1、Bourne RR , Stevens GA, W hite RA, et al. Causes of vision loss
worldwide, 1990-2010: a systematic analysis[ J]. Lancet Glob Health,
2013, 1(6): e339-e349.Bourne RR , Stevens GA, W hite RA, et al. Causes of vision loss
worldwide, 1990-2010: a systematic analysis[ J]. Lancet Glob Health,
2013, 1(6): e339-e349.
2、Liang YB, Wong TY, Sun LP, et al. Refractive errors in a rural Chinese
adult population the Handan eye study[ J]. Ophthalmology, 2009,
116(11): 2119-2127.Liang YB, Wong TY, Sun LP, et al. Refractive errors in a rural Chinese
adult population the Handan eye study[ J]. Ophthalmology, 2009,
116(11): 2119-2127.
3、Ikuno Y. Overview of the complications of high myopia[ J]. Retina,
2017, 37(12): 2347-2351.Ikuno Y. Overview of the complications of high myopia[ J]. Retina,
2017, 37(12): 2347-2351.
4、Lee MW, Kim JM, Shin YI, et al. Longitudinal changes in peripapillary
retinal nerve fiber layer thickness in high myopia: a prospective,
observational study[ J]. Ophthalmology, 2019, 126(4): 522-528.Lee MW, Kim JM, Shin YI, et al. Longitudinal changes in peripapillary
retinal nerve fiber layer thickness in high myopia: a prospective,
observational study[ J]. Ophthalmology, 2019, 126(4): 522-528.
5、Porwal S, Nithyanandam S, Joseph M, et al. Correlation of axial length
and peripapillary retinal nerve fiber layer thickness measured by Cirrus
HD optical coherence tomography in myopes[ J]. Indian J Ophthalmol,
2020, 68(8): 1584-1586.Porwal S, Nithyanandam S, Joseph M, et al. Correlation of axial length
and peripapillary retinal nerve fiber layer thickness measured by Cirrus
HD optical coherence tomography in myopes[ J]. Indian J Ophthalmol,
2020, 68(8): 1584-1586.
6、Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of
ganglion cells in glaucoma eyes compared with threshold visual field
tests in the same persons[ J]. Invest Ophthalmol Vis Sci, 2000, 41(3):
741-748.Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of
ganglion cells in glaucoma eyes compared with threshold visual field
tests in the same persons[ J]. Invest Ophthalmol Vis Sci, 2000, 41(3):
741-748.
7、Du J, Du Y, Xue Y, et al. Factors associated with changes in peripapillary
retinal nerve fibre layer thickness in healthy myopic eyes[ J]. J
Ophthalmol, 2021, 2021: 3462004.Du J, Du Y, Xue Y, et al. Factors associated with changes in peripapillary
retinal nerve fibre layer thickness in healthy myopic eyes[ J]. J
Ophthalmol, 2021, 2021: 3462004.
8、Curcio CA, Allen KA. Topography of ganglion cells in human retina[ J].
J Comp Neurol, 1990, 300(1): 5-25.Curcio CA, Allen KA. Topography of ganglion cells in human retina[ J].
J Comp Neurol, 1990, 300(1): 5-25.
9、Kim KE, Park KH. Macular imaging by optical coherence tomography
in the diagnosis and management of glaucoma[ J]. Br J Ophthalmol,
2018, 102(6): 718-724.Kim KE, Park KH. Macular imaging by optical coherence tomography
in the diagnosis and management of glaucoma[ J]. Br J Ophthalmol,
2018, 102(6): 718-724.
10、Chan NCY, Chan CKM. The use of optical coherence tomography in
neuro-ophthalmology[ J]. Curr Opin Ophthalmol, 2017, 28(6): 552-
557.Chan NCY, Chan CKM. The use of optical coherence tomography in
neuro-ophthalmology[ J]. Curr Opin Ophthalmol, 2017, 28(6): 552-
557.
11、Salehi MA, Nowroozi A, Gouravani M, et al. Associations of refractive
errors and retinal changes measured by optical coherence tomography:
a systematic review and meta-analysis[ J]. Surv Ophthalmol, 2022,
67(2): 591-607.Salehi MA, Nowroozi A, Gouravani M, et al. Associations of refractive
errors and retinal changes measured by optical coherence tomography:
a systematic review and meta-analysis[ J]. Surv Ophthalmol, 2022,
67(2): 591-607.
12、Wallman J, Winawer J. Homeostasis of eye growth and the question of
myopia[ J]. Neuron, 2004, 43(4): 447-468.Wallman J, Winawer J. Homeostasis of eye growth and the question of
myopia[ J]. Neuron, 2004, 43(4): 447-468.
13、Rucker FJ, Wallman J. Cone signals for spectacle-lens compensation:
differential responses to short and long wavelengths[ J]. Vis Res, 2008,
48(19): 1980-1991.Rucker FJ, Wallman J. Cone signals for spectacle-lens compensation:
differential responses to short and long wavelengths[ J]. Vis Res, 2008,
48(19): 1980-1991.
14、Foulds WS, Barathi VA, Luu CD. Progressive myopia or hyperopia can
be induced in chicks and reversed by manipulation of the chromaticity
of ambient light[ J]. Invest Ophthalmol Vis Sci, 2013, 54(13): 8004-
8012.Foulds WS, Barathi VA, Luu CD. Progressive myopia or hyperopia can
be induced in chicks and reversed by manipulation of the chromaticity
of ambient light[ J]. Invest Ophthalmol Vis Sci, 2013, 54(13): 8004-
8012.
