同,TIE1不与已知的TIE2配体结合,但它可以通过与TIE2形成异二聚体来调节TIE2活性[37],这种调节方式在微血管完整性以及淋巴管和心脏瓣膜形成中是必不可少的[38]。对于SC的发育,TIE1同样是必需的。TIE1的缺失会导致小鼠SC发育异常,从而无法维持房水的正常流出平衡[39]。这些发现强调了ANG/TIE信号通路在眼部房水流出平衡和眼压维持中的关键作用。
       整合素是一类主要的细胞表面受体,由α和β亚基组成异源二聚体,能够与细胞外基质(extracellular matrix,ECM)相互作用,对组织形态发生至关重要。不同亚基组合的整合素可以特异性地结合不同的ECM配体。当整合素与ECM结合后,它通过细胞质尾部与细胞骨架相关蛋白传递胞外信号,包括ECM介导的机械力信号[40]。其中,整合素α 8被发现可作为SC内皮细胞的标志物,在SC表达其他标志物基因和细胞收缩方面具有重要的调控作用[41]。另一方面,笔者课题组研究发现,整合素α v β 3能促进SC的形成并维持眼压稳定,这一过程依赖于角膜缘巨噬细胞分泌的ECM成分玻连蛋白(Vitronectin)[42]。内皮细胞中整合素αvβ3信号的缺失会抑制蛋白激酶B(Protein Kinase B, PKB/AKT)和叉头框O1(forkhead box O1,FOXO1)的磷酸化,进而通过影响β-catenin/FOXC2/PROX1信号轴抑制SC的形态发生,导致小鼠眼压升高和视神经病变。值得注意的是,在衰老小鼠的SC内皮细胞中,PROX1和整合素β3的表达均显著下调,而抑制FOXO1可促进衰老SC的活力恢复[42]。此外,SC中高表达的淋巴管瓣膜特异性整合素α 9在小梁网中不表达,其缺失同样导致SC发育异常,形成面积减少约40%~50%[43]。这一系列结果表明,整合素信号在传统房水通路的形成和调控中发挥着重要而复杂的作用。
       SC的ECM组成及其生物力学特性(如刚性、弹性和拓扑结构等)在眼压调节中也发挥着重要作用。为了应对睫状体收缩和眼压变化带来的机械力改变,SC处于一种高弹性的微环境中,能够自由伸展和回缩[23]。这种机械力的改变会导致ECM中如纤维蛋白原等成分发生变化,进而被SC细胞表面的特定受体检出并引起相应的细胞学改变[44]。然而,ECM的过度积聚可能引发纤维化进程,破坏正常组织结构,形成无功能的瘢痕组织。这种情况会增加组织僵硬度,从而影响房水的外流,导致眼压失衡。研究表明,与健康人的SC内皮细胞相比,青光眼患者的SC内皮细胞中ECM显著增加,且细胞硬度明显升高[44]。也有研究认为,这种ECM的堆积和硬度的增加与SC内皮细胞发生内皮-间质转化密切相关,是转化生长因子-β(transforming growth factor-β, TGF-β)诱导组织纤维化进展的结果[45]。SC内皮细胞的这些改变可能与青光眼发生的病理机制密切相关,并进一步影响眼内压力的调节。
       一氧化氮(nitrogen oxide, NO)作为一种内源性血管舒张剂,近年来被发现对SC内皮细胞结构、房水引流和眼压调节等具有重要意义。与其他血管内皮细胞类似,SC内皮细胞也表达一氧化氮合成酶,能够响应剪切应力并诱导细胞内NO的产生[46-47]。研究表明,外源性NO可降低房水外流阻力,但剪切力诱导的内源性NO反而会增加这一外流阻力[47]。SC产生的NO会使小梁网细胞松弛,通过降低其硬度促使SC塌陷,继而增加SC所感受的剪切应力,进一步促进NO的产生[48-50]。这些相互作用形成了一个正反馈机制,促进NO的生成。此外, NO的扩散性产生也可能影响周围组织,包括房水集流通道,甚至导致远端血管扩张[49]。这意味着,SC内皮细胞响应剪切力诱导产生的NO为眼压调节提供了一个快速且敏感的信号调节机制,对维持眼压平衡具有重要意义。整体来看,NO在眼部生理稳态调节中扮演着多重角色,影响着房水的动态平衡和眼压调节。

4 靶向Schlemm管的药物、手术及创新疗法

       目前,青光眼的常规治疗仍然以降低眼压为目的,包括药物和手术治疗。然而,药物治疗在高眼压的控制方面存在明显个体差异,且常伴有难以忍受的不良反应,因此手术治疗仍然是必要的选择。在青光眼的手术治疗中,滤过性手术仍是主流,经典的小梁切除术和青光眼引流阀植入术主要通过增加房水引流来降低眼压。其中,小梁切除术被广泛应用并作为青光眼治疗的标准手术。传统的外路小梁切除术直接使用小梁切开刀钝性切开SC内壁及小梁网,以重建SC房水外流途径,适用于发育性青光眼;而在此基础上改良的微导管引导性小梁切开术利用非损伤性微导管实现精准定位;结合房角镜等仪器辅助,内路小梁切开术则进一步利用缝线或光导纤维定位SC。然而,这类“房水短路”手术在围手术期均面临着较高的并发症风险。即使手术成功,术后滤过通道的瘢痕化和滤过泡相关并发症也严重影响患者的眼部健康。因此,近年来不依赖滤过泡的青光眼引流手术逐渐受到关注。为了降低小梁网和SC的房水流出通道阻力,恢复生理性房水引流功能,黏弹剂、微导管和扩张支架等各种生物材料等被应用于非穿透性青光眼手术治疗中。内路小管黏弹剂扩张成形术通过黏弹剂实现SC的有效扩张,对原发性开角型青光眼具有较好的治疗效果;改良的内路Schlemm管扩张成形术则利用iTrack微导管实现黏弹剂的精准填充;Schlemm管微支架植入术进一步利用Hydrus或iStent等生物支架替代黏弹剂植入SC以提高房水流出效率。此外,穿透性Schlemm管成形术作为黏小管切开术的改良手术方式,利用微导管从外路将聚丙烯缝线贯穿SC,通过维持SC张力重建生理性房水流出通道[51]。这种内引流成形术旨在解除集液管阻滞,不依赖于滤过泡,具有较高的安全性,且创伤小、恢复快,因此被广泛应用于开角型青光眼,同时也适用于闭角型青光眼患者。这些微创手术方法的创新不仅降低了并发症的发生率,还能改善患者的术后生活质量,为青光眼的治疗提供了更多选择。
