您的位置: 首页 > 2025年9月 第40卷 第9期 > 文字全文
2023年7月 第38卷 第7期11
目录

先天性白内障发生相关表观遗传学研究进展

Advances in epigenetic research on the pathogenesis of congenital cataract

来源期刊: 眼科学报 | 2025年9月 第40卷 第9期 745-752 发布时间:2025-09-28 收稿时间:2025/9/25 14:37:24 阅读量:45
作者:
关键词:
先天性白内障晶状体发育表观遗传学
congenital cataract lens development epigenetics
DOI:
10.12419/25012401
收稿时间:
2025-02-18 
修订日期:
2025-03-17 
接收日期:
2025-04-14 
先天性白内障是晶状体发育异常引起的以晶状体混浊为特征的疾病,导致婴幼儿中重度视力损害,严重影响患儿长期生存质量,给全球带来较大的社会经济负担。目前先天性白内障的发病机制尚未得到很好的阐明,遗传因素虽在其中扮演重要角色,但已知基因突变仅能解释约30%的病例,大多数患儿发病原因仍不明确。晶状体的透明性依赖于晶状体上皮细胞和纤维细胞精密有序的排列,这与受到严格调控的晶状体发育过程密切相关,任何环节异常均可能导致晶状体早期混浊。故阐明调控晶状体发育的分子与细胞机制,是深入探究先天性白内障病因的前提。表观遗传学是在DNA序列不改变的情况下,对控制基因的活性和表达的因素进行研究的学科,包括DNA甲基化、组蛋白修饰、染色质重塑、非编码RNA调控等多种修饰,近年受到生命科学领域研究者较多的关注。在眼发育及眼部各类疾病机制探索中,表观遗传调控已被证实参与多种生理与病理过程。本综述通过总结已发表的与晶状体发育和先天性白内障发病机制相关的表观遗传学研究,尝试汇总与先天性白内障发生发展相关的表观遗传分子及通路,为进一步揭示疾病机制提供理论依据,并为未来的临床诊疗提供新的思路和方法。
Congenital cataract is a disease characterized by lens opacity due to abnormal lens development.This opacity results in moderate to severe visual impairment in infants and young children, significantly impacting their long-term quality of life and imposing a substantial socioeconomic burden globally. The pathogenesis of congenital cataract remains not fully understood. Although genetic factors play a significant role, known gene mutations account for only about 30% of cases, leaving the underlying cause unclear for the majority of affected children. Lens transparency depends on the precise, ordered arrangement of lens epithelial cells and fiber cells, a process that is closely tied to the strictly regulated lens development. Abnormalities at any stage of development may lead to early lens opacity. Therefore, clarifying the molecular and cellular mechanisms that regulate lens development is a prerequisite for investigating the etiology of congenital cataract. Epigenetics is the field of study that focuses on factors controlling gene activity and expression without altering DNA sequences. It encompasses a wide range of modifications including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulation, and has garnered significant attention from researchers in recent years. In the context of ocular development and the mechanisms underlying various eye diseases, epigenetic regulation has been shown to participate in multiple physiological and pathological processes. This review synthesizes published research on epigenetics related to lens development and the pathogenesis of congenital cataract. It aims to summarize the epigenetic molecules and pathways associated with the onset and progression of congenital cataracts, providing a theoretical foundation for further elucidating disease mechanisms and offering new insights and approaches for future clinical diagnosis and treatment.

文章亮点

1. 关键发现

 • DNA甲基化、组蛋白修饰、染色质重塑、非编码RNA调控等表观遗传修饰均已被证实参与晶状体的发育与先天性白内障的形成。

2. 已知与发现

 • 已知:先天性白内障的发病机制尚未被阐明,基因突变仅能解释约30%的病例,约50%的双眼病例和几乎所有的单眼病例的病因仍不明确。
 • 

3. 意义与改变

 •

       先天性白内障以出生时或幼儿期的晶状体混浊为特征[1-2],导致全球5%~20%儿童盲的发生,给世界各国——特别是发展中国家带来重大的社会经济负担[1, 3]。因此,探究先天性白内障的发病机制和防治措施,对于提高患儿的生活质量、增强人口素质、减轻家庭和社会负担具有重要意义。先天性白内障的发病机制尚未被阐明,约50%的双眼病例和几乎所有的单眼病例的病因仍不明确[4-5]。遗传性先天性白内障被公认为主要由基因突变导致[6, 7],以常染色体显性遗传基因突变为主,涉及编码晶体蛋白、膜蛋白、细胞骨架蛋白、细胞外基质、转录因子、分子伴侣、代谢相关蛋白的基因,以及未折叠蛋白反应、自噬等生物过程[8]。此外,孕期母体代谢异常、药物摄入或宫内感染等环境因素也被认为是重要的致病因素。

       表观遗传学是研究在不改变DNA序列的情况下,基因表达或细胞表型发生稳定且可遗传变化的学科[9-11],主要包括DNA甲基化、组蛋白修饰、染色质重塑、非编码RNA调控等具体作用机制[12-13]。由于传统基因遗传学导致的疾病不可逆,而表观遗传修饰过程可能可逆,因此表观遗传学在组织发育和各类疾病中的作用研究,以及相关疾病表观遗传治疗方法研究,正逐渐成为生命科学领域的一个重要方向;近年来测序技术和生物信息学等分析方法的进步也使人们对表观遗传学的兴趣逐渐增加。在眼科领域,年龄相关性黄斑变性、年龄相关性白内障、青光眼、视网膜母细胞瘤等疾病已被证实与表观遗传调控改变相关[14-18],一些眼科表观遗传疗法也已进入临床试验[19-20]。然而,现阶段从表观遗传学角度切入对先天性白内障发病机制和治疗方法的研究较少,且开始得较晚,尚未有综述性文章对该领域进行总结。先天性白内障的形成与晶状体胚胎及出生后早期发育过程息息相关,故了解正常晶状体发育阶段表观遗传修饰的作用,将为先天性白内障的发病提供思路和诊疗切入点。本文旨在从DNA甲基化、组蛋白修饰和染色质重塑、非编码RNA调控三个方面对现有晶状体发育与先天性白内障相关研究进行总结,为疾病机制研究和治疗策略开发提供理论依据。