15、Hung LF, Arumugam B, She Z, et al. Narrow-band, long-wavelength
lighting promotes hyperopia and retards vision-induced myopia in
infant rhesus monkeys[ J]. Exp Eye Res, 2018, 176: 147-160.Hung LF, Arumugam B, She Z, et al. Narrow-band, long-wavelength
lighting promotes hyperopia and retards vision-induced myopia in
infant rhesus monkeys[ J]. Exp Eye Res, 2018, 176: 147-160.
16、Hagen LA, Arnegard S, Kuchenbecker JA, et al. The association between
L: M cone ratio, cone opsin genes and myopia susceptibility[ J]. Vision
Res, 2019, 162: 20-28.Hagen LA, Arnegard S, Kuchenbecker JA, et al. The association between
L: M cone ratio, cone opsin genes and myopia susceptibility[ J]. Vision
Res, 2019, 162: 20-28.
17、Baird PN, Saw SM, Lanca C, et al. Myopia. Nat Rev Dis Primers, 2020,
6(1): 1-20.Baird PN, Saw SM, Lanca C, et al. Myopia. Nat Rev Dis Primers, 2020,
6(1): 1-20.
18、朱子诚. 高度近视与原发性开角型青光眼关系的研究进展[ J].
实用防盲技术, 2009, 4(2): 29-33.
Zhu ZC. Advance in the relationship between high myopia and primary
open-angle glaucoma[ J]. Journal of Practical Preventing Blind, 2009,
4(2): 29-33.朱子诚. 高度近视与原发性开角型青光眼关系的研究进展[ J].
实用防盲技术, 2009, 4(2): 29-33.
Zhu ZC. Advance in the relationship between high myopia and primary
open-angle glaucoma[ J]. Journal of Practical Preventing Blind, 2009,
4(2): 29-33.
19、凌云, 刘海霞. 高度近视与原发性开角型青光眼的关联机制[ J].
华中科技大学学报(医学版), 2013, 42(6): 737-740.
Ling Y, Liu HX. Understanding of the relationship between high
myopia and primary open-angle glaucoma[ J]. Acta Med Univ Sci
Technol Huazhong, 2013, 42(6): 737-740.凌云, 刘海霞. 高度近视与原发性开角型青光眼的关联机制[ J].
华中科技大学学报(医学版), 2013, 42(6): 737-740.
Ling Y, Liu HX. Understanding of the relationship between high
myopia and primary open-angle glaucoma[ J]. Acta Med Univ Sci
Technol Huazhong, 2013, 42(6): 737-740.
20、Wu J, Hao J, Du Y, et al. The association between myopia and primary
open-angle glaucoma: a systematic review and meta-analysis[ J].
Ophthalmic Res, 2022, 65(4): 387-397.Wu J, Hao J, Du Y, et al. The association between myopia and primary
open-angle glaucoma: a systematic review and meta-analysis[ J].
Ophthalmic Res, 2022, 65(4): 387-397.
21、杜非凡, 吴志鸿. 高度近视与原发性开角型青光眼相关机制研
究进展[ J]. 中国实用眼科杂志, 2017, 35(4): 368-371.
Du Feifan, Wu ZH. Advance in the machanism behind the relationship
between high myopia and primary open-angle glaucoma[ J]. Chin J
Pract Ophthalmol, 2017, 35(4): 368-371.杜非凡, 吴志鸿. 高度近视与原发性开角型青光眼相关机制研
究进展[ J]. 中国实用眼科杂志, 2017, 35(4): 368-371.
Du Feifan, Wu ZH. Advance in the machanism behind the relationship
between high myopia and primary open-angle glaucoma[ J]. Chin J
Pract Ophthalmol, 2017, 35(4): 368-371.
22、Scuderi G, Fragiotta S, Scuderi L, et al. Ganglion cell complex analysis
in glaucoma patients: what can it tell us?[ J]. Eye Brain, 2020, 12: 33-44.Scuderi G, Fragiotta S, Scuderi L, et al. Ganglion cell complex analysis
in glaucoma patients: what can it tell us?[ J]. Eye Brain, 2020, 12: 33-44.
23、Bennett AG, Rudnicka AR, Edgar DF. Improvements on Littmann's
method of determining the size of retinal features by fundus
photography[ J]. Arch Clin Exp Ophthalmol, 1994, 232(6): 361-367.Bennett AG, Rudnicka AR, Edgar DF. Improvements on Littmann's
method of determining the size of retinal features by fundus
photography[ J]. Arch Clin Exp Ophthalmol, 1994, 232(6): 361-367.
24、Mwanza JC, Sayyad FE, Aref AA, et al. Rates of abnormal retinal nerve
fiber layer and ganglion cell layer OCT scans in healthy myopic eyes:
Cirrus versus RTVue[ J]. Ophthalmic Surg Lasers Imaging, 2012, 43(6
Suppl): S67-S74.Mwanza JC, Sayyad FE, Aref AA, et al. Rates of abnormal retinal nerve
fiber layer and ganglion cell layer OCT scans in healthy myopic eyes:
Cirrus versus RTVue[ J]. Ophthalmic Surg Lasers Imaging, 2012, 43(6
Suppl): S67-S74.
25、Langenbucher A, Seitz B, Viestenz A. Computerised calculation scheme
for ocular magnification with the Zeiss telecentric fundus camera[ J].
Ophthalmic Physiol Opt, 2003, 23(5): 449-455.Langenbucher A, Seitz B, Viestenz A. Computerised calculation scheme
for ocular magnification with the Zeiss telecentric fundus camera[ J].
Ophthalmic Physiol Opt, 2003, 23(5): 449-455.