       SC在眼压维持和青光眼的发生发展中确实扮演着重要角色,但目前仍然缺乏针对SC有效且安全的药物。现有主流治疗药物主要通过抑制房水的产生或增强非常规房水的外排途径来发挥作用。然而,这两类药物往往导致常规流出途径的房水流量显著降低,这种对房水及其营养物质的剥夺可能会进一步损伤病变组织[52]。一些新兴药物,如盐酸利舒地尔(Rho激酶抑制剂)和奥米帕格异丙基(选择性EP2受体激动剂),通过作用于传统小梁网途径,促进房水流出[53-54]。通过重塑细胞骨架或肌动蛋白聚合,Rho激酶抑制剂和肌动蛋白聚合抑制剂可以松弛小梁网和SC组织,以此降低房水流出阻力[55]。另一方面,Rho激酶抑制剂也可能通过抑制TGF-β诱导的SC细胞内皮-间质转化协同控制眼压[56]。然而,这类药物在局部使用时,充血发生率高,且眼内生物利用率低。虽然盐酸利舒地尔能够直接降低眼压,但也可能引发如睑缘炎、结膜充血甚至结膜炎等不良反应[57]。因此,开发靶向性传统房水流出途径的新药物具有重要意义,在研发过程中需要思考如何提高药物制剂的局部精准用药;同时扩展新药物与现有药物的联合用药,以协同改善房水灌流效率;更需要注意提高药物制剂的有效性同时保障用药安全性。这一研究方向无疑将为青光眼的治疗提供新的希望。
       此外,组织工程学和材料学的快速发展也为青光眼的治疗策略带来了新的可能。支架在组织工程中扮演着关键角色,可以提供机械支撑、促进ECM产生和帮助细胞定植等。然而,如何构建适用于SC的组织工程学支架仍然是一个研究难点。针对SC内、外壁的不同特性,研究人员创新性地采用了阴性光刻胶SU-8,以提供必要的物理和机械支撑。同时,使用水凝胶ExtracelTM来促进细胞的附着并维持SC内皮细胞的分化功能[11]。这种结合有助于SC内皮细胞的存活和功能发挥。另一方面,科学家们利用一氧化氮在降眼压方面的疗效,构建了能够深度穿透角膜的可生物降解型纳米胶囊。这些胶囊可用于高效共递送疏水性JS-K和亲水性L-精氨酸。在传统小梁网-SC微环境中,依赖抗坏血酸和NO合酶的结合,可以通过氧化还原反应释放大量NO,进而实现精准治疗[58]。这种内源性刺激响应的NO纳米疗法,为青光眼的精准治疗提供了一种无创且高效的思路,预示着未来治疗策略的多样性和个性化发展,为更好地控制眼压和改善患者生活质量开辟了新的方向。

5 总结与展望

       SC作为房水外排的主要流出通道,其功能并非被动和不可控的。越来越多的研究表明,依赖于不同的信号或生物力学等刺激可以靶向SC结构和功能,继而实现对房水外排和眼压的动态调控。然而,现有针对SC的药物开发和工程学研究仍处于起步阶段;能否结合纳米技术等新材料学方法对传统引流通道进行工程改造,以期实现青光眼疗法的创新,仍需进一步的研究和验证;青光眼手术治疗在恢复房水自主搏动、精准调控房水流出阻力和再次激活SC非灌流区域等方面也面临诸多挑战。深入解析SC的结构发育和重塑的分子机制,探究其所处的组织和力学微环境的精细调控方式,将对理解青光眼的发病机制产生深远影响。这些研究不仅有助于青光眼的早期诊断,也为临床治疗提供了全新的策略,推动青光眼治疗的进步。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署例(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。
1、Hamanaka%20T%2C%20Ujike%20K.%20%5BThree-dimensional%20structure%20of%20Schlemm's%20canal%20(author's%20transl)%5D%5BJ%5D.%20Nippon%20Ganka%20Gakkai%20Zasshi%2C%201980%2C%2084(9)%3A1292-304.%C2%A0Hamanaka%20T%2C%20Ujike%20K.%20%5BThree-dimensional%20structure%20of%20Schlemm's%20canal%20(author's%20transl)%5D%5BJ%5D.%20Nippon%20Ganka%20Gakkai%20Zasshi%2C%201980%2C%2084(9)%3A1292-304.%C2%A0
2、Johnson M, McLaren JW, Overby DR. Unconventional aqueous humor outflow: a review[J]. Exp Eye Res, 2017, 158: 94-111. DOI: 10.1016/j.exer.2016.01.017. Johnson M, McLaren JW, Overby DR. Unconventional aqueous humor outflow: a review[J]. Exp Eye Res, 2017, 158: 94-111. DOI: 10.1016/j.exer.2016.01.017.
