Congenital cataract (CC) is one of the most common causes of pediatric visual impairment. As our understanding of CC's etiology, clinical manifestations, and pathogenic genes deepens,various CC categorization systems based on diferent classifcation criteria have been proposed. Regrettably, the application of the CC category in clinical practice and scientifc research is limited. It is challenging to obtain preciseinformation that could guide the timely treatment decision-making for pediatric cataract patients or predict their prognosis from a specific CC classification. This review aims to discuss the statusquo of CC categorization systems and the potential directions for future research in this field, focusingon categorization principles and scientific application in clinical practice. Additionally, it aims to propose the potential directions for future research in this domain.
Congenital cataract (CC) is one of the most common causes of pediatric visual impairment. As our understanding of CC's etiology, clinical manifestations, and pathogenic genes deepens,various CC categorization systems based on diferent classifcation criteria have been proposed. Regrettably, the application of the CC category in clinical practice and scientifc research is limited. It is challenging to obtain preciseinformation that could guide the timely treatment decision-making for pediatric cataract patients or predict their prognosis from a specific CC classification. This review aims to discuss the statusquo of CC categorization systems and the potential directions for future research in this field, focusingon categorization principles and scientific application in clinical practice. Additionally, it aims to propose the potential directions for future research in this domain.
Ⅱ期人工晶状体(intraocular lens,IOL)植入常用于矫正先天性白内障摘除术后无晶状体眼状态。IOL屈光力计算是影响儿童Ⅱ期IOL植入术后视功能发育和改善的关键因素之一。现有IOL屈光力计算公式是基于成人有晶状体眼的数据研发,能准确预测成人眼IOL植入的屈光力,但是对儿童Ⅱ期IOL植入的屈光力预测准确性欠佳,主要原因包括:1)儿童II期植入术前为无晶状体眼,缺乏部分公式定义中的有晶状体眼的前房深度(是指从角膜前表面中央顶点到晶状体前表面的距离)和晶状体厚度。2)公式根据囊袋内植入IOL预测屈光力,但儿童Ⅱ期IOL睫状沟植入术在临床上应用更为广泛。当IOL植入睫状沟时有效晶状体位置发生前移,可能引起屈光预测误差。3)成人眼的发育已完成,目标屈光度多为正视或近视眼(-3.00 ~ +1.00 D),但是儿童眼仍在发育,需针对其特性测算合适的远视目标屈光度(+0.50 ~ +12.00 D)以适应眼球发育引起的屈光变化。为使Ⅱ期IOL植入患儿达到术前预设的目标屈光度,对现有公式进行选择与优化至关重要。
Secondary intraocular lens (IOL) implantation is a common treatment for pediatric aphakia. The accurate prediction of IOL power calculation plays a pivotal role in the postoperative development and improvement of visual function for pediatric secondary IOL implantation. Current IOL power calculation formulas were developed based on data from adult phakic eyes and displayed good performance in adult population. However, the formulas showed poor performance in pediatric aphakic population due to the following reasons: 1) In these pediatric aphakic patients, the unavailability of phakic anterior chamber depth (the distance from corneal epithelium to the anterior surface of the lens) and lens thickness (LT) greatly limits the application of some IOL power calculation formulas. 2) IOL power calculation formulas predict the effective lens position on the basis of in-the-bag IOL implantation, whereas sulcus implantation is more widely used in pediatric secondary implantation. Effective lens position in capsular placement is more posterior to ciliary sulcus IOL placement. When applying the initial IOL power calculated for capsular implantation to sulcus implantation, it can lead to refractive errors. 3) Adult eyes have completed their development, with target refractions often being emmetropic or myopic (-3.00 ~ +1.00 D), while pediatric eyes are still developing, necessitating the calculation of an appropriate hyperopic (+0.50 ~ +12.00 D) target refraction to accommodate refractive changes due to ocular growth.To achieve the predetermined target refractive outcomes, the selection and optimization of IOL power calculation formulas is critically important for pediatric secondary IOL implantation.