1  DNA甲基化

       DNA甲基化是目前表观遗传学领域研究较为集中的板块。它是指DNA在DNA甲基转移酶(DNA methyltransferase, DNMT)的作用下,以S-腺苷甲硫氨酸为甲基供体,通过共价键结合的方式获得一个甲基基团的化学修饰过程[21-22],被修饰位点可以是腺嘌呤的N-6位、胞嘧啶的N-4位、鸟嘌呤的N-7位和胞嘧啶的C-5位。该过程能改变DNA构象、染色质结构,影响DNA复制和修复,调控基因组稳定性及DNA与蛋白质相互作用方式等,并响应外界环境因素,实现对基因表达的控制[12, 22]
       DNA甲基化在晶状体发育过程中起到重要作用,该过程的缺失将引起晶状体形态等异常;而在晶状体细胞逐渐分化成熟的过程中,甲基化程度逐渐降低,基因表达抑制解除,晶状体纤维成熟相关基因的转录和翻译上调。研究者利用Wistar大鼠和斑马鱼发现,DNMT1缺失会引起晶状体形态的发育异常[23];DNMT3-DNMT8介导晶状体DNA甲基化,且这些甲基转移酶基因表达具有动态和时空限制模式[24]。此外,晶状体特异性蛋白γ-晶体蛋白的表达与启动子区域的甲基化之间存在明显的反相关关系:γA-F晶体蛋白基因的去甲基化将上调mRNA的表达和翻译水平,这种表达使得整个晶状体中形成了γ-晶体蛋白梯度,实现晶状体的光学性能[25]。2023年,Chang等[26]利用全基因组亚硫酸氢盐测序研究了小鼠晶状体发育不同阶段晶状体上皮和纤维细胞分化过程中DNA的甲基化改变,同样发现甲基化的减少与纤维细胞高含量基因——晶体蛋白、串珠丝结构蛋白(beaded filament structural protein, Bfsp1/Bfsp2)和缝隙连接蛋白(gap junction protein alpha, Gja3/Gja8)的表达增加有关。DNA甲基化也可以在晶状体发育过程中控制纤维细胞核心基因晶状体内膜蛋白2(lens intrinsic membrane protein 2, LIM2)的表达[27]
       DNA甲基化异常在表观遗传学与先天性白内障的研究中占据主导地位,但其在先天性白内障发病机制中的作用尚无定论,不同研究设计揭示了其调控的复杂性。2015年,Yang等[28]发现先天性白内障患者血清中高含量的同型半胱氨酸会激活Kelch样ECH关联蛋白1(Kelch-like ECH-associated protein 1, Keap1)启动子DNA的去甲基化,从而激活Keap1蛋白的表达,进而增加核因子E2相关因子2(nuclear factor erythroid 2-related factor 2, Nrf2)蛋白体降解的靶向性,抑制部分抗氧化酶基因的转录,最终改变晶状体的氧化还原平衡,引起白内障。2020年,Liu等通过对散发性先天性白内障患者和正常对照组的外周血进行全基因组亚硫酸氢盐测序,发现患者组相对正常对照组的差异甲基化基因编码的蛋白质参与构建细胞骨架和细胞间连接;即DNA甲基化水平的变化可能通过扰乱细胞骨架和细胞间连接的功能导致散发性先天性白内障[2, 29]。然而,对1例女性先天性白内障患者及其双胞胎妹妹外周血中易位相关膜蛋白1(translocation associated membrane protein 1, TRAM1)、αA-晶体蛋白(crystallin alpha A, CRYAA)、热休克转录因子4(heat shock transcription factor 4, HSF4)、血管内皮生长因子A(vascular endothelial growth factor A, VEGFA)、GJA3和铁蛋白轻链(ferritin light chain, FTL)基因的启动子甲基化的分析中,结果未发现显著差异,即该研究指出这些代表性基因的表观遗传事件不能解释双胞胎之间先天性白内障的表型差异[30-31]。此外,2019年Kimia[32]构建的Dnmt3a和Dnmt3b的晶状体特异性双敲除小鼠,直至13个月大时才出现迟发性的白内障,即这两种DNMT介导的DNA甲基化过程可能对先天性白内障的发生没有显著影响。