3、Gabelt BT, Kaufman PL. Changes in aqueous humor dynamics with age and glaucoma[J]. Prog Retin Eye Res, 2005, 24(5): 612-637. DOI: 10.1016/j.preteyeres.2004.10.003. Gabelt BT, Kaufman PL. Changes in aqueous humor dynamics with age and glaucoma[J]. Prog Retin Eye Res, 2005, 24(5): 612-637. DOI: 10.1016/j.preteyeres.2004.10.003.
4、Ramos%20RF%2C%20Hoying%20JB%2C%20Witte%20MH%2C%20et%20al.%20Schlemm%E2%80%99s%20canal%20endothelia%2C%20lymphatic%2C%20or%20blood%20vasculature%3F%5BJ%5D.%20J%20Glaucoma%2C%202007%2C%2016(4)%3A%20391-405.%20DOI%3A%2010.1097%2FIJG.0b013e3180654ac6.%20Ramos%20RF%2C%20Hoying%20JB%2C%20Witte%20MH%2C%20et%20al.%20Schlemm%E2%80%99s%20canal%20endothelia%2C%20lymphatic%2C%20or%20blood%20vasculature%3F%5BJ%5D.%20J%20Glaucoma%2C%202007%2C%2016(4)%3A%20391-405.%20DOI%3A%2010.1097%2FIJG.0b013e3180654ac6.%20
5、Stamer WD, Braakman ST, Zhou EH, et al. Biomechanics of Schlemm’s canal endothelium and intraocular pressure reduction[J]. Prog Retin Eye Res, 2015, 44: 86-98. DOI: 10.1016/j.preteyeres.2014.08.002. Stamer WD, Braakman ST, Zhou EH, et al. Biomechanics of Schlemm’s canal endothelium and intraocular pressure reduction[J]. Prog Retin Eye Res, 2015, 44: 86-98. DOI: 10.1016/j.preteyeres.2014.08.002.
6、Tham YC, Li X, Wong T, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J].Ophthalmology, 2014, 121(11):2081-90. DOI: 10.1016/j.ophtha.2014.05.013. Tham YC, Li X, Wong T, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J].Ophthalmology, 2014, 121(11):2081-90. DOI: 10.1016/j.ophtha.2014.05.013.
7、Acott TS, Vranka JA, Keller KE, et al. Normal and glaucomatous outflow regulation[J]. Prog Retin Eye Res, 2021, 82: 100897. DOI: 10.1016/j.preteyeres.2020.100897. Acott TS, Vranka JA, Keller KE, et al. Normal and glaucomatous outflow regulation[J]. Prog Retin Eye Res, 2021, 82: 100897. DOI: 10.1016/j.preteyeres.2020.100897.
8、Dautriche CN, Tian Y, Xie Y, et al. A closer look at schlemm’s canal cell physiology: implications for biomimetics[J]. J Funct Biomater, 2015, 6(3): 963-985. DOI: 10.3390/jfb6030963. Dautriche CN, Tian Y, Xie Y, et al. A closer look at schlemm’s canal cell physiology: implications for biomimetics[J]. J Funct Biomater, 2015, 6(3): 963-985. DOI: 10.3390/jfb6030963.
9、Mansouri K, Shaarawy T. Update on Schlemm’s canal based procedures[J]. Middle East Afr J Ophthalmol, 2015, 22(1): 38-44. DOI: 10.4103/0974-9233.148347. Mansouri K, Shaarawy T. Update on Schlemm’s canal based procedures[J]. Middle East Afr J Ophthalmol, 2015, 22(1): 38-44. DOI: 10.4103/0974-9233.148347.
10、Wang LY, Su GY, Wei ZY, et al. Progress in the basic and clinical research on the Schlemm’s canal[J]. Int J Ophthalmol, 2020, 13(5): 816-821. DOI: 10.18240/ijo.2020.05.18.Wang LY, Su GY, Wei ZY, et al. Progress in the basic and clinical research on the Schlemm’s canal[J]. Int J Ophthalmol, 2020, 13(5): 816-821. DOI: 10.18240/ijo.2020.05.18.