26、Ueda K, Kanamori A, Akashi A, et al. Effects of axial length and age on
circumpapillary retinal nerve fiber layer and inner macular parameters
measured by 3 types of SD-OCT instruments[ J]. J Glaucoma, 2016,
25(4): 383-389.Ueda K, Kanamori A, Akashi A, et al. Effects of axial length and age on
circumpapillary retinal nerve fiber layer and inner macular parameters
measured by 3 types of SD-OCT instruments[ J]. J Glaucoma, 2016,
25(4): 383-389.
27、Chang YF, Ko YC, Hsu CC, et al. Glaucoma assessment in high myopic
eyes using optical coherence tomography with long axial length
normative database[ J]. J Chin Med Assoc, 2020, 83(3): 313-317.Chang YF, Ko YC, Hsu CC, et al. Glaucoma assessment in high myopic
eyes using optical coherence tomography with long axial length
normative database[ J]. J Chin Med Assoc, 2020, 83(3): 313-317.
28、Akashi A., Kanamori A., Ueda K., et al. The Ability of SD-OCT to
Differentiate Early Glaucoma With High Myopia From Highly Myopic
Controls and Nonhighly Myopic Controls[ J]. Invest Ophthalmol Vis
Sci, 2015, 56(11): 6573-6580.Akashi A., Kanamori A., Ueda K., et al. The Ability of SD-OCT to
Differentiate Early Glaucoma With High Myopia From Highly Myopic
Controls and Nonhighly Myopic Controls[ J]. Invest Ophthalmol Vis
Sci, 2015, 56(11): 6573-6580.
29、Nakanishi H, Akagi T, Hangai M, et al. Sensitivity and specicity for
detecting early glaucoma in eyes with high myopia from normative
database of macular ganglion cell complex thickness obtained from
normal non-myopic or highly myopic Asian eyes[ J]. Graefes Arch Clin
Exp Ophthalmol, 2015, 253(7): 1143-1152.Nakanishi H, Akagi T, Hangai M, et al. Sensitivity and specicity for
detecting early glaucoma in eyes with high myopia from normative
database of macular ganglion cell complex thickness obtained from
normal non-myopic or highly myopic Asian eyes[ J]. Graefes Arch Clin
Exp Ophthalmol, 2015, 253(7): 1143-1152.
30、Lee SY, Bae HW, Kwon HJ, et al. Repeatability and agreement of swept
source and spectral domain optical coherence tomography evaluations
of thickness sectors in normal eyes[ J]. J Glaucoma, 2017, 26(2):
e46-e53.Lee SY, Bae HW, Kwon HJ, et al. Repeatability and agreement of swept
source and spectral domain optical coherence tomography evaluations
of thickness sectors in normal eyes[ J]. J Glaucoma, 2017, 26(2):
e46-e53.
31、Yang Z, Tatham AJ, Weinreb RN, et al. Diagnostic ability of macular
ganglion cell inner plexiform layer measurements in glaucoma using
swept source and spectral domain optical coherence tomography[ J].
PLoS One, 2015, 10(5): e0125957.Yang Z, Tatham AJ, Weinreb RN, et al. Diagnostic ability of macular
ganglion cell inner plexiform layer measurements in glaucoma using
swept source and spectral domain optical coherence tomography[ J].
PLoS One, 2015, 10(5): e0125957.
32、刘莎莎. 扫频和频域光学相干断层扫描评估近视对黄斑区神经
节细胞相关参数的影响 [D]. 汕头:汕头大学, 2020.
Liu Shasha. Evaluation of macular ganglion cell using swept-source
and spectral-domain optical coherence tomography in myopia [D].
Shantou: Shantou University, 2020.刘莎莎. 扫频和频域光学相干断层扫描评估近视对黄斑区神经
节细胞相关参数的影响 [D]. 汕头:汕头大学, 2020.
Liu Shasha. Evaluation of macular ganglion cell using swept-source
and spectral-domain optical coherence tomography in myopia [D].
Shantou: Shantou University, 2020.
33、Kim NR, Kim JH, Lee J, et al. Determinants of perimacular inner retinal
layer thickness in normal eyes measured by Fourier-domain optical
coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2011, 52(6):
3413-3418.Kim NR, Kim JH, Lee J, et al. Determinants of perimacular inner retinal
layer thickness in normal eyes measured by Fourier-domain optical
coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2011, 52(6):
3413-3418.
34、Zhao Z, Jiang C. Effect of myopia on ganglion cell complex and
peripapillary retinal nerve fibre layer measurements: a Fourier-domain
optical coherence tomography study of young Chinese persons[ J]. Clin
Exp Ophthalmol, 2013, 41(6): 561-566.Zhao Z, Jiang C. Effect of myopia on ganglion cell complex and
peripapillary retinal nerve fibre layer measurements: a Fourier-domain
optical coherence tomography study of young Chinese persons[ J]. Clin
Exp Ophthalmol, 2013, 41(6): 561-566.
35、Sezgin Akcay BI, Gunay BO, Kardes E, et al. Evaluation of the ganglion
cell complex and retinal nerve fiber layer in low, moderate, and
high myopia: a study by RTVue spectral domain optical coherence
tomography[ J]. Semin Ophthalmol, 2017, 32(6): 682-688.Sezgin Akcay BI, Gunay BO, Kardes E, et al. Evaluation of the ganglion
cell complex and retinal nerve fiber layer in low, moderate, and
high myopia: a study by RTVue spectral domain optical coherence
tomography[ J]. Semin Ophthalmol, 2017, 32(6): 682-688.
36、刘瑞, 王莎莎, 许斐平, 等. 傅里叶域OCT对不同屈光状态非青
光眼青年人群神经节细胞复合体的观察[ J]. 中华眼视光学与
视觉科学杂志, 2020, 22(6): 421-426.