2  组蛋白修饰和染色质重塑

       组蛋白是一类碱性蛋白质,与真核生物染色质中的DNA结合构成核小体。组蛋白修饰是对组蛋白N-端尾部的翻译后修饰,包括甲基化(最稳定)、乙酰化(最灵活)、泛素化、磷酸化、腺苷酸化、二磷酸腺苷(adenosine diphosphate, ADP)核糖基化等过程,可调控染色质的结构和功能[33-34]。染色质重塑是指染色质结构的动态调整或重新塑造的过程。染色质经由三磷酸腺苷(adenosine triphosphate, ATP)依赖的染色质重塑因子,如转换/非酵解蔗糖复合物(switch/sucrose non-fermentable, SWI/SNF)、肌醇需求蛋白80复合物(inositol-requiring mutant 80, INO80)、模拟开关复合物(imitation switch, ISWI)和染色质螺旋酶DNA结合蛋白复合物(chromo-helicase DNA-binding protein, CHD)的非共价修饰改变染色质的位置和结构[35-37],调节染色质的可及性,对维持染色质结构和功能的稳定性以及基因表达的正常调控起到重要作用。
       人们较早便开始关注组蛋白修饰与染色质重塑这两种表观遗传调控核心机制在晶状体发育过程中发挥的精细调控作用。2007年,Cvekl等[38]在一篇综述中阐明,晶状体特异性晶体蛋白基因转录调控的特征是反复将建立晶状体前体所需的转录因子与更普遍表达的因子,例如活化蛋白-1(activator protein-1, AP-1)、CAMP反应元件结合蛋白(cAMP-response element binding protein, CREB)和上游刺激因子(upstream stimulatory factors, USF)结合,并募集组蛋白乙酰转移酶CREB结合蛋白(CREB-binding protein, CBP)和p300,以及染色质重塑复合物SWI/SNF和ISWI;若使小鼠胚胎外胚层晶状体细胞中的CBP和p300失活,它们将无法发育为成熟的晶状体细胞,导致无晶状体眼;即两者在哺乳动物晶状体细胞正常分化中起到关键作用[39]。此外,高水平的αA-晶状体蛋白表达与c-Maf和CREB与启动子的结合增加以及CREB与DCR3(组蛋白H3K9过乙酰化的一个宽域)的结合增加有关;而且染色质重塑酶Brahma相关基因1(Brahma-related gene 1, Brg1)和Snf2h在αA-晶体蛋白位点的丰度增加[40],其中Brg1是小鼠晶状体纤维细胞终末分化及去核所必需的,DNase Ⅱβ是SWI/SNF复合物的潜在直接靶标[41],而在小鼠中敲除Snf2h也会导致晶状体细胞分化异常、形成白内障[42]。2023年,Tangeman等[43]通过对鸡晶状体进行单细胞多组学测序,构建了晶状体发育的单细胞多组学图谱,并发现组蛋白H3上K27位点的甲基化写入蛋白组蛋白甲基转移酶多梳抑制复合体2(polycomb repressive complex 2, PRC2)在维持晶状体上皮细胞命运中起重要作用,而其在上皮细胞进入纤维分化过程中逐渐丧失。鉴于晶状体上皮细胞自我更新及向纤维细胞定向分化的特性对于维持晶状体透明性极其关键,该H3K27组蛋白修饰过程异常可能与先天性白内障的形成相关。综上,这些研究揭示了组蛋白乙酰转移酶(CBP/p300)、PRC2、染色质重塑酶/复合物(SWI/SNF、ISWI、Brg1、Snf2h)在晶状体发生、晶状体细胞命运转变和晶体蛋白合成中具体的分子机制,为理解组蛋白修饰与染色质重塑在先天性白内障中的发病机理提供了新的理论依据。
       由于先天性白内障常规手术术后患儿炎症反应重、并发症发生率高、预后差,Lin等创新性提出了微创晶状体再生术式,通过减小晶状体前囊的切口,保留晶状体上皮细胞,实现了晶状体的原位功能性再生[44-45],但目前再生过程中的机制并未得到阐明[46-47],表观遗传修饰在其中的作用更是有待进一步研究。在对蝾螈摘除晶状体后虹膜背侧色素上皮细胞去分化恢复为干细胞样细胞,并进一步转分化为晶状体细胞的过程进行组蛋白修饰研究时发现,在去分化过程中组蛋白修饰三甲基化组蛋白H3赖氨酸4(tri-methylated histone H3 lysine 4, TriMeH3K4)和乙酰化组蛋白H4(acetylated histone H4, AcH4)增加,乙酰化组蛋白H3赖氨酸9(acetylated histone H3 lysine 9, AcH3K9)减少[48],即初步证明了在恢复干性的过程中特定组蛋白修饰水平会出现显著改变,为后续先天性白内障患儿体内晶状体再生过程机制提供了表观遗传学角度的新思路。

3  非编码RNA调控


       非编码RNA是指一类在细胞中存在的不编码蛋白质的RNA分子[49]。这些RNA分子虽然不直接参与蛋白质的合成,但在RNA水平上就能行使各自的生物学功能。非编码RNA包括核糖体RNA(ribosomal RNA,rRNA)、转运RNA(transfer RNA,tRNA)、核内小RNA(small nuclear RNA,snRNA),微小RNA(microRNA,miRNA)、 PIWI互作RNA(PIWI-interacting RNA,piRNA)、小干扰RNA(small interfering RNA,siRNA)、长链非编码RNA(long non-coding RNA,lncRNA)等,是染色质结构和转录延伸的强大调控分子[50-51]
       miRNA是在晶状体发育和先天性白内障发生过程中被主要研究的非编码RNA,而目前研究结果表明,多种miRNA的累积缺失会导致晶状体的异常。Dicer是RNase Ⅲ家族中的一种内切核酸酶,可将双链和前miRNA切割成短的双链siRNA[52];研究表明,dicer在晶状体纤维细胞的终末分化和保护这些细胞免于凋亡的过程中不可或缺[53]。此外,miR-26家族成员(miR-26a1、miR-26a2 和 miR26b)的共同缺失被证明会导致小鼠成年后出现严重的核性白内障,而其中任一个或两个的缺失不会导致任何明显的晶状体发育缺陷:即miRNA的作用通路和功能之间可能存在冗余,小鼠可以耐受部分miRNA的缺失[54]。与该假设相符,miR-184虽在小鼠晶状体早期发育阶段(胚胎期10.5天)开始直至成年在赤道部的上皮细胞中表达[55],但miR-184缺乏的小鼠似乎也是正常的;尽管miR-1-3p在晶状体纤维中高表达,但并没有发现miR-1-1和miR-1-2单敲除或双敲除的小鼠晶状体有任何明显的形态缺陷。
       除了上述几种表观遗传学生物过程外,还有RNA甲基化等表观遗传修饰也是生物发育、疾病进展等研究领域近年的热点[56-57]。N6-甲基腺苷(N6-methyladenosine, m6A)作为最丰富的一种RNA内部甲基化修饰,已被证实与眼部干细胞身份、发育与免疫相关,m6A甲基化的异常也可能介导眼部包括新生血管、感染、肿瘤、上皮间质转化、衰老等多种病理状况的发生[58]。已有研究表明,晶状体中表达m6A修饰相关的重要分子,这些分子与年龄相关性白内障和糖尿病性白内障的发生相关[59-60]。Ye等[61]通过对患者晶状体前囊膜进行lncRNA测序,证明了先天性白内障患者晶状体中存在lncRNA的m6A修饰,且其含量相比年龄相关性白内障患者中的少。此外,我们团队也发现m6A甲基化过程核心写入蛋白甲基转移酶样3(methyltransferase-like 3, METTL3)在小鼠晶状体中的特异性缺失会引起早发晶状体混浊,METTL3通过促进细胞周期退出和细胞形态变化,调控次级晶状体纤维分化过程中的晶状体发育[62]
       晶状体作为一个细胞类型简单且结构透明、处于体表容易观察的结构,是发育等生物过程理想的研究对象。通过以上综述文献的发表时间我们也可以发现,有关晶状体发育过程中表观遗传的研究开始较早,但直到近几年才有研究将其与先天性白内障联系起来,探究疾病的发生机制与可能的遗传背景。先天性白内障的发病机制目前尚未有定论,其临床诊疗过程更多是参照年龄相关性白内障进行的改良[63],若能将晶状体发育过程中的异常与致病机制结合,也许能为先天性白内障的研究提供更多的灵感。眼科医生或研究者应关注和跟踪这些新的研究动态和前沿,并积极参与其中,更加深入探索晶状体发育过程中的各层面调控,为先天性白内障的发病机制及防治提供表观遗传学层面的新思路和新方法。