11、Dautriche CN, Szymanski D, Kerr M, et al. A biomimetic Schlemm’s canal inner wall: a model to study outflow physiology, glaucoma pathology and high-throughput drug screening[J]. Biomaterials, 2015, 65: 86-92. DOI: 10.1016/j.biomaterials.2015.06.034.Dautriche CN, Szymanski D, Kerr M, et al. A biomimetic Schlemm’s canal inner wall: a model to study outflow physiology, glaucoma pathology and high-throughput drug screening[J]. Biomaterials, 2015, 65: 86-92. DOI: 10.1016/j.biomaterials.2015.06.034.
12、Lewczuk%20K%2C%20Jab%C5%82o%C5%84ska%20J%2C%20Konopi%C5%84ska%20J%2C%20et%20al.%20Schlemm%E2%80%99s%20canal%3A%20the%20outflow%20'vessel'%5BJ%5D.%20Acta%20Ophthalmol%2C%202022%2C%20100(4)%3A%20e881-e890.%20DOI%3A%2010.1111%2Faos.15027.Lewczuk%20K%2C%20Jab%C5%82o%C5%84ska%20J%2C%20Konopi%C5%84ska%20J%2C%20et%20al.%20Schlemm%E2%80%99s%20canal%3A%20the%20outflow%20'vessel'%5BJ%5D.%20Acta%20Ophthalmol%2C%202022%2C%20100(4)%3A%20e881-e890.%20DOI%3A%2010.1111%2Faos.15027.
13、Ethier CR. The inner wall of Schlemm’s canal[J]. Exp Eye Res, 2002, 74(2): 161-172. DOI: 10.1006/exer.2002.1144. Ethier CR. The inner wall of Schlemm’s canal[J]. Exp Eye Res, 2002, 74(2): 161-172. DOI: 10.1006/exer.2002.1144.
14、Epstein DL, Rohen JW. Morphology of the trabecular meshwork and inner-wall endothelium after cationized ferritin perfusion in the monkey eye[J]. Invest Ophthalmol Vis Sci, 1991, 32(1): 160-171. Epstein DL, Rohen JW. Morphology of the trabecular meshwork and inner-wall endothelium after cationized ferritin perfusion in the monkey eye[J]. Invest Ophthalmol Vis Sci, 1991, 32(1): 160-171.
15、Ethier CR, Coloma FM, Sit AJ, et al. Two pore types in the inner-wall endothelium of Schlemm’s canal[J]. Investig Ophthalmol Vis Sci, 1998, 39(11): 2041-2048. Ethier CR, Coloma FM, Sit AJ, et al. Two pore types in the inner-wall endothelium of Schlemm’s canal[J]. Investig Ophthalmol Vis Sci, 1998, 39(11): 2041-2048.
16、Braakman ST, Pedrigi RM, Read AT, et al. Biomechanical strain as a trigger for pore formation in Schlemm’s canal endothelial cells[J]. Exp Eye Res, 2014, 127: 224-235. DOI: 10.1016/j.exer.2014.08.003. Braakman ST, Pedrigi RM, Read AT, et al. Biomechanical strain as a trigger for pore formation in Schlemm’s canal endothelial cells[J]. Exp Eye Res, 2014, 127: 224-235. DOI: 10.1016/j.exer.2014.08.003.
17、Vahabikashi A, Gelman A, Dong B, et al. Increased stiffness and flow resistance of the inner wall of Schlemm’s canal in glaucomatous human eyes[J]. Proc Natl Acad Sci U S A, 2019, 116(52): 26555-26563. DOI: 10.1073/pnas.1911837116.Vahabikashi A, Gelman A, Dong B, et al. Increased stiffness and flow resistance of the inner wall of Schlemm’s canal in glaucomatous human eyes[J]. Proc Natl Acad Sci U S A, 2019, 116(52): 26555-26563. DOI: 10.1073/pnas.1911837116.
18、Battista SA, Lu Z, Hofmann S, et al. Reduction of the available area for aqueous humor outflow and increase in meshwork herniations into collector channels following acute IOP elevation in bovine eyes[J]. Investig Ophthalmol Vis Sci, 2008, 49(12): 5346-5352. DOI: 10.1167/iovs.08-1707. Battista SA, Lu Z, Hofmann S, et al. Reduction of the available area for aqueous humor outflow and increase in meshwork herniations into collector channels following acute IOP elevation in bovine eyes[J]. Investig Ophthalmol Vis Sci, 2008, 49(12): 5346-5352. DOI: 10.1167/iovs.08-1707.
19、Ramírez JM, Ramírez AI, Salazar JJ, et al. Schlemm’s canal and the collector channels at different developmental stages in the human eye[J]. Cells Tissues Organs, 2004, 178(3): 180-185. DOI: 10.1159/000082248.Ramírez JM, Ramírez AI, Salazar JJ, et al. Schlemm’s canal and the collector channels at different developmental stages in the human eye[J]. Cells Tissues Organs, 2004, 178(3): 180-185. DOI: 10.1159/000082248.
