1、Gilbert C, Foster A. Childhood blindness in the context of VISION 2020: the right to sight[J]. Bull World Health Organ, 2001, 79(3): 227-232.Gilbert C, Foster A. Childhood blindness in the context of VISION 2020: the right to sight[J]. Bull World Health Organ, 2001, 79(3): 227-232.
2、胡晨阳. 散发性先天性白内障的DNA甲基化发病机制研究[D]. 杭州: 浙江大学, 2020. DOI:10.27461/d.cnki.gzjdx.2020.002807.
Hu CY. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract[D]. Hangzhou: Zhejiang University, 2020. DOI:10.27461/d.cnki.gzjdx.2020.002807.Hu CY. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract[D]. Hangzhou: Zhejiang University, 2020. DOI:10.27461/d.cnki.gzjdx.2020.002807.
3、Sheeladevi S, Lawrenson JG, Fielder AR, et al. Global prevalence of childhood cataract: a systematic review[J]. Eye, 2016, 30(9): 1160-1169. DOI:10.1038/eye.2016.156. Sheeladevi S, Lawrenson JG, Fielder AR, et al. Global prevalence of childhood cataract: a systematic review[J]. Eye, 2016, 30(9): 1160-1169. DOI:10.1038/eye.2016.156.
4、SanGiovanni JP, Chew EY, Reed GF, et al. Infantile cataract in the collaborative perinatal project: prevalence and risk factors[J]. Arch Ophthalmol, 2002, 120(11): 1559-1565. DOI:10.1001/archopht.120.11.1559. SanGiovanni JP, Chew EY, Reed GF, et al. Infantile cataract in the collaborative perinatal project: prevalence and risk factors[J]. Arch Ophthalmol, 2002, 120(11): 1559-1565. DOI:10.1001/archopht.120.11.1559.
5、Shiels A, Hejtmancik JF. Biology of inherited cataracts and opportunities for treatment[J]. Annu Rev Vis Sci, 2019, 5: 123-149. DOI:10.1146/annurev-vision-091517-034346.Shiels A, Hejtmancik JF. Biology of inherited cataracts and opportunities for treatment[J]. Annu Rev Vis Sci, 2019, 5: 123-149. DOI:10.1146/annurev-vision-091517-034346.
6、Messina-Baas O, Cuevas-Covarrubias SA. Inherited congenital cataract: a guide to suspect the genetic etiology in the cataract genesis[J]. Mol Syndromol, 2017, 8(2): 58-78. DOI:10.1159/000455752.Messina-Baas O, Cuevas-Covarrubias SA. Inherited congenital cataract: a guide to suspect the genetic etiology in the cataract genesis[J]. Mol Syndromol, 2017, 8(2): 58-78. DOI:10.1159/000455752.
7、Santana A, Waiswo M. The genetic and molecular basis of congenital cataract[J]. Arq Bras Oftalmol, 2011, 74(2): 136-142. DOI:10.1590/s0004-27492011000200016. Santana A, Waiswo M. The genetic and molecular basis of congenital cataract[J]. Arq Bras Oftalmol, 2011, 74(2): 136-142. DOI:10.1590/s0004-27492011000200016.
8、Shiels A, Hejtmancik JF. Inherited cataracts: Genetic mechanisms and pathways new and old[J]. Exp Eye Res, 2021, 209: 108662. DOI:10.1016/j.exer.2021.108662.Shiels A, Hejtmancik JF. Inherited cataracts: Genetic mechanisms and pathways new and old[J]. Exp Eye Res, 2021, 209: 108662. DOI:10.1016/j.exer.2021.108662.
9、王勇. DNA甲基化在晶状体发育及白内障中的研究进展[J]. 中华实验眼科杂志, 2017, 35(8): 747-751. DOI:10.3760/cma.j.issn.2095-0160.2017.08.017.
Wang Y. Research progress of DNA methylation in lens development and cataract[J]. Chin J Exp Ophthalmol, 2017, 35(8): 747-751. DOI:10.3760/cma.j.issn.2095-0160.2017.08.017.Wang Y. Research progress of DNA methylation in lens development and cataract[J]. Chin J Exp Ophthalmol, 2017, 35(8): 747-751. DOI:10.3760/cma.j.issn.2095-0160.2017.08.017.