Liu R, Wang SS, Xu FP, et al. Study of the ganglion cell layer in non-glaucomatous youth with different refractions using fourier-domain
optical coherence tomography[ J]. Chin J Optom Ophthalmol Vis Sci,
2020, 22(6): 421-426.刘瑞, 王莎莎, 许斐平, 等. 傅里叶域OCT对不同屈光状态非青
光眼青年人群神经节细胞复合体的观察[ J]. 中华眼视光学与
视觉科学杂志, 2020, 22(6): 421-426.
Liu R, Wang SS, Xu FP, et al. Study of the ganglion cell layer in non-glaucomatous youth with different refractions using fourier-domain
optical coherence tomography[ J]. Chin J Optom Ophthalmol Vis Sci,
2020, 22(6): 421-426.
37、马鑫宇. 光学相干断层扫描血管成像技术观察近视眼黄斑区血
管密度与神经纤维层厚度及其相关因素分析的临床研究[D].
大连: 大连医科大学, 2021.
Ma XY. A clinical study of optical coherence tomography angiography
to observe the vascular density and retinal nerve ber layer thickness in
the macular area of myopia and analysis of related factors[D]. Dalian:Dalian Medical University, 2021.马鑫宇. 光学相干断层扫描血管成像技术观察近视眼黄斑区血
管密度与神经纤维层厚度及其相关因素分析的临床研究[D].
大连: 大连医科大学, 2021.
Ma XY. A clinical study of optical coherence tomography angiography
to observe the vascular density and retinal nerve ber layer thickness in
the macular area of myopia and analysis of related factors[D]. Dalian:Dalian Medical University, 2021.
38、Takeyama A, Kita Y, Kita R, et al. Inuence of axial length on ganglion
cell complex (GCC) thickness and on GCC thickness to retinal
thickness ratios in young adults[ J]. Jpn J Ophthalmol, 2014, 58(1): 86-
93.Takeyama A, Kita Y, Kita R, et al. Inuence of axial length on ganglion
cell complex (GCC) thickness and on GCC thickness to retinal
thickness ratios in young adults[ J]. Jpn J Ophthalmol, 2014, 58(1): 86-
93.
39、王伟伟, 王怀洲, 刘建荣, 等. 频域OCT测量高度近视黄斑区视
网膜神经节细胞复合体厚度及视盘周围视网膜神经纤维层厚
度[ J]. 中华眼视光学与视觉科学杂志, 2017, 19(12): 720-726.
Wang WW, Wang HZ, Liu JR, et al. Thickness of ganglion cell complex
and retinal nerve fiber layer for high myopia with spectral-domain
optical coherence tomography[ J]. Chin J Optom Ophthalmol Vis Sci,
2017, 19(12): 720-726.王伟伟, 王怀洲, 刘建荣, 等. 频域OCT测量高度近视黄斑区视
网膜神经节细胞复合体厚度及视盘周围视网膜神经纤维层厚
度[ J]. 中华眼视光学与视觉科学杂志, 2017, 19(12): 720-726.
Wang WW, Wang HZ, Liu JR, et al. Thickness of ganglion cell complex
and retinal nerve fiber layer for high myopia with spectral-domain
optical coherence tomography[ J]. Chin J Optom Ophthalmol Vis Sci,
2017, 19(12): 720-726.
40、Wu Q, Chen Q, Lin B, et al. Relationships among retinal/choroidal
thickness, retinal microvascular network and visual field in high
myopia[ J]. Acta Ophthalmol, 2020, 98(6): e709-e714.Wu Q, Chen Q, Lin B, et al. Relationships among retinal/choroidal
thickness, retinal microvascular network and visual field in high
myopia[ J]. Acta Ophthalmol, 2020, 98(6): e709-e714.
41、Zhang Z, He X, Zhu J, et al. Macular measurements using optical
coherence tomography in healthy Chinese school age children[ J].
Invest Ophthalmol Vis Sci, 2011, 52(9): 6377-6383.Zhang Z, He X, Zhu J, et al. Macular measurements using optical
coherence tomography in healthy Chinese school age children[ J].
Invest Ophthalmol Vis Sci, 2011, 52(9): 6377-6383.
42、Liu X, Shen M, Yuan Y, et al. Macular thickness proles of intraretinal
layers in myopia evaluated by ultrahigh-resolution optical coherence
tomography[ J]. Am J Ophthalmol, 2015, 160(1): 53-61.e2.Liu X, Shen M, Yuan Y, et al. Macular thickness proles of intraretinal
layers in myopia evaluated by ultrahigh-resolution optical coherence
tomography[ J]. Am J Ophthalmol, 2015, 160(1): 53-61.e2.
43、Seo S, Lee CE, Jeong JH, et al. Ganglion cell-inner plexiform layer
and retinal nerve ber layer thickness according to myopia and optic
disc area: a quantitative and three-dimensional analysis[ J]. BMC
Ophthalmol, 2017, 17(1): 22.Seo S, Lee CE, Jeong JH, et al. Ganglion cell-inner plexiform layer
and retinal nerve ber layer thickness according to myopia and optic
disc area: a quantitative and three-dimensional analysis[ J]. BMC
Ophthalmol, 2017, 17(1): 22.
44、蔺云霞, 夏阳, 徐玲. 近视程度与黄斑部神经节细胞-内丛状层
(GCIPL)厚度的相关性研究[ J]. 眼科新进展, 2017, 37(11): 1075-
1078.
Lin YX, Xia Y, Xu L. Correlation of macular ganglion cell-inner
plexiform layer thickness with myopia[ J]. Rec Adv Ophthalmol, 2017,
37(11): 1075-1078.蔺云霞, 夏阳, 徐玲. 近视程度与黄斑部神经节细胞-内丛状层
(GCIPL)厚度的相关性研究[ J]. 眼科新进展, 2017, 37(11): 1075-
1078.