声明

在论文撰写中无使用生成式人工智能。论文撰写中的所有内容均由作者独立完成,并对出版物的真实性和准确性承担全部责任。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。
1、Gilbert C, Foster A. Childhood blindness in the context of VISION 2020: the right to sight[J]. Bull World Health Organ, 2001, 79(3): 227-232.Gilbert C, Foster A. Childhood blindness in the context of VISION 2020: the right to sight[J]. Bull World Health Organ, 2001, 79(3): 227-232.
2、胡晨阳. 散发性先天性白内障的DNA甲基化发病机制研究[D]. 杭州: 浙江大学, 2020. DOI:10.27461/d.cnki.gzjdx.2020.002807.
Hu CY. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract[D]. Hangzhou: Zhejiang University, 2020. DOI:10.27461/d.cnki.gzjdx.2020.002807.
Hu CY. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract[D]. Hangzhou: Zhejiang University, 2020. DOI:10.27461/d.cnki.gzjdx.2020.002807.
3、Sheeladevi S, Lawrenson JG, Fielder AR, et al. Global prevalence of childhood cataract: a systematic review[J]. Eye, 2016, 30(9): 1160-1169. DOI:10.1038/eye.2016.156. Sheeladevi S, Lawrenson JG, Fielder AR, et al. Global prevalence of childhood cataract: a systematic review[J]. Eye, 2016, 30(9): 1160-1169. DOI:10.1038/eye.2016.156.
4、SanGiovanni JP, Chew EY, Reed GF, et al. Infantile cataract in the collaborative perinatal project: prevalence and risk factors[J]. Arch Ophthalmol, 2002, 120(11): 1559-1565. DOI:10.1001/archopht.120.11.1559. SanGiovanni JP, Chew EY, Reed GF, et al. Infantile cataract in the collaborative perinatal project: prevalence and risk factors[J]. Arch Ophthalmol, 2002, 120(11): 1559-1565. DOI:10.1001/archopht.120.11.1559.
5、Shiels A, Hejtmancik JF. Biology of inherited cataracts and opportunities for treatment[J]. Annu Rev Vis Sci, 2019, 5: 123-149. DOI:10.1146/annurev-vision-091517-034346.Shiels A, Hejtmancik JF. Biology of inherited cataracts and opportunities for treatment[J]. Annu Rev Vis Sci, 2019, 5: 123-149. DOI:10.1146/annurev-vision-091517-034346.
6、Messina-Baas O, Cuevas-Covarrubias SA. Inherited congenital cataract: a guide to suspect the genetic etiology in the cataract genesis[J]. Mol Syndromol, 2017, 8(2): 58-78. DOI:10.1159/000455752.Messina-Baas O, Cuevas-Covarrubias SA. Inherited congenital cataract: a guide to suspect the genetic etiology in the cataract genesis[J]. Mol Syndromol, 2017, 8(2): 58-78. DOI:10.1159/000455752.
7、Santana A, Waiswo M. The genetic and molecular basis of congenital cataract[J]. Arq Bras Oftalmol, 2011, 74(2): 136-142. DOI:10.1590/s0004-27492011000200016. Santana A, Waiswo M. The genetic and molecular basis of congenital cataract[J]. Arq Bras Oftalmol, 2011, 74(2): 136-142. DOI:10.1590/s0004-27492011000200016.
8、Shiels A, Hejtmancik JF. Inherited cataracts: Genetic mechanisms and pathways new and old[J]. Exp Eye Res, 2021, 209: 108662. DOI:10.1016/j.exer.2021.108662.Shiels A, Hejtmancik JF. Inherited cataracts: Genetic mechanisms and pathways new and old[J]. Exp Eye Res, 2021, 209: 108662. DOI:10.1016/j.exer.2021.108662.
9、王勇. DNA甲基化在晶状体发育及白内障中的研究进展[J]. 中华实验眼科杂志, 2017, 35(8): 747-751. DOI:10.3760/cma.j.issn.2095-0160.2017.08.017.
Wang Y. Research progress of DNA methylation in lens development and cataract[J]. Chin J Exp Ophthalmol, 2017, 35(8): 747-751. DOI:10.3760/cma.j.issn.2095-0160.2017.08.017.
Wang Y. Research progress of DNA methylation in lens development and cataract[J]. Chin J Exp Ophthalmol, 2017, 35(8): 747-751. DOI:10.3760/cma.j.issn.2095-0160.2017.08.017.
10、Webster AK, Phillips PC. Epigenetics and individuality: from concepts to causality across timescales[J]. Nat Rev Genet, 2025, 26(6): 406-423. DOI:10.1038/s41576-024-00804-z.Webster AK, Phillips PC. Epigenetics and individuality: from concepts to causality across timescales[J]. Nat Rev Genet, 2025, 26(6): 406-423. DOI:10.1038/s41576-024-00804-z.
11、Davalos V, Esteller M. Cancer epigenetics in clinical practice[J]. CA Cancer J Clin, 2023, 73(4): 376-424. DOI:10.3322/caac.21765. Davalos V, Esteller M. Cancer epigenetics in clinical practice[J]. CA Cancer J Clin, 2023, 73(4): 376-424. DOI:10.3322/caac.21765.
12、Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture[J]. Mol Aspects Med, 2013, 34(4): 753-764. DOI:10.1016/j.mam.2012.07.018.Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture[J]. Mol Aspects Med, 2013, 34(4): 753-764. DOI:10.1016/j.mam.2012.07.018.
13、陈婉珍, 王震凯. 表观遗传学在胃癌前病变中的研究进展[J]. 胃肠病学和肝病学杂志, 2023, 32(11): 1291-1293. DOI:10.3969/j.issn.1006-5709.2023.11.018.
Chen WZ, Wang ZK. Research progress of epigenetics in precancerous lesions of gastric cancer[J]. Chin J Gastroenterol Hepatol, 2023, 32(11): 1291-1293. DOI:10.3969/j.issn.1006-5709.2023.11.018.
Chen WZ, Wang ZK. Research progress of epigenetics in precancerous lesions of gastric cancer[J]. Chin J Gastroenterol Hepatol, 2023, 32(11): 1291-1293. DOI:10.3969/j.issn.1006-5709.2023.11.018.