10、Webster AK, Phillips PC. Epigenetics and individuality: from concepts to causality across timescales[J]. Nat Rev Genet, 2025, 26(6): 406-423. DOI:10.1038/s41576-024-00804-z.Webster AK, Phillips PC. Epigenetics and individuality: from concepts to causality across timescales[J]. Nat Rev Genet, 2025, 26(6): 406-423. DOI:10.1038/s41576-024-00804-z.
11、Davalos V, Esteller M. Cancer epigenetics in clinical practice[J]. CA Cancer J Clin, 2023, 73(4): 376-424. DOI:10.3322/caac.21765. Davalos V, Esteller M. Cancer epigenetics in clinical practice[J]. CA Cancer J Clin, 2023, 73(4): 376-424. DOI:10.3322/caac.21765.
12、Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture[J]. Mol Aspects Med, 2013, 34(4): 753-764. DOI:10.1016/j.mam.2012.07.018.Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture[J]. Mol Aspects Med, 2013, 34(4): 753-764. DOI:10.1016/j.mam.2012.07.018.
13、陈婉珍, 王震凯. 表观遗传学在胃癌前病变中的研究进展[J]. 胃肠病学和肝病学杂志, 2023, 32(11): 1291-1293. DOI:10.3969/j.issn.1006-5709.2023.11.018.
Chen WZ, Wang ZK. Research progress of epigenetics in precancerous lesions of gastric cancer[J]. Chin J Gastroenterol Hepatol, 2023, 32(11): 1291-1293. DOI:10.3969/j.issn.1006-5709.2023.11.018. Chen WZ, Wang ZK. Research progress of epigenetics in precancerous lesions of gastric cancer[J]. Chin J Gastroenterol Hepatol, 2023, 32(11): 1291-1293. DOI:10.3969/j.issn.1006-5709.2023.11.018.
14、Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision[J]. Nature, 2020, 588(7836): 124-129. DOI:10.1038/s41586-020-2975-4.Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision[J]. Nature, 2020, 588(7836): 124-129. DOI:10.1038/s41586-020-2975-4.
15、Liu DD, Zhang CY, Zhang JT, et al. Epigenetic modifications and metabolic memory in diabetic retinopathy: beyond the surface[J]. Neural Regen Res, 2023, 18(7): 1441-1449. DOI:10.4103/1673-5374.361536.Liu DD, Zhang CY, Zhang JT, et al. Epigenetic modifications and metabolic memory in diabetic retinopathy: beyond the surface[J]. Neural Regen Res, 2023, 18(7): 1441-1449. DOI:10.4103/1673-5374.361536.
16、Yu J, Chai P, Xie M, et al. Histone lactylation drives oncogenesis by facilitating m(6)a reader protein YTHDF2 expression in ocular melanoma[J]. Genome Biol, 2021, 22(1): 85. DOI:10.1186/s13059-021-02308-z. Yu J, Chai P, Xie M, et al. Histone lactylation drives oncogenesis by facilitating m(6)a reader protein YTHDF2 expression in ocular melanoma[J]. Genome Biol, 2021, 22(1): 85. DOI:10.1186/s13059-021-02308-z.
17、Thorlacius%20GE%2C%20Bj%C3%B6rk%20A%2C%20Wahren-Herlenius%20M.%20Genetics%20and%20epigenetics%20of%20primary%20Sj%C3%B6gren%20syndrome%3A%20implications%20for%20future%20therapies%5BJ%5D.%20Nat%20Rev%20Rheumatol%2C%202023%2C%2019(5)%3A%20288-306.%20DOI%3A10.1038%2Fs41584-023-00932-6.%20Thorlacius%20GE%2C%20Bj%C3%B6rk%20A%2C%20Wahren-Herlenius%20M.%20Genetics%20and%20epigenetics%20of%20primary%20Sj%C3%B6gren%20syndrome%3A%20implications%20for%20future%20therapies%5BJ%5D.%20Nat%20Rev%20Rheumatol%2C%202023%2C%2019(5)%3A%20288-306.%20DOI%3A10.1038%2Fs41584-023-00932-6.%20
18、Chen E, Bohm K, Rosenblatt M, et al. Epigenetic regulation of anterior segment diseases and potential therapeutics[J]. Ocul Surf, 2020, 18(3): 383-395. DOI:10.1016/j.jtos.2020.04.001.Chen E, Bohm K, Rosenblatt M, et al. Epigenetic regulation of anterior segment diseases and potential therapeutics[J]. Ocul Surf, 2020, 18(3): 383-395. DOI:10.1016/j.jtos.2020.04.001.