20、Kizhatil K, Ryan M, Marchant JK, et al. Schlemm’s canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process[J]. PLoS Biol, 2014, 12(7): e1001912. DOI: 10.1371/journal.pbio.1001912. Kizhatil K, Ryan M, Marchant JK, et al. Schlemm’s canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process[J]. PLoS Biol, 2014, 12(7): e1001912. DOI: 10.1371/journal.pbio.1001912.
21、Park DY, Lee J, Park I, et al. Lymphatic regulator PROX1 determines Schlemm’s canal integrity and identity[J]. J Clin Invest, 2014, 124(9): 3960-3974. DOI: 10.1172/jci75392. Park DY, Lee J, Park I, et al. Lymphatic regulator PROX1 determines Schlemm’s canal integrity and identity[J]. J Clin Invest, 2014, 124(9): 3960-3974. DOI: 10.1172/jci75392.
22、Aspelund A, Tammela T, Antila S, et al. The Schlemm’s canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel[J]. J Clin Investig, 2014, 124(9): 3975-3986. DOI: 10.1172/JCI75395.Aspelund A, Tammela T, Antila S, et al. The Schlemm’s canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel[J]. J Clin Investig, 2014, 124(9): 3975-3986. DOI: 10.1172/JCI75395.
23、Johnstone%20M%2C%20Xin%20C%2C%20Tan%20J%2C%20et%20al.%20Aqueous%20outflow%20regulation%20-%2021st%20century%20concepts%5BJ%5D.%20Prog%20Retin%20Eye%20Res%2C%202021%2C83%3A100917.%20DOI%3A%2010.1016%2Fj.preteyeres.2020.100917.%C2%A0Johnstone%20M%2C%20Xin%20C%2C%20Tan%20J%2C%20et%20al.%20Aqueous%20outflow%20regulation%20-%2021st%20century%20concepts%5BJ%5D.%20Prog%20Retin%20Eye%20Res%2C%202021%2C83%3A100917.%20DOI%3A%2010.1016%2Fj.preteyeres.2020.100917.%C2%A0
24、Cha EDK, Xu J, Gong L, et al. Variations in active outflow along the trabecular outflow pathway[J]. Exp Eye Res, 2016, 146: 354-360. DOI: 10.1016/j.exer.2016.01.008. Cha EDK, Xu J, Gong L, et al. Variations in active outflow along the trabecular outflow pathway[J]. Exp Eye Res, 2016, 146: 354-360. DOI: 10.1016/j.exer.2016.01.008.
25、Keller KE, Bradley JM, Vranka JA, et al. Segmental versican expression in the trabecular meshwork and involvement in outflow facility[J]. Invest Ophthalmol Vis Sci, 2011, 52(8): 5049. DOI: 10.1167/iovs.10-6948. Keller KE, Bradley JM, Vranka JA, et al. Segmental versican expression in the trabecular meshwork and involvement in outflow facility[J]. Invest Ophthalmol Vis Sci, 2011, 52(8): 5049. DOI: 10.1167/iovs.10-6948.
26、Lu Z, Overby DR, Scott PA, et al. The mechanism of increasing outflow facility by rho-kinase inhibition with Y-27632 in bovine eyes[J]. Exp Eye Res, 2008, 86(2): 271-281. DOI: 10.1016/j.exer.2007.10.018. Lu Z, Overby DR, Scott PA, et al. The mechanism of increasing outflow facility by rho-kinase inhibition with Y-27632 in bovine eyes[J]. Exp Eye Res, 2008, 86(2): 271-281. DOI: 10.1016/j.exer.2007.10.018.
27、Lu Z, Zhang Y, Freddo TF, et al. Similar hydrodynamic and morphological changes in the aqueous humor outflow pathway after washout and Y27632 treatment in monkey eyes[J]. Exp Eye Res, 2011, 93(4): 397-404. DOI: 10.1016/j.exer.2011.05.012. Lu Z, Zhang Y, Freddo TF, et al. Similar hydrodynamic and morphological changes in the aqueous humor outflow pathway after washout and Y27632 treatment in monkey eyes[J]. Exp Eye Res, 2011, 93(4): 397-404. DOI: 10.1016/j.exer.2011.05.012.
28、Zhang Y, Toris CB, Liu Y, et al. Morphological and hydrodynamic correlates in monkey eyes with laser induced glaucoma[J]. Exp Eye Res, 2009, 89(5): 748-756. DOI: 10.1016/j.exer.2009.06.015. Zhang Y, Toris CB, Liu Y, et al. Morphological and hydrodynamic correlates in monkey eyes with laser induced glaucoma[J]. Exp Eye Res, 2009, 89(5): 748-756. DOI: 10.1016/j.exer.2009.06.015.
29、Johnstone M, Martin E, Jamil A. Pulsatile flow into the aqueous veins: manifestations in normal and glaucomatous eyes[J]. Exp Eye Res, 2011, 92(5): 318-327. DOI: 10.1016/j.exer.2011.03.011. Johnstone M, Martin E, Jamil A. Pulsatile flow into the aqueous veins: manifestations in normal and glaucomatous eyes[J]. Exp Eye Res, 2011, 92(5): 318-327. DOI: 10.1016/j.exer.2011.03.011.
