Being one of the most important sensory organs, the eye is composed of the cornea, the lens, which are responsible for refraction, and the retina, which is the neural sensory part of the eye. Various kinds of developmental abnormalities and functional defects could lead to visual dysfunctions, and even blindness. Current treatments for blindness-causing eye diseases all have their own limitations, awaiting new efficient diagnostic and treating methods. Thanks to the development in stem cell biology and bioengineering, taking advantage of the rich knowledge accumulated on the mechanisms governing eye development, researchers have successfully generated various ocular organoids using multiple sources of stem cells in vitro, which resemble their counterparts in vivo on both the structural level and functional level. Ocular organoids provide valuable material and models for studying eye development, pathology, drug screening, and cell replacement therapy, pushing translational studies of ocular stem cell to a new era. Here, the paper reviews the development and application of ocular organoid technologies.