19、Ni Y, Zhang H, Chu L, et al. m6A modification-association with oxidative stress and implications on eye diseases[J]. Antioxidants, 2023, 12(2): 510. DOI:10.3390/antiox12020510.Ni Y, Zhang H, Chu L, et al. m6A modification-association with oxidative stress and implications on eye diseases[J]. Antioxidants, 2023, 12(2): 510. DOI:10.3390/antiox12020510.
20、Corso-Díaz X, Jaeger C, Chaitankar V, et al. Epigenetic control of gene regulation during development and disease: a view from the retina[J]. Prog Retin Eye Res, 2018, 65: 1-27. DOI:10.1016/j.preteyeres.2018.03.002. Corso-Díaz X, Jaeger C, Chaitankar V, et al. Epigenetic control of gene regulation during development and disease: a view from the retina[J]. Prog Retin Eye Res, 2018, 65: 1-27. DOI:10.1016/j.preteyeres.2018.03.002.
21、裴芳, 裴华, 夏中华, 等. 高尿酸血症和痛风的表观遗传学研究进展[J]. 生理科学进展, 2019, 50(3): 175-180. DOI:10.3969/j.issn.0559-7765.2019.03.004.
Pei F, Pei H, Xia ZH, et al. Research progress of epigenetics in hyperuricemia and gout[J]. Prog Physiol Sci, 2019, 50(3): 175-180. DOI:10.3969/j.issn.0559-7765.2019.03.004. Pei F, Pei H, Xia ZH, et al. Research progress of epigenetics in hyperuricemia and gout[J]. Prog Physiol Sci, 2019, 50(3): 175-180. DOI:10.3969/j.issn.0559-7765.2019.03.004.
22、Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective[J]. Trends Genet, 2022, 38(7): 676-707. DOI:10.1016/j.tig.2022.03.010.Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective[J]. Trends Genet, 2022, 38(7): 676-707. DOI:10.1016/j.tig.2022.03.010.
23、Palsamy P, Bidasee KR, Ayaki M, et al. Methylglyoxal induces endoplasmic reticulum stress and DNA demethylation in the Keap1 promoter of human lens epithelial cells and age-related cataracts[J]. Free Radic Biol Med, 2014, 72: 134-148. DOI:10.1016/j.freeradbiomed.2014.04.010. Palsamy P, Bidasee KR, Ayaki M, et al. Methylglyoxal induces endoplasmic reticulum stress and DNA demethylation in the Keap1 promoter of human lens epithelial cells and age-related cataracts[J]. Free Radic Biol Med, 2014, 72: 134-148. DOI:10.1016/j.freeradbiomed.2014.04.010.
24、Palsamy P, Ayaki M, Elanchezhian R, et al. Promoter demethylation of Keap1 gene in human diabetic cataractous lenses[J]. Biochem Biophys Res Commun, 2012, 423(3): 542-548. DOI:10.1016/j.bbrc.2012.05.164. Palsamy P, Ayaki M, Elanchezhian R, et al. Promoter demethylation of Keap1 gene in human diabetic cataractous lenses[J]. Biochem Biophys Res Commun, 2012, 423(3): 542-548. DOI:10.1016/j.bbrc.2012.05.164.
25、Klok EJ, van Genesen ST, Civil A, et al. Regulation of expression within a gene family. The case of the rat gammaB- and gammaD-crystallin promoters[J]. J Biol Chem, 1998, 273(27): 17206-17215. DOI:10.1074/jbc.273.27.17206.Klok EJ, van Genesen ST, Civil A, et al. Regulation of expression within a gene family. The case of the rat gammaB- and gammaD-crystallin promoters[J]. J Biol Chem, 1998, 273(27): 17206-17215. DOI:10.1074/jbc.273.27.17206.