14、Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision[J]. Nature, 2020, 588(7836): 124-129. DOI:10.1038/s41586-020-2975-4.Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision[J]. Nature, 2020, 588(7836): 124-129. DOI:10.1038/s41586-020-2975-4.
15、Liu DD, Zhang CY, Zhang JT, et al. Epigenetic modifications and metabolic memory in diabetic retinopathy: beyond the surface[J]. Neural Regen Res, 2023, 18(7): 1441-1449. DOI:10.4103/1673-5374.361536.Liu DD, Zhang CY, Zhang JT, et al. Epigenetic modifications and metabolic memory in diabetic retinopathy: beyond the surface[J]. Neural Regen Res, 2023, 18(7): 1441-1449. DOI:10.4103/1673-5374.361536.
16、Yu J, Chai P, Xie M, et al. Histone lactylation drives oncogenesis by facilitating m(6)a reader protein YTHDF2 expression in ocular melanoma[J]. Genome Biol, 2021, 22(1): 85. DOI:10.1186/s13059-021-02308-z. Yu J, Chai P, Xie M, et al. Histone lactylation drives oncogenesis by facilitating m(6)a reader protein YTHDF2 expression in ocular melanoma[J]. Genome Biol, 2021, 22(1): 85. DOI:10.1186/s13059-021-02308-z.
17、Thorlacius%20GE%2C%20Bj%C3%B6rk%20A%2C%20Wahren-Herlenius%20M.%20Genetics%20and%20epigenetics%20of%20primary%20Sj%C3%B6gren%20syndrome%3A%20implications%20for%20future%20therapies%5BJ%5D.%20Nat%20Rev%20Rheumatol%2C%202023%2C%2019(5)%3A%20288-306.%20DOI%3A10.1038%2Fs41584-023-00932-6.%20Thorlacius%20GE%2C%20Bj%C3%B6rk%20A%2C%20Wahren-Herlenius%20M.%20Genetics%20and%20epigenetics%20of%20primary%20Sj%C3%B6gren%20syndrome%3A%20implications%20for%20future%20therapies%5BJ%5D.%20Nat%20Rev%20Rheumatol%2C%202023%2C%2019(5)%3A%20288-306.%20DOI%3A10.1038%2Fs41584-023-00932-6.%20
18、Chen E, Bohm K, Rosenblatt M, et al. Epigenetic regulation of anterior segment diseases and potential therapeutics[J]. Ocul Surf, 2020, 18(3): 383-395. DOI:10.1016/j.jtos.2020.04.001.Chen E, Bohm K, Rosenblatt M, et al. Epigenetic regulation of anterior segment diseases and potential therapeutics[J]. Ocul Surf, 2020, 18(3): 383-395. DOI:10.1016/j.jtos.2020.04.001.
19、Ni Y, Zhang H, Chu L, et al. m6A modification-association with oxidative stress and implications on eye diseases[J]. Antioxidants, 2023, 12(2): 510. DOI:10.3390/antiox12020510.Ni Y, Zhang H, Chu L, et al. m6A modification-association with oxidative stress and implications on eye diseases[J]. Antioxidants, 2023, 12(2): 510. DOI:10.3390/antiox12020510.
20、Corso-Díaz X, Jaeger C, Chaitankar V, et al. Epigenetic control of gene regulation during development and disease: a view from the retina[J]. Prog Retin Eye Res, 2018, 65: 1-27. DOI:10.1016/j.preteyeres.2018.03.002. Corso-Díaz X, Jaeger C, Chaitankar V, et al. Epigenetic control of gene regulation during development and disease: a view from the retina[J]. Prog Retin Eye Res, 2018, 65: 1-27. DOI:10.1016/j.preteyeres.2018.03.002.
21、裴芳, 裴华, 夏中华, 等. 高尿酸血症和痛风的表观遗传学研究进展[J]. 生理科学进展, 2019, 50(3): 175-180. DOI:10.3969/j.issn.0559-7765.2019.03.004.
Pei F, Pei H, Xia ZH, et al. Research progress of epigenetics in hyperuricemia and gout[J]. Prog Physiol Sci, 2019, 50(3): 175-180. DOI:10.3969/j.issn.0559-7765.2019.03.004.
Pei F, Pei H, Xia ZH, et al. Research progress of epigenetics in hyperuricemia and gout[J]. Prog Physiol Sci, 2019, 50(3): 175-180. DOI:10.3969/j.issn.0559-7765.2019.03.004.
22、Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective[J]. Trends Genet, 2022, 38(7): 676-707. DOI:10.1016/j.tig.2022.03.010.Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective[J]. Trends Genet, 2022, 38(7): 676-707. DOI:10.1016/j.tig.2022.03.010.
23、Palsamy P, Bidasee KR, Ayaki M, et al. Methylglyoxal induces endoplasmic reticulum stress and DNA demethylation in the Keap1 promoter of human lens epithelial cells and age-related cataracts[J]. Free Radic Biol Med, 2014, 72: 134-148. DOI:10.1016/j.freeradbiomed.2014.04.010. Palsamy P, Bidasee KR, Ayaki M, et al. Methylglyoxal induces endoplasmic reticulum stress and DNA demethylation in the Keap1 promoter of human lens epithelial cells and age-related cataracts[J]. Free Radic Biol Med, 2014, 72: 134-148. DOI:10.1016/j.freeradbiomed.2014.04.010.
24、Palsamy P, Ayaki M, Elanchezhian R, et al. Promoter demethylation of Keap1 gene in human diabetic cataractous lenses[J]. Biochem Biophys Res Commun, 2012, 423(3): 542-548. DOI:10.1016/j.bbrc.2012.05.164. Palsamy P, Ayaki M, Elanchezhian R, et al. Promoter demethylation of Keap1 gene in human diabetic cataractous lenses[J]. Biochem Biophys Res Commun, 2012, 423(3): 542-548. DOI:10.1016/j.bbrc.2012.05.164.