30、Zhou EH, Krishnan R, Stamer WD, et al. Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow[J]. J R Soc Interface, 2012, 9(71): 1144-1155. DOI: 10.1098/rsif.2011.0733. Zhou EH, Krishnan R, Stamer WD, et al. Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow[J]. J R Soc Interface, 2012, 9(71): 1144-1155. DOI: 10.1098/rsif.2011.0733.
31、Ding X, Huang L, Peng C, et al. Evaluation of Schlemm’s canal with swept-source optical coherence tomography in primary angle-closure disease[J]. BMC Ophthalmol, 2023, 23(1): 256. DOI: 10.1186/s12886-023-03001-4.Ding X, Huang L, Peng C, et al. Evaluation of Schlemm’s canal with swept-source optical coherence tomography in primary angle-closure disease[J]. BMC Ophthalmol, 2023, 23(1): 256. DOI: 10.1186/s12886-023-03001-4.
32、Gonzalez JM, Ko MK, Hong YK, et al. Deep tissue analysis of distal aqueous drainage structures and contractile features[J]. Sci Rep, 2017, 7(1): 17071. DOI: 10.1038/s41598-017-16897-y. Gonzalez JM, Ko MK, Hong YK, et al. Deep tissue analysis of distal aqueous drainage structures and contractile features[J]. Sci Rep, 2017, 7(1): 17071. DOI: 10.1038/s41598-017-16897-y.
33、 Karpinich NO, Caron KM. Schlemm’s canal: more than meets the eye, lymphatics in disguise[J]. J Clin Invest, 2014, 124(9): 3701-3703. DOI: 10.1172/JCI77507. Karpinich NO, Caron KM. Schlemm’s canal: more than meets the eye, lymphatics in disguise[J]. J Clin Invest, 2014, 124(9): 3701-3703. DOI: 10.1172/JCI77507.
34、Reina-Torres E, Wen JC, Liu KC, et al. VEGF as a paracrine regulator of conventional outflow facility[J]. Investig Ophthalmol Vis Sci, 2017, 58(3): 1899-1908. DOI: 10.1167/iovs.16-20779. Reina-Torres E, Wen JC, Liu KC, et al. VEGF as a paracrine regulator of conventional outflow facility[J]. Investig Ophthalmol Vis Sci, 2017, 58(3): 1899-1908. DOI: 10.1167/iovs.16-20779.
35、Thomson BR, Souma T, Tompson SW, et al. Angiopoietin-1 is required for Schlemm's canal development in mice and humans[J]. J Clin Invest, 2017, 127(12):4421-4436. DOI: 10.1172/JCI95545.Thomson BR, Souma T, Tompson SW, et al. Angiopoietin-1 is required for Schlemm's canal development in mice and humans[J]. J Clin Invest, 2017, 127(12):4421-4436. DOI: 10.1172/JCI95545.
36、Souma T, Tompson SW, Thomson BR, et al. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity[J]. J Clin Investig, 2016, 126(7): 2575-2587. DOI: 10.1172/jci85830. Souma T, Tompson SW, Thomson BR, et al. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity[J]. J Clin Investig, 2016, 126(7): 2575-2587. DOI: 10.1172/jci85830.
37、Seegar TCM, Eller B, Tzvetkova-Robev D, et al. Tie1-Tie2 interactions mediate functional differences between angiopoietin ligands[J]. Mol Cell, 2010, 37(5): 643-655. DOI: 10.1016/j.molcel.2010.02.007. Seegar TCM, Eller B, Tzvetkova-Robev D, et al. Tie1-Tie2 interactions mediate functional differences between angiopoietin ligands[J]. Mol Cell, 2010, 37(5): 643-655. DOI: 10.1016/j.molcel.2010.02.007.
38、Puri MC, Rossant J, Alitalo K, et al. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells[J]. EMBO J, 1995, 14(23): 5884-5891. DOI: 10.1002/j.1460-2075.1995.tb00276.x. Puri MC, Rossant J, Alitalo K, et al. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells[J]. EMBO J, 1995, 14(23): 5884-5891. DOI: 10.1002/j.1460-2075.1995.tb00276.x.
39、Du J, Thomson BR, Onay T, et al. Endothelial tyrosine kinase Tie1 is required for normal schlemm’s canal development-brief report[J]. Arterioscler Thromb Vasc Biol, 2022, 42(3): 348-351. DOI: 10.1161/ATVBAHA.121.316692. Du J, Thomson BR, Onay T, et al. Endothelial tyrosine kinase Tie1 is required for normal schlemm’s canal development-brief report[J]. Arterioscler Thromb Vasc Biol, 2022, 42(3): 348-351. DOI: 10.1161/ATVBAHA.121.316692.
40、Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment[J]. Nat Rev Mol Cell Biol, 2019, 20(8): 457-473. DOI: 10.1038/s41580-019-0134-2. Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment[J]. Nat Rev Mol Cell Biol, 2019, 20(8): 457-473. DOI: 10.1038/s41580-019-0134-2.