26、Chang W, Zhao Y, Rayêe D, et al. Dynamic changes in whole genome DNA methylation, chromatin and gene expression during mouse lens differentiation[J]. Epigenetics Chromatin, 2023, 16(1): 4. DOI:10.1186/s13072-023-00478-7.Chang W, Zhao Y, Rayêe D, et al. Dynamic changes in whole genome DNA methylation, chromatin and gene expression during mouse lens differentiation[J]. Epigenetics Chromatin, 2023, 16(1): 4. DOI:10.1186/s13072-023-00478-7.
27、Hsu H. Characterization of developmentally regulated and lens nuclear proteins binding to upstream sequences of the MP19 LIM2 gene [D]. Atlanta: Georgia Institute of Technology, 1996.Hsu H. Characterization of developmentally regulated and lens nuclear proteins binding to upstream sequences of the MP19 LIM2 gene [D]. Atlanta: Georgia Institute of Technology, 1996.
28、Yang SP, Yang XZ, Cao GP. Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells[J]. Mol Med Rep, 2015, 12(1): 1145-1150. DOI:10.3892/mmr.2015.3490. Yang SP, Yang XZ, Cao GP. Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells[J]. Mol Med Rep, 2015, 12(1): 1145-1150. DOI:10.3892/mmr.2015.3490.
29、Liu S, Hu C, Luo Y, et al. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract[J]. Epigenomics, 2020, 12(9): 771-788. DOI:10.2217/epi-2019-0254.Liu S, Hu C, Luo Y, et al. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract[J]. Epigenomics, 2020, 12(9): 771-788. DOI:10.2217/epi-2019-0254.
30、Wei T, Sun H, Hu B, et al. Exome sequencing and epigenetic analysis of twins who are discordant for congenital cataract[J]. Twin Res Hum Genet, 2015, 18(4): 393-398. DOI:10.1017/thg.2015.34.Wei T, Sun H, Hu B, et al. Exome sequencing and epigenetic analysis of twins who are discordant for congenital cataract[J]. Twin Res Hum Genet, 2015, 18(4): 393-398. DOI:10.1017/thg.2015.34.
31、Kerr K, McAneney H, Smyth L, et al. Systematic review of differential methylation in rare ophthalmic diseases[J]. BMJ Open Ophthalmol, 2019, 4(1): e000342. DOI:10.1136/bmjophth-2019-000342.Kerr K, McAneney H, Smyth L, et al. Systematic review of differential methylation in rare ophthalmic diseases[J]. BMJ Open Ophthalmol, 2019, 4(1): e000342. DOI:10.1136/bmjophth-2019-000342.
32、Kimia Ahmadizadeh. CHARACTERIZATION OF TWO REGULATORY FACTORS IN LENS DEVELOPMENT [D]. University of Delaware. 2019.Kimia Ahmadizadeh. CHARACTERIZATION OF TWO REGULATORY FACTORS IN LENS DEVELOPMENT [D]. University of Delaware. 2019.
33、Venkatesh S, Workman JL. Histone exchange, chromatin structure and the regulation of transcription[J]. Nat Rev Mol Cell Biol, 2015, 16(3): 178-189. DOI:10.1038/nrm3941.Venkatesh S, Workman JL. Histone exchange, chromatin structure and the regulation of transcription[J]. Nat Rev Mol Cell Biol, 2015, 16(3): 178-189. DOI:10.1038/nrm3941.
34、Li Y. Modern epigenetics methods in biological research[J]. Methods, 2021, 187: 104-113. DOI:10.1016/j.ymeth.2020.06.022.Li Y. Modern epigenetics methods in biological research[J]. Methods, 2021, 187: 104-113. DOI:10.1016/j.ymeth.2020.06.022.
35、Ram O, Goren A, Amit I, et al. Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells[J]. Cell, 2011, 147(7): 1628-1639. DOI:10.1016/j.cell.2011.09.057.Ram O, Goren A, Amit I, et al. Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells[J]. Cell, 2011, 147(7): 1628-1639. DOI:10.1016/j.cell.2011.09.057.
