论著

人工智能在人工晶状体屈光力计算的应用

Application of artificial intelligence in intraocular lens power calculation

:790-799
 
目的:评估新一代基于人工智能(artificial intelligence,AI)的人工晶状体(intraocular lens,IOL)计算公式的准确性。方法:本研究为回顾性研究,纳入因白内障行晶状体超声乳化联合IOL植入术的262例患者262眼。在术前,通过IOLMaster700获取角膜曲率、角膜白到白、中央角膜厚度、前房深度、晶状体厚度以及眼轴长度。使用第三代公式(SRK/T、Holladay 1和Hoffer Q)、Barrett UniversalⅡ(BUⅡ)、新一代AI公式(Kane、Pearl-DGS、Hill-RBF 3.0、Hoffer QST和Jin-AI)对术后屈光状态进行计算,并与术后实际的屈光状态进行比较。在将预测误差(prediction error,PE)归零后,分析了各公式的标准差(standard deviation,SD)、绝对误差均值(mean absolute error,MAE)、绝对误差中位数(median absolute error,MedAE)以及PE在±0.25、±0.50、±1.00、±2.00 D范围内的百分比。结果:基于AI的IOL屈光力计算公式的SD、MAE和MedAE的范围分别为0.37 D(Kane和Jin-AI)至0.39 D(Hoffer QST)、0.28 D(Hill-RBF 3.0和Jin-AI)至0.31 D(Hoffer QST)以及0.21 D(Hill-RBF3.0和Jin-AI)至0.24 D(HofferQST);均低于第三代公式(SD:0.43 D~0.45 D;MAE:0.34 D;MedAE:0.25 D~0.28 D)。在所有公式中,Jin-AI公式预测误差在±0.50 D的比例最高,为84.73%,Kane(84.35%)和BUⅡ(83.97%)公式次之。结论:在IOL屈光力预测上,与传统第三代公式相比,新一代基于AI的公式表现出更高的准确性,可以使更多的患者在术后获得预期的屈光状态。
Objective: To evaluate the accuracy of new generation artificial intelligence (AI)-based intraocular lens (IOL)power calculation formulas. Methods: This retrospective study included a total of 262 eyes from 262 patients with cataract who underwent uneventful phacoemulsification combined with IOL implantation. Keratometry, corneal white-to-white, central corneal thickness, anterior chamber depth, lens thickness, and axial length were measured by the IOL Master 700 before surgery. Predicted refractive errors were calculated by the third-generation formulas (SRK/T, Holladay 1, and Hoffer Q), Barrett UniversalⅡ (BUⅡ), and the newer-generation AI formulas (Kane, Pearl-DGS, Hill-RBF 3.0, Hoffer QST, and Jin-AI), and were compared with the actual postoperative refractive value. After adjusting the prediction error (PE) to zero, the standard deviation (SD), mean absolute error (MAE), median absolute error (MedAE), and the percentage of a PE within the range of ±0.25 diopter (D), ±0.50 D, ±1.00 D, and ±2.00 D were analyzed. Results: The SD, MAE, and MedAE of the AI-based formulas ranged from 0.37 D (Kane and Jin-AI) to 0.39 D (Hoffer QST), 0.28 D (Hill-RBF 3.0 and Jin-AI) to 0.31 D (Hoffer QST), and 0.21 D (Hill-RBF 3.0 and Jin-AI) to 0.24 D (Hoffer QST), respectively. These values were all lower than those of the third-generation formula (SD: 0.43 D to 0.45 D; MAE: 0.34 D; MedAE: 0.25 D to 0.28 D). Among all the formulas, the Jin-AI formula had the highest proportion of a PE within ±0.50 D (84.73%), followed by Kane (84.35%) and BUⅡ (83.97%) formulas. Conclusion: The new AI-based IOL formulas show higher accuracy compared with the traditional third-generation ones in predicting IOL power. thereby enabling more patients to achieve the expected refractive outcomes after surgery
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息