25、Klok EJ, van Genesen ST, Civil A, et al. Regulation of expression within a gene family. The case of the rat gammaB- and gammaD-crystallin promoters[J]. J Biol Chem, 1998, 273(27): 17206-17215. DOI:10.1074/jbc.273.27.17206.Klok EJ, van Genesen ST, Civil A, et al. Regulation of expression within a gene family. The case of the rat gammaB- and gammaD-crystallin promoters[J]. J Biol Chem, 1998, 273(27): 17206-17215. DOI:10.1074/jbc.273.27.17206.
26、Chang W, Zhao Y, Rayêe D, et al. Dynamic changes in whole genome DNA methylation, chromatin and gene expression during mouse lens differentiation[J]. Epigenetics Chromatin, 2023, 16(1): 4. DOI:10.1186/s13072-023-00478-7.Chang W, Zhao Y, Rayêe D, et al. Dynamic changes in whole genome DNA methylation, chromatin and gene expression during mouse lens differentiation[J]. Epigenetics Chromatin, 2023, 16(1): 4. DOI:10.1186/s13072-023-00478-7.
27、Hsu H. Characterization of developmentally regulated and lens nuclear proteins binding to upstream sequences of the MP19 LIM2 gene [D]. Atlanta: Georgia Institute of Technology, 1996.Hsu H. Characterization of developmentally regulated and lens nuclear proteins binding to upstream sequences of the MP19 LIM2 gene [D]. Atlanta: Georgia Institute of Technology, 1996.
28、Yang SP, Yang XZ, Cao GP. Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells[J]. Mol Med Rep, 2015, 12(1): 1145-1150. DOI:10.3892/mmr.2015.3490. Yang SP, Yang XZ, Cao GP. Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells[J]. Mol Med Rep, 2015, 12(1): 1145-1150. DOI:10.3892/mmr.2015.3490.
29、Liu S, Hu C, Luo Y, et al. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract[J]. Epigenomics, 2020, 12(9): 771-788. DOI:10.2217/epi-2019-0254.Liu S, Hu C, Luo Y, et al. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract[J]. Epigenomics, 2020, 12(9): 771-788. DOI:10.2217/epi-2019-0254.
30、Wei T, Sun H, Hu B, et al. Exome sequencing and epigenetic analysis of twins who are discordant for congenital cataract[J]. Twin Res Hum Genet, 2015, 18(4): 393-398. DOI:10.1017/thg.2015.34.Wei T, Sun H, Hu B, et al. Exome sequencing and epigenetic analysis of twins who are discordant for congenital cataract[J]. Twin Res Hum Genet, 2015, 18(4): 393-398. DOI:10.1017/thg.2015.34.
31、Kerr K, McAneney H, Smyth L, et al. Systematic review of differential methylation in rare ophthalmic diseases[J]. BMJ Open Ophthalmol, 2019, 4(1): e000342. DOI:10.1136/bmjophth-2019-000342.Kerr K, McAneney H, Smyth L, et al. Systematic review of differential methylation in rare ophthalmic diseases[J]. BMJ Open Ophthalmol, 2019, 4(1): e000342. DOI:10.1136/bmjophth-2019-000342.
32、Kimia Ahmadizadeh. CHARACTERIZATION OF TWO REGULATORY FACTORS IN LENS DEVELOPMENT [D]. University of Delaware. 2019.Kimia Ahmadizadeh. CHARACTERIZATION OF TWO REGULATORY FACTORS IN LENS DEVELOPMENT [D]. University of Delaware. 2019.
33、Venkatesh S, Workman JL. Histone exchange, chromatin structure and the regulation of transcription[J]. Nat Rev Mol Cell Biol, 2015, 16(3): 178-189. DOI:10.1038/nrm3941.Venkatesh S, Workman JL. Histone exchange, chromatin structure and the regulation of transcription[J]. Nat Rev Mol Cell Biol, 2015, 16(3): 178-189. DOI:10.1038/nrm3941.
34、Li Y. Modern epigenetics methods in biological research[J]. Methods, 2021, 187: 104-113. DOI:10.1016/j.ymeth.2020.06.022.Li Y. Modern epigenetics methods in biological research[J]. Methods, 2021, 187: 104-113. DOI:10.1016/j.ymeth.2020.06.022.
35、Ram O, Goren A, Amit I, et al. Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells[J]. Cell, 2011, 147(7): 1628-1639. DOI:10.1016/j.cell.2011.09.057.Ram O, Goren A, Amit I, et al. Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells[J]. Cell, 2011, 147(7): 1628-1639. DOI:10.1016/j.cell.2011.09.057.
36、Centore RC, Sandoval GJ, Soares LMM, et al. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies[J]. Trends Genet, 2020, 36(12): 936-950. DOI:10.1016/j.tig.2020.07.011.Centore RC, Sandoval GJ, Soares LMM, et al. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies[J]. Trends Genet, 2020, 36(12): 936-950. DOI:10.1016/j.tig.2020.07.011.
37、孙泽东, 任斌辉. 衰老积累的表观遗传学改变与肿瘤的发生发展[J]. 实用老年医学, 2024, 38(9): 953-957. DOI:10.3969/j.issn.1003-9198.2024.09.021.
Sun ZD, Ren BH. Epigenetic alterations accumulated during aging and tumorigenesis[J]. Pract Geriatr, 2024, 38(9): 953-957. DOI:10.3969/j.issn.1003-9198.2024.09.021.
Sun ZD, Ren BH. Epigenetic alterations accumulated during aging and tumorigenesis[J]. Pract Geriatr, 2024, 38(9): 953-957. DOI:10.3969/j.issn.1003-9198.2024.09.021.
38、Cvekl A, Duncan MK. Genetic and epigenetic mechanisms of gene regulation during lens development[J]. Prog Retin Eye Res, 2007, 26(6): 555-597. DOI:10.1016/j.preteyeres.2007.07.002.Cvekl A, Duncan MK. Genetic and epigenetic mechanisms of gene regulation during lens development[J]. Prog Retin Eye Res, 2007, 26(6): 555-597. DOI:10.1016/j.preteyeres.2007.07.002.