36、Centore RC, Sandoval GJ, Soares LMM, et al. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies[J]. Trends Genet, 2020, 36(12): 936-950. DOI:10.1016/j.tig.2020.07.011.Centore RC, Sandoval GJ, Soares LMM, et al. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies[J]. Trends Genet, 2020, 36(12): 936-950. DOI:10.1016/j.tig.2020.07.011.
37、孙泽东, 任斌辉. 衰老积累的表观遗传学改变与肿瘤的发生发展[J]. 实用老年医学, 2024, 38(9): 953-957. DOI:10.3969/j.issn.1003-9198.2024.09.021.
Sun ZD, Ren BH. Epigenetic alterations accumulated during aging and tumorigenesis[J]. Pract Geriatr, 2024, 38(9): 953-957. DOI:10.3969/j.issn.1003-9198.2024.09.021. Sun ZD, Ren BH. Epigenetic alterations accumulated during aging and tumorigenesis[J]. Pract Geriatr, 2024, 38(9): 953-957. DOI:10.3969/j.issn.1003-9198.2024.09.021.
38、Cvekl A, Duncan MK. Genetic and epigenetic mechanisms of gene regulation during lens development[J]. Prog Retin Eye Res, 2007, 26(6): 555-597. DOI:10.1016/j.preteyeres.2007.07.002.Cvekl A, Duncan MK. Genetic and epigenetic mechanisms of gene regulation during lens development[J]. Prog Retin Eye Res, 2007, 26(6): 555-597. DOI:10.1016/j.preteyeres.2007.07.002.
39、Wolf L, Harrison W, Huang J, et al. Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300[J]. Nucleic Acids Res, 2013, 41(22): 10199-10214. DOI:10.1093/nar/gkt824.Wolf L, Harrison W, Huang J, et al. Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300[J]. Nucleic Acids Res, 2013, 41(22): 10199-10214. DOI:10.1093/nar/gkt824.
40、Yang Y, Stopka T, Golestaneh N, et al. Regulation of alphaA-crystallin via Pax6, c-Maf, CREB and a broad domain of lens-specific chromatin[J]. EMBO J, 2006, 25(10): 2107-2118. DOI:10.1038/sj.emboj.7601114.Yang Y, Stopka T, Golestaneh N, et al. Regulation of alphaA-crystallin via Pax6, c-Maf, CREB and a broad domain of lens-specific chromatin[J]. EMBO J, 2006, 25(10): 2107-2118. DOI:10.1038/sj.emboj.7601114.
41、He S, Pirity MK, Wang WL, et al. Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation[J]. Epigenetics Chromatin, 2010, 3(1): 21. DOI:10.1186/1756-8935-3-21.He S, Pirity MK, Wang WL, et al. Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation[J]. Epigenetics Chromatin, 2010, 3(1): 21. DOI:10.1186/1756-8935-3-21.
42、He S, Limi S, McGreal RS, et al. Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation[J]. Development, 2016, 143(11): 1937-1947. DOI:10.1242/dev.135285.He S, Limi S, McGreal RS, et al. Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation[J]. Development, 2016, 143(11): 1937-1947. DOI:10.1242/dev.135285.
43、Tangeman JA, Rebull SM, Grajales-Esquivel E, et al. Integrated single-cell multiomics uncovers foundational regulatory mechanisms of lens development and pathology[J]. Development, 2024, 151(1): dev202249. DOI:10.1242/dev.202249.Tangeman JA, Rebull SM, Grajales-Esquivel E, et al. Integrated single-cell multiomics uncovers foundational regulatory mechanisms of lens development and pathology[J]. Development, 2024, 151(1): dev202249. DOI:10.1242/dev.202249.
44、Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function[J]. Nature, 2016, 531(7594): 323-328. DOI:10.1038/nature17181.Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function[J]. Nature, 2016, 531(7594): 323-328. DOI:10.1038/nature17181.
45、Liu Z, Wang R, Lin H, et al. Lens regeneration in humans: using regenerative potential for tissue repairing[J]. Ann Transl Med, 2020, 8(22): 1544. DOI:10.21037/atm-2019-rcs-03.Liu Z, Wang R, Lin H, et al. Lens regeneration in humans: using regenerative potential for tissue repairing[J]. Ann Transl Med, 2020, 8(22): 1544. DOI:10.21037/atm-2019-rcs-03.