Lin YX, Xia Y, Xu L. Correlation of macular ganglion cell-inner
plexiform layer thickness with myopia[ J]. Rec Adv Ophthalmol, 2017,
37(11): 1075-1078.
45、Guo Y, Sung MS, Park SW. Assessment of superficial retinal
microvascular density in healthy myopia[ J]. Int Ophthalmol, 2019,
39(8): 1861-1870.Guo Y, Sung MS, Park SW. Assessment of superficial retinal
microvascular density in healthy myopia[ J]. Int Ophthalmol, 2019,
39(8): 1861-1870.
46、赵雨晴. 中国近视人群黄斑视网膜神经节细胞复合体厚度测量
[D]. 济南: 山东大学, 2021.
Zhao YQ. Measurement of macular retinal ganglion cell complex
thickness in Chinese myopic people[D]. Jinan: Shandong University,
2021.赵雨晴. 中国近视人群黄斑视网膜神经节细胞复合体厚度测量
[D]. 济南: 山东大学, 2021.
Zhao YQ. Measurement of macular retinal ganglion cell complex
thickness in Chinese myopic people[D]. Jinan: Shandong University,
2021.
47、Wang X, Li SM, Liu L, et al. An analysis of macular ganglion cell
complex in 7-year-old children in China: the Anyang Childhood Eye
Study[ J]. Transl Pediatr, 2021, 10(8): 2052-2062.Wang X, Li SM, Liu L, et al. An analysis of macular ganglion cell
complex in 7-year-old children in China: the Anyang Childhood Eye
Study[ J]. Transl Pediatr, 2021, 10(8): 2052-2062.
48、Shoji T, Nagaoka Y, Sato H, et al. Impact of high myopia on the
performance of SD-OCT parameters to detect glaucoma[ J]. Graefes
Arch Clin Exp Ophthalmol, 2012, 250(12): 1843-1849.Shoji T, Nagaoka Y, Sato H, et al. Impact of high myopia on the
performance of SD-OCT parameters to detect glaucoma[ J]. Graefes
Arch Clin Exp Ophthalmol, 2012, 250(12): 1843-1849.
49、Marcus MW, de Vries MM, Montolio FGJ, et al. Myopia as a risk factor
for open-angle glaucoma: a systematic review and meta-analysis[ J].
Ophthalmology, 2011, 118(10): 1989-1994.e2.Marcus MW, de Vries MM, Montolio FGJ, et al. Myopia as a risk factor
for open-angle glaucoma: a systematic review and meta-analysis[ J].
Ophthalmology, 2011, 118(10): 1989-1994.e2.
50、Kanamori A, Nakamura M, Escano MFT, et al. Evaluation of the
glaucomatous damage on retinal nerve fiber layer thickness measured
by optical coherence tomography[ J]. Am J Ophthalmol, 2003, 135(4):
513-520.Kanamori A, Nakamura M, Escano MFT, et al. Evaluation of the
glaucomatous damage on retinal nerve fiber layer thickness measured
by optical coherence tomography[ J]. Am J Ophthalmol, 2003, 135(4):
513-520.
51、Tan O, Li G, Lu ATH, et al. Mapping of macular substructures
with optical coherence tomography for glaucoma diagnosis[ J].
Ophthalmology, 2008, 115(6): 949-956.Tan O, Li G, Lu ATH, et al. Mapping of macular substructures
with optical coherence tomography for glaucoma diagnosis[ J].
Ophthalmology, 2008, 115(6): 949-956.
52、am YC, Cheung CY, Koh VT, et al. Relationship between ganglion
cell-inner plexiform layer and optic disc/retinal nerve fibre layer
parameters in non-glaucomatous eyes[ J]. Br J Ophthalmol, 2013,
97(12): 1592-1597.am YC, Cheung CY, Koh VT, et al. Relationship between ganglion
cell-inner plexiform layer and optic disc/retinal nerve fibre layer
parameters in non-glaucomatous eyes[ J]. Br J Ophthalmol, 2013,
97(12): 1592-1597.
53、Shin HY, Park HYL, Jung KI, et al. Comparative study of macular
ganglion cell-inner plexiform layer and peripapillary retinal nerve ber
layer measurement: structure-function analysis[ J]. Invest Ophthalmol
Vis Sci, 2013, 54(12): 7344-7353.Shin HY, Park HYL, Jung KI, et al. Comparative study of macular
ganglion cell-inner plexiform layer and peripapillary retinal nerve ber
layer measurement: structure-function analysis[ J]. Invest Ophthalmol
Vis Sci, 2013, 54(12): 7344-7353.
54、Kim KE, Park KH, Yoo BW, et al. Topographic localization of macular
retinal ganglion cell loss associated with localized peripapillary retinal
nerve fiber layer defect[ J]. Invest Ophthalmol Vis Sci, 2014, 55(6):
3501-3508.Kim KE, Park KH, Yoo BW, et al. Topographic localization of macular
retinal ganglion cell loss associated with localized peripapillary retinal
nerve fiber layer defect[ J]. Invest Ophthalmol Vis Sci, 2014, 55(6):
3501-3508.
55、Ooto S, Hangai M, Sakamoto A, et al. Three-dimensional profile
of macular retinal thickness in normal Japanese eyes[ J]. Invest
Ophthalmol Vis Sci, 2010, 51(1): 465-473.Ooto S, Hangai M, Sakamoto A, et al. Three-dimensional profile
of macular retinal thickness in normal Japanese eyes[ J]. Invest
Ophthalmol Vis Sci, 2010, 51(1): 465-473.
