Objective: To employ Mendelian randomization (MR) methods to explore bidirectional causal relationships between outdoor activities and myopia. Methods: Large-scale cohort study data from the UK Biobank were utilized, selecting independent genetic loci associated with outdoor activities and myopia within the European ancestry population as instrumental variables. The outdoor activities GWAS data included 419,314 individuals of European descent, while the myopia GWAS data comprised 460,536 individuals, including 37,362 myopia cases and 423,174 controls. MR analyses were conducted using inverse variance-weighted (IVW), weighted median, and MR Egger methods, employing the odds ratio as the effect measure to thoroughly investigate bidirectional causal connections. Mendelian randomization pleiotropy residual sum and outlier (MR PRESSO) detection method were employed to eliminate SNP outliers. Cochran's Q test, within MR Egger and IVW methods, was utilized to assess heterogeneity among individual single nucleotide polymorphisms (SNPs). MR Egger intercept testing assessed potential pleiotropy, and sensitivity analysis using the "leave-one-out" method examined the influence of individual SNPs on overall results. Results: IVW analysis demonstrated that outdoor activities significantly reduce the risk of myopia (OR = 0.934, 95% CI: 0.922~0.948, P < 0.01). Reverse Mendelian randomization analysis revealed a non-significant lower propensity for myopic individuals to engage in outdoor activities (OR = 0.925, 95% CI: 0.777~1.103, P = 0.39). Cochran's Q test, MR PRESSO, and MR Egger intercept tests in bidirectional Mendelian randomization analysis all indicated no significant heterogeneity or horizontal pleiotropy issues among the selected instrumental variables. Furthermore, sensitivity analysis using the "leave-one-out" method confirmed that individual SNPs did not significantly impact the overall results. Conclusion: Outdoor activities significantly reduce the risk of myopia.