46、Liu Z, Huang S, Zheng Y, et al. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens[J]. Prog Retin Eye Res, 2023, 92: 101112. DOI:10.1016/j.preteyeres.2022.101112. Liu Z, Huang S, Zheng Y, et al. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens[J]. Prog Retin Eye Res, 2023, 92: 101112. DOI:10.1016/j.preteyeres.2022.101112.
47、Chen L, Yao K, Fu QL. Potential immune involvement in cataract: from mechanisms to future scope of therapies[J]. Int J Ophthalmol, 2025, 18(3): 541-548. DOI:10.18240/ijo.2025.03.22.Chen L, Yao K, Fu QL. Potential immune involvement in cataract: from mechanisms to future scope of therapies[J]. Int J Ophthalmol, 2025, 18(3): 541-548. DOI:10.18240/ijo.2025.03.22.
48、Maki N, Tsonis PA, Agata K. Changes in global histone modifications during dedifferentiation in newt lens regeneration[J]. Mol Vis, 2010, 16: 1893-1897. Maki N, Tsonis PA, Agata K. Changes in global histone modifications during dedifferentiation in newt lens regeneration[J]. Mol Vis, 2010, 16: 1893-1897.
49、Nemeth K, Bayraktar R, Ferracin M, et al. Non-coding RNAs in disease: from mechanisms to therapeutics[J]. Nat Rev Genet, 2024, 25(3): 211-232. DOI:10.1038/s41576-023-00662-1. Nemeth K, Bayraktar R, Ferracin M, et al. Non-coding RNAs in disease: from mechanisms to therapeutics[J]. Nat Rev Genet, 2024, 25(3): 211-232. DOI:10.1038/s41576-023-00662-1.
50、Mattick JS, Makunin IV. Non-coding RNA[J]. Hum Mol Genet, 2006, 15(suppl_1): R17-R29. DOI:10.1093/hmg/ddl046.Mattick JS, Makunin IV. Non-coding RNA[J]. Hum Mol Genet, 2006, 15(suppl_1): R17-R29. DOI:10.1093/hmg/ddl046.
51、Panni S, Lovering RC, Porras P, et al. Non-coding RNA regulatory networks[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(6): 194417. DOI:10.1016/j.bbagrm.2019.194417.Panni S, Lovering RC, Porras P, et al. Non-coding RNA regulatory networks[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(6): 194417. DOI:10.1016/j.bbagrm.2019.194417.
52、Zapletal D, Kubicek K, Svoboda P, et al. Dicer structure and function: conserved and evolving features[J]. EMBO Rep, 2023, 24(7): e57215. DOI:10.15252/embr.202357215.Zapletal D, Kubicek K, Svoboda P, et al. Dicer structure and function: conserved and evolving features[J]. EMBO Rep, 2023, 24(7): e57215. DOI:10.15252/embr.202357215.
53、Li Y, Piatigorsky J. Targeted deletion of Dicer disrupts lens morphogenesis, corneal epithelium stratification, and whole eye development[J]. Dev Dyn, 2009, 238(9): 2388-2400. DOI:10.1002/dvdy.22056.Li Y, Piatigorsky J. Targeted deletion of Dicer disrupts lens morphogenesis, corneal epithelium stratification, and whole eye development[J]. Dev Dyn, 2009, 238(9): 2388-2400. DOI:10.1002/dvdy.22056.
54、Upreti A, Hoang TV, Li M, et al. miR-26 Deficiency Causes Alterations in Lens Transcriptome and Results in Adult-Onset Cataract[J]. Invest Ophthalmol Vis Sci. 2024, 65(4):42. DOI: 10.1167/iovs.65.4.42.Upreti A, Hoang TV, Li M, et al. miR-26 Deficiency Causes Alterations in Lens Transcriptome and Results in Adult-Onset Cataract[J]. Invest Ophthalmol Vis Sci. 2024, 65(4):42. DOI: 10.1167/iovs.65.4.42.