56、Kim NR, Lee ES, Seong GJ, et al. Comparing the ganglion cell complex
and retinal nerve fibre layer measurements by Fourier domain OCT
to detect glaucoma in high myopia[ J]. Br J Ophthalmol, 2011, 95(8):
1115-1121.Kim NR, Lee ES, Seong GJ, et al. Comparing the ganglion cell complex
and retinal nerve fibre layer measurements by Fourier domain OCT
to detect glaucoma in high myopia[ J]. Br J Ophthalmol, 2011, 95(8):
1115-1121.
57、Akashi A, Kanamori A, Nakamura M, et al. The ability of macular
parameters and circumpapillary retinal nerve fiber layer by three SD-OCT instruments to diagnose highly myopic glaucoma[ J]. Invest
Ophthalmol Vis Sci, 2013, 54(9): 6025-6032.Akashi A, Kanamori A, Nakamura M, et al. The ability of macular
parameters and circumpapillary retinal nerve fiber layer by three SD-OCT instruments to diagnose highly myopic glaucoma[ J]. Invest
Ophthalmol Vis Sci, 2013, 54(9): 6025-6032.
58、Choi YJ, Jeoung JW, Park KH, et al. Glaucoma detection ability of
ganglion cell-inner plexiform layer thickness by spectral-domain optical
coherence tomography in high myopia[ J]. Invest Ophthalmol Vis Sci,
2013, 54(3): 2296-2304.Choi YJ, Jeoung JW, Park KH, et al. Glaucoma detection ability of
ganglion cell-inner plexiform layer thickness by spectral-domain optical
coherence tomography in high myopia[ J]. Invest Ophthalmol Vis Sci,
2013, 54(3): 2296-2304.
59、Shoji T, Sato H, Ishida M, et al. Assessment of glaucomatous changes
in subjects with high myopia using spectral domain optical coherence
tomography[ J]. Invest Ophthalmol Vis Sci, 2011, 52(2): 1098-1102.Shoji T, Sato H, Ishida M, et al. Assessment of glaucomatous changes
in subjects with high myopia using spectral domain optical coherence
tomography[ J]. Invest Ophthalmol Vis Sci, 2011, 52(2): 1098-1102.
60、Zhang Y, Wen W, Sun X. Comparison of several parameters in two optical coherence tomography systems for detecting glaucomatous
defects in high myopia[ J]. Invest Ophthalmol Vis Sci, 2016, 57(11):
4910-4915.Zhang Y, Wen W, Sun X. Comparison of several parameters in two optical coherence tomography systems for detecting glaucomatous
defects in high myopia[ J]. Invest Ophthalmol Vis Sci, 2016, 57(11):
4910-4915.
61、Jeoung JW, Choi YJ, Park KH, et al. Macular ganglion cell imaging
study: glaucoma diagnostic accuracy of spectral-domain optical
coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2013, 54(7):
4422-4429.Jeoung JW, Choi YJ, Park KH, et al. Macular ganglion cell imaging
study: glaucoma diagnostic accuracy of spectral-domain optical
coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2013, 54(7):
4422-4429.
62、Kita Y, Kita R, Takeyama A, et al. Effect of high myopia on glaucoma
diagnostic parameters measured with optical coherence tomography[ J].
Clin Exp Ophthalmol, 2014, 42(8): 722-728.Kita Y, Kita R, Takeyama A, et al. Effect of high myopia on glaucoma
diagnostic parameters measured with optical coherence tomography[ J].
Clin Exp Ophthalmol, 2014, 42(8): 722-728.
63、Nakano N, Hangai M, Noma H, et al. Macular imaging in highly myopic
eyes with and WithoutGlaucoma[ J]. Am J Ophthalmol, 2013, 156(3):
511-523.e6.Nakano N, Hangai M, Noma H, et al. Macular imaging in highly myopic
eyes with and WithoutGlaucoma[ J]. Am J Ophthalmol, 2013, 156(3):
511-523.e6.
64、Rolle T, Bonetti B, Mazzucco A, et al. Diagnostic ability of OCT
parameters and retinal ganglion cells count in identification of glaucoma
in myopic preperimetric eyes[ J]. BMC Ophthalmol, 2020, 20(1): 373.Rolle T, Bonetti B, Mazzucco A, et al. Diagnostic ability of OCT
parameters and retinal ganglion cells count in identification of glaucoma
in myopic preperimetric eyes[ J]. BMC Ophthalmol, 2020, 20(1): 373.
65、Rao HL, Kumar AU, Bonala SR, et al. Repeatability of spectral domain
optical coherence tomography measurements in high myopia[ J]. J
Glaucoma, 2016, 25(5): e526-e530.Rao HL, Kumar AU, Bonala SR, et al. Repeatability of spectral domain
optical coherence tomography measurements in high myopia[ J]. J
Glaucoma, 2016, 25(5): e526-e530.
66、Kotera Y, Hangai M, Hirose F, et al. Three-dimensional imaging of
macular inner structures in glaucoma by using spectral-domain optical
coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2011, 52(3):
1412-1421.Kotera Y, Hangai M, Hirose F, et al. Three-dimensional imaging of
macular inner structures in glaucoma by using spectral-domain optical
coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2011, 52(3):
1412-1421.
67、Hirashima T, Hangai M, Nukada M, et al. Frequency-doubling
technology and retinal measurements with spectral-domain optical
coherence tomography in preperimetric glaucoma[ J]. Graefes Arch
Clin Exp Ophthalmol, 2013, 251(1): 129-137.Hirashima T, Hangai M, Nukada M, et al. Frequency-doubling
technology and retinal measurements with spectral-domain optical
coherence tomography in preperimetric glaucoma[ J]. Graefes Arch
Clin Exp Ophthalmol, 2013, 251(1): 129-137.