41、 Narayanaswamy A, Thakur S, Nongpiur ME, et al. Aqueous outflow channels and its lymphatic association: a review[J]. Surv Ophthalmol, 2022, 67(3): 659-674. DOI: 10.1016/j.survophthal.2021.10.004. Narayanaswamy A, Thakur S, Nongpiur ME, et al. Aqueous outflow channels and its lymphatic association: a review[J]. Surv Ophthalmol, 2022, 67(3): 659-674. DOI: 10.1016/j.survophthal.2021.10.004.
42、Gu X, Chen X, Zhang X, et al. Macrophage-induced integrin signaling promotes Schlemm’s canal formation to prevent intraocular hypertension and glaucomatous optic neuropathy[J]. Cell Rep, 2024, 43(2): 113799. DOI: 10.1016/j.celrep.2024.113799. Gu X, Chen X, Zhang X, et al. Macrophage-induced integrin signaling promotes Schlemm’s canal formation to prevent intraocular hypertension and glaucomatous optic neuropathy[J]. Cell Rep, 2024, 43(2): 113799. DOI: 10.1016/j.celrep.2024.113799.
43、Kiyota N, Thomson B, Zhou Y, et al. The Impact of ITGA9 on Schlemm's Canal Formation in Mice[J]. Invest Ophthalmol Vis Sci, 2024, 65(7): 4260.Kiyota N, Thomson B, Zhou Y, et al. The Impact of ITGA9 on Schlemm's Canal Formation in Mice[J]. Invest Ophthalmol Vis Sci, 2024, 65(7): 4260.
44、Baneyx G, Baugh L, Vogel V. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension[J]. Proc Natl Acad Sci USA, 2002, 99(8): 5139-5143. DOI: 10.1073/pnas.072650799.Baneyx G, Baugh L, Vogel V. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension[J]. Proc Natl Acad Sci USA, 2002, 99(8): 5139-5143. DOI: 10.1073/pnas.072650799.
45、Kelly RA, Perkumas KM, Campbell M, et al. Fibrotic changes to schlemm’s canal endothelial cells in glaucoma[J]. Int J Mol Sci, 2021, 22(17): 9446. DOI: 10.3390/ijms22179446.Kelly RA, Perkumas KM, Campbell M, et al. Fibrotic changes to schlemm’s canal endothelial cells in glaucoma[J]. Int J Mol Sci, 2021, 22(17): 9446. DOI: 10.3390/ijms22179446.
46、Ellis DZ, Sharif NA, Dismuke WM. Endogenous regulation of human schlemm’s canal cell volume by nitric oxide signaling[J]. Invest Ophthalmol Vis Sci, 2010, 51(11): 5817. DOI: 10.1167/iovs.09-5072. Ellis DZ, Sharif NA, Dismuke WM. Endogenous regulation of human schlemm’s canal cell volume by nitric oxide signaling[J]. Invest Ophthalmol Vis Sci, 2010, 51(11): 5817. DOI: 10.1167/iovs.09-5072.
47、Ashpole NE, Overby DR, Ethier CR, et al. Shear stress-triggered nitric oxide release from schlemm’s canal cells[J]. Investig Ophthalmol Vis Sci, 2014, 55(12): 8067-8076. DOI: 10.1167/iovs.14-14722.Ashpole NE, Overby DR, Ethier CR, et al. Shear stress-triggered nitric oxide release from schlemm’s canal cells[J]. Investig Ophthalmol Vis Sci, 2014, 55(12): 8067-8076. DOI: 10.1167/iovs.14-14722.
48、Dismuke WM, Liang J, Overby DR, et al. Concentration-related effects of nitric oxide and endothelin-1 on human trabecular meshwork cell contractility[J]. Exp Eye Res, 2014, 120: 28-35. DOI: 10.1016/j.exer.2013.12.012.Dismuke WM, Liang J, Overby DR, et al. Concentration-related effects of nitric oxide and endothelin-1 on human trabecular meshwork cell contractility[J]. Exp Eye Res, 2014, 120: 28-35. DOI: 10.1016/j.exer.2013.12.012.
49、Reina-Torres%20E%2C%20De%20Ieso%20ML%2C%20Pasquale%20L%2C%20et%20al.%20The%20vital%20role%20for%20nitric%20oxide%20in%20intraocular%20pressure%20homeostasis%5BJ%5D.%20Prog%20Retin%20Eye%20Res%2C%202021%2C%2083%3A100922.%20doi%3A%2010.1016%2Fj.preteyeres.2020.100922.%C2%A0Reina-Torres%20E%2C%20De%20Ieso%20ML%2C%20Pasquale%20L%2C%20et%20al.%20The%20vital%20role%20for%20nitric%20oxide%20in%20intraocular%20pressure%20homeostasis%5BJ%5D.%20Prog%20Retin%20Eye%20Res%2C%202021%2C%2083%3A100922.%20doi%3A%2010.1016%2Fj.preteyeres.2020.100922.%C2%A0
50、McDonnell F, Perkumas KM, Ashpole NE, et al. Shear stress in schlemm’s canal as a sensor of intraocular pressure[J]. Sci Rep, 2020, 10(1): 5804. DOI: 10.1038/s41598-020-62730-4. McDonnell F, Perkumas KM, Ashpole NE, et al. Shear stress in schlemm’s canal as a sensor of intraocular pressure[J]. Sci Rep, 2020, 10(1): 5804. DOI: 10.1038/s41598-020-62730-4.
