Ferroptosis, a novel form of cell death primarily characterized by iron deposition and lipid peroxidation, has been increasingly studied in the feld of ophthalmology. Te retina, due to its specifc functions and structure, is susceptible to oxidative stress. Ferroptosis has been proven to play a crucial role in the progression of retinal degenerative diseases such as age-related macular degeneration, glaucoma, diabetic retinopathy, and retinitis pigmentosa. Te iron metabolism pathway is one of the main regulatory mechanisms of ferroptosis, regulating intracellular iron homeostasis and mediating the formation of lipid peroxides through the Fenton reaction, thereby controlling cellular ferroptosis. Iron metabolism pathways, as one of the main regulatory mechanisms of ferroptosis, can regulate intracellular iron homeostasis and mediate the formation of lipid peroxides through the Fento reaction, thereby controlling cellur ferroptosis. Key proteins involved in iron metabolism pathways, including transferrin (TF), divalent metal transporter 1 (DMT1), ferritin (FT), and ferroportin 1 (FPN1), act as important roles in various aspects such as intracellular iron intake, utilization, storage, and export, exerting signifcant impacts on intracellular iron homeostasis. Regulating key proteins in iron metabolism pathways to reduce iron deposition and inhibiting ferroptosis may emerge aas a novel approach for delaying and treating retinal degenerative diseases. Tis article provides a comprehensive review of the concept of ferroptosis, the relationship between the retina and ferroptosis, the regulatory mechanisms of ferroptosis, and the research progress on key proteins in iron metabolism pathways and retinal degenerative diseases.