39、Wolf L, Harrison W, Huang J, et al. Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300[J]. Nucleic Acids Res, 2013, 41(22): 10199-10214. DOI:10.1093/nar/gkt824.Wolf L, Harrison W, Huang J, et al. Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300[J]. Nucleic Acids Res, 2013, 41(22): 10199-10214. DOI:10.1093/nar/gkt824.
40、Yang Y, Stopka T, Golestaneh N, et al. Regulation of alphaA-crystallin via Pax6, c-Maf, CREB and a broad domain of lens-specific chromatin[J]. EMBO J, 2006, 25(10): 2107-2118. DOI:10.1038/sj.emboj.7601114.Yang Y, Stopka T, Golestaneh N, et al. Regulation of alphaA-crystallin via Pax6, c-Maf, CREB and a broad domain of lens-specific chromatin[J]. EMBO J, 2006, 25(10): 2107-2118. DOI:10.1038/sj.emboj.7601114.
41、He S, Pirity MK, Wang WL, et al. Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation[J]. Epigenetics Chromatin, 2010, 3(1): 21. DOI:10.1186/1756-8935-3-21.He S, Pirity MK, Wang WL, et al. Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation[J]. Epigenetics Chromatin, 2010, 3(1): 21. DOI:10.1186/1756-8935-3-21.
42、He S, Limi S, McGreal RS, et al. Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation[J]. Development, 2016, 143(11): 1937-1947. DOI:10.1242/dev.135285.He S, Limi S, McGreal RS, et al. Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation[J]. Development, 2016, 143(11): 1937-1947. DOI:10.1242/dev.135285.
43、Tangeman JA, Rebull SM, Grajales-Esquivel E, et al. Integrated single-cell multiomics uncovers foundational regulatory mechanisms of lens development and pathology[J]. Development, 2024, 151(1): dev202249. DOI:10.1242/dev.202249.Tangeman JA, Rebull SM, Grajales-Esquivel E, et al. Integrated single-cell multiomics uncovers foundational regulatory mechanisms of lens development and pathology[J]. Development, 2024, 151(1): dev202249. DOI:10.1242/dev.202249.
44、Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function[J]. Nature, 2016, 531(7594): 323-328. DOI:10.1038/nature17181.Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function[J]. Nature, 2016, 531(7594): 323-328. DOI:10.1038/nature17181.
45、Liu Z, Wang R, Lin H, et al. Lens regeneration in humans: using regenerative potential for tissue repairing[J]. Ann Transl Med, 2020, 8(22): 1544. DOI:10.21037/atm-2019-rcs-03.Liu Z, Wang R, Lin H, et al. Lens regeneration in humans: using regenerative potential for tissue repairing[J]. Ann Transl Med, 2020, 8(22): 1544. DOI:10.21037/atm-2019-rcs-03.
46、Liu Z, Huang S, Zheng Y, et al. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens[J]. Prog Retin Eye Res, 2023, 92: 101112. DOI:10.1016/j.preteyeres.2022.101112. Liu Z, Huang S, Zheng Y, et al. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens[J]. Prog Retin Eye Res, 2023, 92: 101112. DOI:10.1016/j.preteyeres.2022.101112.
47、Chen L, Yao K, Fu QL. Potential immune involvement in cataract: from mechanisms to future scope of therapies[J]. Int J Ophthalmol, 2025, 18(3): 541-548. DOI:10.18240/ijo.2025.03.22.Chen L, Yao K, Fu QL. Potential immune involvement in cataract: from mechanisms to future scope of therapies[J]. Int J Ophthalmol, 2025, 18(3): 541-548. DOI:10.18240/ijo.2025.03.22.
48、Maki N, Tsonis PA, Agata K. Changes in global histone modifications during dedifferentiation in newt lens regeneration[J]. Mol Vis, 2010, 16: 1893-1897. Maki N, Tsonis PA, Agata K. Changes in global histone modifications during dedifferentiation in newt lens regeneration[J]. Mol Vis, 2010, 16: 1893-1897.
49、Nemeth K, Bayraktar R, Ferracin M, et al. Non-coding RNAs in disease: from mechanisms to therapeutics[J]. Nat Rev Genet, 2024, 25(3): 211-232. DOI:10.1038/s41576-023-00662-1. Nemeth K, Bayraktar R, Ferracin M, et al. Non-coding RNAs in disease: from mechanisms to therapeutics[J]. Nat Rev Genet, 2024, 25(3): 211-232. DOI:10.1038/s41576-023-00662-1.
50、Mattick JS, Makunin IV. Non-coding RNA[J]. Hum Mol Genet, 2006, 15(suppl_1): R17-R29. DOI:10.1093/hmg/ddl046.Mattick JS, Makunin IV. Non-coding RNA[J]. Hum Mol Genet, 2006, 15(suppl_1): R17-R29. DOI:10.1093/hmg/ddl046.
51、Panni S, Lovering RC, Porras P, et al. Non-coding RNA regulatory networks[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(6): 194417. DOI:10.1016/j.bbagrm.2019.194417.Panni S, Lovering RC, Porras P, et al. Non-coding RNA regulatory networks[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(6): 194417. DOI:10.1016/j.bbagrm.2019.194417.