55、Karali M, Peluso I, Marigo V, et al. Identification and characterization of microRNAs expressed in the mouse eye[J]. Invest Ophthalmol Vis Sci, 2007, 48(2): 509-515. DOI:10.1167/iovs.06-0866.Karali M, Peluso I, Marigo V, et al. Identification and characterization of microRNAs expressed in the mouse eye[J]. Invest Ophthalmol Vis Sci, 2007, 48(2): 509-515. DOI:10.1167/iovs.06-0866.
56、Yang B, Wang JQ, Tan Y, et al. RNA methylation and cancer treatment[J]. Pharmacol Res, 2021, 174: 105937. DOI:10.1016/j.phrs.2021.105937. Yang B, Wang JQ, Tan Y, et al. RNA methylation and cancer treatment[J]. Pharmacol Res, 2021, 174: 105937. DOI:10.1016/j.phrs.2021.105937.
57、Shinde H, Dudhate A, Kadam US, et al. RNA methylation in plants: an overview[J]. Front Plant Sci, 2023, 14: 1132959. DOI:10.3389/fpls.2023.1132959. Shinde H, Dudhate A, Kadam US, et al. RNA methylation in plants: an overview[J]. Front Plant Sci, 2023, 14: 1132959. DOI:10.3389/fpls.2023.1132959.
58、Li X, Ma B, Liao M, et al. Potential impact of N6-methyladenosine RNA methylation on vision function and the pathological processes of ocular diseases: new discoveries and future perspectives[J]. Front Biosci, 2022, 27(7): 207. DOI:10.31083/j.fbl2707207. Li X, Ma B, Liao M, et al. Potential impact of N6-methyladenosine RNA methylation on vision function and the pathological processes of ocular diseases: new discoveries and future perspectives[J]. Front Biosci, 2022, 27(7): 207. DOI:10.31083/j.fbl2707207.
59、Yang J, Liu J, Zhao S, et al. N(6)-methyladenosine METTL3 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract[J]. Mol Ther Nucleic Acids, 2020, 20: 111-116. DOI:10.1016/j.omtn.2020.02.002.Yang J, Liu J, Zhao S, et al. N(6)-methyladenosine METTL3 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract[J]. Mol Ther Nucleic Acids, 2020, 20: 111-116. DOI:10.1016/j.omtn.2020.02.002.
60、Li P, Yu H, Zhang G, et al. Identification and characterization of N6-methyladenosine CircRNAs and methyltransferases in the lens epithelium cells from age-related cataract[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 13. DOI:10.1167/iovs.61.10.13.Li P, Yu H, Zhang G, et al. Identification and characterization of N6-methyladenosine CircRNAs and methyltransferases in the lens epithelium cells from age-related cataract[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 13. DOI:10.1167/iovs.61.10.13.
61、Ye HF, Zhang X, Zhao ZN, et al. Characterization of N(6)-methyladenosine long non-coding RNAs in sporadic congenital cataract and age-related cataract[J]. Int J Ophthalmol, 2024, 17(11): 1973-1986. DOI:10.18240/ijo.2024.11.02. Ye HF, Zhang X, Zhao ZN, et al. Characterization of N(6)-methyladenosine long non-coding RNAs in sporadic congenital cataract and age-related cataract[J]. Int J Ophthalmol, 2024, 17(11): 1973-1986. DOI:10.18240/ijo.2024.11.02.
62、Hu L, Ma J, Guo J, et al. Mettl3 Regulates Lens Development by Promoting the Differentiation Processes of Secondary Fiber Cells. Invest Ophthalmol Vis Sci[J]. 2025, 66(9):45. doi: 10.1167/iovs.66.9.45.Hu L, Ma J, Guo J, et al. Mettl3 Regulates Lens Development by Promoting the Differentiation Processes of Secondary Fiber Cells. Invest Ophthalmol Vis Sci[J]. 2025, 66(9):45. doi: 10.1167/iovs.66.9.45.
63、Chan WH, Biswas S, Ashworth JL, et al. Congenital and infantile cataract: aetiology and management[J]. Eur J Pediatr, 2012, 171(4): 625-630. DOI:10.1007/s00431-012-1700-1.Chan WH, Biswas S, Ashworth JL, et al. Congenital and infantile cataract: aetiology and management[J]. Eur J Pediatr, 2012, 171(4): 625-630. DOI:10.1007/s00431-012-1700-1.