68、Seong M, Sung KR, Choi EH, et al. Macular and peripapillary retinal
nerve fiber layer measurements by spectral domain optical coherence
tomography in normal-tension glaucoma[ J]. Invest Ophthalmol Vis
Sci, 2010, 51(3): 1446-1452.Seong M, Sung KR, Choi EH, et al. Macular and peripapillary retinal
nerve fiber layer measurements by spectral domain optical coherence
tomography in normal-tension glaucoma[ J]. Invest Ophthalmol Vis
Sci, 2010, 51(3): 1446-1452.
69、Cho JW, Sung KR, Lee S, et al. Relationship between visual field
sensitivity and macular ganglion cell complex thickness as measured by
spectral-domain optical coherence tomography[ J]. Invest Ophthalmol
Vis Sci, 2010, 51(12): 6401-6407.Cho JW, Sung KR, Lee S, et al. Relationship between visual field
sensitivity and macular ganglion cell complex thickness as measured by
spectral-domain optical coherence tomography[ J]. Invest Ophthalmol
Vis Sci, 2010, 51(12): 6401-6407.
70、Lim ME, Jiramongkolchai K, Xu L, et al. Handheld optical coherence
tomography normative inner retinal layer measurements for children
<5 years of age[ J]. Am J Ophthalmol, 2019, 207: 232-239.Lim ME, Jiramongkolchai K, Xu L, et al. Handheld optical coherence
tomography normative inner retinal layer measurements for children
<5 years of age[ J]. Am J Ophthalmol, 2019, 207: 232-239.
71、Kim H, Lee JS, Park HM, et al. A wide-field optical coherence
tomography normative database considering the fovea-disc relationship
for glaucoma detection[ J]. Transl Vis Sci Technol, 2021, 10(2): 7.Kim H, Lee JS, Park HM, et al. A wide-field optical coherence
tomography normative database considering the fovea-disc relationship
for glaucoma detection[ J]. Transl Vis Sci Technol, 2021, 10(2): 7.
72、Dong Y, Guo X, Arsiwala-Scheppach LT, et al. Association of optical
coherence tomography and optical coherence tomography angiography
retinal features with visual function in older adults[ J]. JAMA
Ophthalmol, 2022, 140(8): 809-817.Dong Y, Guo X, Arsiwala-Scheppach LT, et al. Association of optical
coherence tomography and optical coherence tomography angiography
retinal features with visual function in older adults[ J]. JAMA
Ophthalmol, 2022, 140(8): 809-817.
73、Kita Y, Kita R, Takeyama A, et al. Relationship between macular
ganglion cell complex thickness and macular outer retinal thickness:
a spectral-domain optical coherence tomography study[ J]. Clin Exp
Ophthalmol, 2013, 41(7): 674-682.Kita Y, Kita R, Takeyama A, et al. Relationship between macular
ganglion cell complex thickness and macular outer retinal thickness:
a spectral-domain optical coherence tomography study[ J]. Clin Exp
Ophthalmol, 2013, 41(7): 674-682.
74、Kita Y, Kita R , Takeyama A, et al. Ability of optical coherence
tomography-determined ganglion cell complex thickness to total retinal
thickness ratio to diagnose glaucoma[ J]. J Glaucoma, 2013, 22(9):
757-762.Kita Y, Kita R , Takeyama A, et al. Ability of optical coherence
tomography-determined ganglion cell complex thickness to total retinal
thickness ratio to diagnose glaucoma[ J]. J Glaucoma, 2013, 22(9):
757-762.
75、Tan O, Chopra V, Lu ATH, et al. Detection of macular ganglion cell
loss in glaucoma by Fourier-domain optical coherence tomography[ J].
Ophthalmology, 2009, 116(12): 2305-2314.e2.Tan O, Chopra V, Lu ATH, et al. Detection of macular ganglion cell
loss in glaucoma by Fourier-domain optical coherence tomography[ J].
Ophthalmology, 2009, 116(12): 2305-2314.e2.
76、Girkin CA, McGwin G, Sinai MJ, et al. Variation in optic nerve and
macular structure with age and race with spectral-domain optical
coherence tomography[ J]. Ophthalmology, 2011, 118(12): 2403-
2408.Girkin CA, McGwin G, Sinai MJ, et al. Variation in optic nerve and
macular structure with age and race with spectral-domain optical
coherence tomography[ J]. Ophthalmology, 2011, 118(12): 2403-
2408.
77、Leung CKS, Mohamed S, Leung KS, et al. Retinal nerve fiber layer
measurements in myopia: an optical coherence tomography study[ J].
Invest Ophthalmol Vis Sci, 2006, 47(12): 5171-5176.Leung CKS, Mohamed S, Leung KS, et al. Retinal nerve fiber layer
measurements in myopia: an optical coherence tomography study[ J].
Invest Ophthalmol Vis Sci, 2006, 47(12): 5171-5176.
78、杨晓桦. OCT检测青少年不同屈光状态黄斑部神经节细胞复合
体的厚度[ J]. 中国中医眼科杂志, 2013, 23(4): 255-259.
Yang XY. Thickness of macular ganglion cell complex in adolescents
with different refractive status detected by OCT[ J]. China J Chin
Ophthalmol, 2013, 23(4): 255-259.杨晓桦. OCT检测青少年不同屈光状态黄斑部神经节细胞复合
体的厚度[ J]. 中国中医眼科杂志, 2013, 23(4): 255-259.