51、国家眼部疾病临床医学研究中心青光眼协作组. 穿透性Schlemm管成形术围手术期管理专家共识 (2022)[J]. 中华眼视光学与视觉科学杂志,2023,25(5):321-326, DOI:10.3760/cma.j.cn115909-20230114-00013 (2023).
Glaucoma Collaborative Group of National Clinical Research Center for Ocular Diseases. Expert Consensus on Perioperative Management of Penetrating Canaloplasty (2022) [J]. Chinese Journal of Optometry Ophthalmology and Visual Science, 2023, 25(5): 321-326, DOI: 10.3760/cma.j.cn115909-20230114-00013 (2023).
Glaucoma Collaborative Group of National Clinical Research Center for Ocular Diseases. Expert Consensus on Perioperative Management of Penetrating Canaloplasty (2022) [J]. Chinese Journal of Optometry Ophthalmology and Visual Science, 2023, 25(5): 321-326, DOI: 10.3760/cma.j.cn115909-20230114-00013 (2023).
52、Kopczynski CC, Epstein DL. Emerging trabecular outflow drugs[J]. J Ocul Pharmacol Ther, 2014, 30(2-3): 85-87. DOI: 10.1089/jop.2013.0197.Kopczynski CC, Epstein DL. Emerging trabecular outflow drugs[J]. J Ocul Pharmacol Ther, 2014, 30(2-3): 85-87. DOI: 10.1089/jop.2013.0197.
53、Ichioka H, Ida Y, Watanabe M, et al. Prostaglandin F2α and EP2 agonists, and a ROCK inhibitor modulate the formation of 3D organoids of Grave’s orbitopathy related human orbital fibroblasts[J]. Exp Eye Res, 2021, 205: 108489. DOI: 10.1016/j.exer.2021.108489. Ichioka H, Ida Y, Watanabe M, et al. Prostaglandin F2α and EP2 agonists, and a ROCK inhibitor modulate the formation of 3D organoids of Grave’s orbitopathy related human orbital fibroblasts[J]. Exp Eye Res, 2021, 205: 108489. DOI: 10.1016/j.exer.2021.108489.
54、Al-Humimat G, Marashdeh I, Daradkeh D, et al. Investigational rho kinase inhibitors for the treatment of glaucoma[J]. J Exp Pharmacol, 2021, 13: 197-212. DOI: 10.2147/JEP.S259297. Al-Humimat G, Marashdeh I, Daradkeh D, et al. Investigational rho kinase inhibitors for the treatment of glaucoma[J]. J Exp Pharmacol, 2021, 13: 197-212. DOI: 10.2147/JEP.S259297.
55、Andrés-Guerrero V, García-Feijoo J, Konstas AG. Targeting schlemm’s canal in the medical therapy of glaucoma: current and future considerations[J]. Adv Ther, 2017, 34(5): 1049-1069. DOI: 10.1007/s12325-017-0513-z. Andrés-Guerrero V, García-Feijoo J, Konstas AG. Targeting schlemm’s canal in the medical therapy of glaucoma: current and future considerations[J]. Adv Ther, 2017, 34(5): 1049-1069. DOI: 10.1007/s12325-017-0513-z.
56、Fujimoto T, Inoue-Mochita M, Inoue T. A ROCK inhibitor suppresses the transforming growth factor-beta-2-induced endothelial-mesenchymal transition in Schlemm’s canal endothelial cells[J]. Sci Rep, 2023, 13(1): 9655. DOI: 10.1038/s41598-023-36808-8. Fujimoto T, Inoue-Mochita M, Inoue T. A ROCK inhibitor suppresses the transforming growth factor-beta-2-induced endothelial-mesenchymal transition in Schlemm’s canal endothelial cells[J]. Sci Rep, 2023, 13(1): 9655. DOI: 10.1038/s41598-023-36808-8.
57、Testa V, Ferro Desideri L, Della Giustina P, et al. An update on ripasudil for the treatment of glaucoma and ocular hypertension[J]. Drugs Today, 2020, 56(9): 599-608. DOI: 10.1358/dot.2020.56.9.3178110. Testa V, Ferro Desideri L, Della Giustina P, et al. An update on ripasudil for the treatment of glaucoma and ocular hypertension[J]. Drugs Today, 2020, 56(9): 599-608. DOI: 10.1358/dot.2020.56.9.3178110.
58、Fan W, Song M, Li L, et al. Endogenous dual stimuli-activated NO generation in the conventional outflow pathway for precision glaucoma therapy[J]. Biomaterials, 2021, 277: 121074. DOI: 10.1016/j.biomaterials.2021.121074. Fan W, Song M, Li L, et al. Endogenous dual stimuli-activated NO generation in the conventional outflow pathway for precision glaucoma therapy[J]. Biomaterials, 2021, 277: 121074. DOI: 10.1016/j.biomaterials.2021.121074.
1、广东省自然科学基金面上项目,(2021A1515010553)。
This work was supported by Natural Science Foundation of Guangdong Province (2021A1515010553).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录