52、Zapletal D, Kubicek K, Svoboda P, et al. Dicer structure and function: conserved and evolving features[J]. EMBO Rep, 2023, 24(7): e57215. DOI:10.15252/embr.202357215.Zapletal D, Kubicek K, Svoboda P, et al. Dicer structure and function: conserved and evolving features[J]. EMBO Rep, 2023, 24(7): e57215. DOI:10.15252/embr.202357215.
53、Li Y, Piatigorsky J. Targeted deletion of Dicer disrupts lens morphogenesis, corneal epithelium stratification, and whole eye development[J]. Dev Dyn, 2009, 238(9): 2388-2400. DOI:10.1002/dvdy.22056.Li Y, Piatigorsky J. Targeted deletion of Dicer disrupts lens morphogenesis, corneal epithelium stratification, and whole eye development[J]. Dev Dyn, 2009, 238(9): 2388-2400. DOI:10.1002/dvdy.22056.
54、Upreti A, Hoang TV, Li M, et al. miR-26 Deficiency Causes Alterations in Lens Transcriptome and Results in Adult-Onset Cataract[J]. Invest Ophthalmol Vis Sci. 2024, 65(4):42. DOI: 10.1167/iovs.65.4.42.Upreti A, Hoang TV, Li M, et al. miR-26 Deficiency Causes Alterations in Lens Transcriptome and Results in Adult-Onset Cataract[J]. Invest Ophthalmol Vis Sci. 2024, 65(4):42. DOI: 10.1167/iovs.65.4.42.
55、Karali M, Peluso I, Marigo V, et al. Identification and characterization of microRNAs expressed in the mouse eye[J]. Invest Ophthalmol Vis Sci, 2007, 48(2): 509-515. DOI:10.1167/iovs.06-0866.Karali M, Peluso I, Marigo V, et al. Identification and characterization of microRNAs expressed in the mouse eye[J]. Invest Ophthalmol Vis Sci, 2007, 48(2): 509-515. DOI:10.1167/iovs.06-0866.
56、Yang B, Wang JQ, Tan Y, et al. RNA methylation and cancer treatment[J]. Pharmacol Res, 2021, 174: 105937. DOI:10.1016/j.phrs.2021.105937. Yang B, Wang JQ, Tan Y, et al. RNA methylation and cancer treatment[J]. Pharmacol Res, 2021, 174: 105937. DOI:10.1016/j.phrs.2021.105937.
57、Shinde H, Dudhate A, Kadam US, et al. RNA methylation in plants: an overview[J]. Front Plant Sci, 2023, 14: 1132959. DOI:10.3389/fpls.2023.1132959. Shinde H, Dudhate A, Kadam US, et al. RNA methylation in plants: an overview[J]. Front Plant Sci, 2023, 14: 1132959. DOI:10.3389/fpls.2023.1132959.
58、Li X, Ma B, Liao M, et al. Potential impact of N6-methyladenosine RNA methylation on vision function and the pathological processes of ocular diseases: new discoveries and future perspectives[J]. Front Biosci, 2022, 27(7): 207. DOI:10.31083/j.fbl2707207. Li X, Ma B, Liao M, et al. Potential impact of N6-methyladenosine RNA methylation on vision function and the pathological processes of ocular diseases: new discoveries and future perspectives[J]. Front Biosci, 2022, 27(7): 207. DOI:10.31083/j.fbl2707207.
59、Yang J, Liu J, Zhao S, et al. N(6)-methyladenosine METTL3 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract[J]. Mol Ther Nucleic Acids, 2020, 20: 111-116. DOI:10.1016/j.omtn.2020.02.002.Yang J, Liu J, Zhao S, et al. N(6)-methyladenosine METTL3 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract[J]. Mol Ther Nucleic Acids, 2020, 20: 111-116. DOI:10.1016/j.omtn.2020.02.002.
60、Li P, Yu H, Zhang G, et al. Identification and characterization of N6-methyladenosine CircRNAs and methyltransferases in the lens epithelium cells from age-related cataract[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 13. DOI:10.1167/iovs.61.10.13.Li P, Yu H, Zhang G, et al. Identification and characterization of N6-methyladenosine CircRNAs and methyltransferases in the lens epithelium cells from age-related cataract[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 13. DOI:10.1167/iovs.61.10.13.
61、Ye HF, Zhang X, Zhao ZN, et al. Characterization of N(6)-methyladenosine long non-coding RNAs in sporadic congenital cataract and age-related cataract[J]. Int J Ophthalmol, 2024, 17(11): 1973-1986. DOI:10.18240/ijo.2024.11.02. Ye HF, Zhang X, Zhao ZN, et al. Characterization of N(6)-methyladenosine long non-coding RNAs in sporadic congenital cataract and age-related cataract[J]. Int J Ophthalmol, 2024, 17(11): 1973-1986. DOI:10.18240/ijo.2024.11.02.
62、Hu L, Ma J, Guo J, et al. Mettl3 Regulates Lens Development by Promoting the Differentiation Processes of Secondary Fiber Cells. Invest Ophthalmol Vis Sci[J]. 2025, 66(9):45. doi: 10.1167/iovs.66.9.45.Hu L, Ma J, Guo J, et al. Mettl3 Regulates Lens Development by Promoting the Differentiation Processes of Secondary Fiber Cells. Invest Ophthalmol Vis Sci[J]. 2025, 66(9):45. doi: 10.1167/iovs.66.9.45.
63、Chan WH, Biswas S, Ashworth JL, et al. Congenital and infantile cataract: aetiology and management[J]. Eur J Pediatr, 2012, 171(4): 625-630. DOI:10.1007/s00431-012-1700-1.Chan WH, Biswas S, Ashworth JL, et al. Congenital and infantile cataract: aetiology and management[J]. Eur J Pediatr, 2012, 171(4): 625-630. DOI:10.1007/s00431-012-1700-1.
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
目录

点击右上角菜单,浏览器打开下载

我知道了