Yang XY. Thickness of macular ganglion cell complex in adolescents
with different refractive status detected by OCT[ J]. China J Chin
Ophthalmol, 2013, 23(4): 255-259.
79、陈晨, 李东辉, 王静怡, 等. 高度近视黄斑区视网膜神经节细胞复
合体的相关参数分析[ J]. 中国医科大学学报, 2020, 49(8): 701-
705.
Chen C, Li DH, Wang JY, et al. Analysis of parameters related to the
macular ganglion cell complex in patients with high myopia[ J]. J China
Med Univ, 2020, 49(8): 701-705.陈晨, 李东辉, 王静怡, 等. 高度近视黄斑区视网膜神经节细胞复
合体的相关参数分析[ J]. 中国医科大学学报, 2020, 49(8): 701-
705.
Chen C, Li DH, Wang JY, et al. Analysis of parameters related to the
macular ganglion cell complex in patients with high myopia[ J]. J China
Med Univ, 2020, 49(8): 701-705.
80、Zhu BD, Li SM, Li H, et al. Retinal nerve fiber layer thickness in a
population of 12-year-old children in central China measured by iVue-
100 spectral-domain optical coherence tomography: the Anyang
Childhood Eye Study[ J]. Invest Ophthalmol Vis Sci, 2013, 54(13):
8104-8111.Zhu BD, Li SM, Li H, et al. Retinal nerve fiber layer thickness in a
population of 12-year-old children in central China measured by iVue-
100 spectral-domain optical coherence tomography: the Anyang
Childhood Eye Study[ J]. Invest Ophthalmol Vis Sci, 2013, 54(13):
8104-8111.
81、Kang MT, Li SM, Li H, et al. Peripapillary retinal nerve fibre layer
thickness and its association with refractive error in Chinese children:
the Anyang Childhood Eye Study[ J]. Clin Exp Ophthalmol, 2016,
44(8): 701-709.Kang MT, Li SM, Li H, et al. Peripapillary retinal nerve fibre layer
thickness and its association with refractive error in Chinese children:
the Anyang Childhood Eye Study[ J]. Clin Exp Ophthalmol, 2016,
44(8): 701-709.
82、Milani P, Montesano G, Rossetti L, et al. Vessel density, retinal
thickness, and choriocapillaris vascular ow in myopic eyes on OCT
angiography[ J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(8): 1419-1427.Milani P, Montesano G, Rossetti L, et al. Vessel density, retinal
thickness, and choriocapillaris vascular ow in myopic eyes on OCT
angiography[ J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(8): 1419-1427.
83、Fan H, Chen H Y, Ma H J, et al. Reduced macular vascular density in
myopic eyes[ J]. Chin Med J (Engl), 2017, 130(4): 445-451.Fan H, Chen H Y, Ma H J, et al. Reduced macular vascular density in
myopic eyes[ J]. Chin Med J (Engl), 2017, 130(4): 445-451.
84、Ucak T, Icel E, Yilmaz H, et al. Alterations in optical coherence
tomography angiography ndings in patients with high myopia[ J]. Eye
(Lond), 2020, 34(6): 1129-1135.Ucak T, Icel E, Yilmaz H, et al. Alterations in optical coherence
tomography angiography ndings in patients with high myopia[ J]. Eye
(Lond), 2020, 34(6): 1129-1135.
85、Venkatesh R, Sinha S, Gangadharaiah D, et al. Retinal structuralvascular-functional relationship using optical coherence tomography
and optical coherence tomography–angiography in myopia[ J]. Eye and
Vis, 2019, 6(1): 8.Venkatesh R, Sinha S, Gangadharaiah D, et al. Retinal structuralvascular-functional relationship using optical coherence tomography
and optical coherence tomography–angiography in myopia[ J]. Eye and
Vis, 2019, 6(1): 8.
86、Tsui CK, Yang B, Yu S, et al. The relationship between macular vessel
density and thickness with light sensitivity in myopic eyes[ J]. Curr Eye
Res, 2019, 44(10): 1104-1111.Tsui CK, Yang B, Yu S, et al. The relationship between macular vessel
density and thickness with light sensitivity in myopic eyes[ J]. Curr Eye
Res, 2019, 44(10): 1104-1111.
87、张欣. 非病理性高度近视黄斑功能与微血管形态相关性临床研
究[ J]. 济南: 山东大学, 2018.
Zhang X. Correlation between visual function evaluated by MAIA
and retinal vascular network alterations measured by OCTA in
nonpathological high myopia[D]. Shandong University, 2018.张欣. 非病理性高度近视黄斑功能与微血管形态相关性临床研
究[ J]. 济南: 山东大学, 2018.
Zhang X. Correlation between visual function evaluated by MAIA
and retinal vascular network alterations measured by OCTA in
nonpathological high myopia[D]. Shandong University, 2018.
88、郭文骏, 刘洪涛, 李明波, 等. 近视患者黄斑区微血流密度及神经
节细胞复合体厚度的变化[ J]. 眼科新进展, 2021, 41(12): 1154-
1157.
Guo WJ, Liu HT, Li MB, et al. Changes in the macular microvessel
density and the thickness of the macular ganglion cell complex in
myopic patients [ J]. Rec Adv Ophthalmol, 2021, 41(12): 1154-1157.郭文骏, 刘洪涛, 李明波, 等. 近视患者黄斑区微血流密度及神经
节细胞复合体厚度的变化[ J]. 眼科新进展, 2021, 41(12): 1154-
1157.
Guo WJ, Liu HT, Li MB, et al. Changes in the macular microvessel
density and the thickness of the macular ganglion cell complex in
myopic patients [ J]. Rec Adv Ophthalmol, 2021, 41(12): 1154-1157.