您的位置: 首页 > 2022年9月 第37卷 第9期 > 文字全文
2023年7月 第38卷 第7期11
目录

TRPV1/TRPA1在眼科术后痛觉过敏中的作用

Role of TRPV1/TRPA1 in hyperalgesia after ophthalmology

来源期刊: 眼科学报 | 2022年9月 第37卷 第9期 760-765 发布时间: 收稿时间:2022/11/24 13:17:16 阅读量:7508
作者:
关键词:
眼科手术痛觉过敏三叉神经节TRPV1/TRPA1炎症因子阿片类药物免疫细胞
ophthalmic surgery hyperalgesia TRPV1/TRPA1 trigeminal ganglion inflammatory factors opioids immune cells
DOI:
10.3978/j.issn.1000-4432.2022.07.03
收稿时间:
 
修订日期:
 
接收日期:
 
近年来,眼科手术后的疼痛受到关注,部分患者术后表现出疼痛区域扩大,神经性畏光。术后这种 对伤害性刺激性信号反常性增加的现象称之为痛觉过敏。痛觉过敏的发展会导致患者延迟术后恢 复等问题。此外,痛觉过敏还会引起患者不适,诱使患者使用更多的止痛药而产生相关的不良反 应。而TRPV1/TRPA1是一种伤害性感受器,能够被伤害性刺激特异性激活而诱发痛觉过敏。尽管 如此,目前关于眼科术后的痛觉过敏发病机制未完全阐明,TRPV1如何增敏导致痛觉过敏的分子生 物学过程尚未明确。
The postoperative pain of ophthalmic surgery has been widely concerned in recent years. Some patients show enlarged painful areas and neurophotophobia postoperatively. This abnormal increase in noxious irritant signals after surgery is called hyperalgesia. The development of hyperalgesia can result in delayed postoperative recovery for patients. In addition, hyperalgesia can also cause discomfort for patients, and induce patients to use more analgesics, which can have related side effects. TRPV1/TRPA1 is a nociceptor, which can be specifically activated by nociceptive stimuli to induce hyperalgesia. Nevertheless, the pathogenesis of hyperalgesia after ophthalmology surgery has not been fully elucidated, and the molecular signal pathway of how TRPV1 sensitizes and causes hyperalgesia is not yet clear. 
手术是治愈眼科疾病的重要手段,同时,手术创伤也可造成伤害感受器激活,并由此引起术后急性疼痛。疼痛是一种复杂的主观体验,由伤害性刺激所传导的感觉信息诱发。疼痛作为生物警报信号,对于维持人类的生存至关重要。角膜感知系统是人体中最敏感也是最复杂的感知系统,包含产生动作电位的离子通道的伤害性感受器等,从而形成人体中最强大的疼痛产生器。角膜神经末梢很容易遭到手术创伤,从而产生痛觉反应[1]。若术后急性疼痛的处理不当,可引起痛觉过敏反应,如激光角膜屈光手术后出现严重的神经性畏光、神经性中枢性疼痛状态或慢性干眼样疼痛等痛觉过敏症状,症状持续几个月,也可长达1年,甚至更长[2]

痛觉过敏表现为在感觉缺陷的皮肤临近区域出现感觉异常或者感觉超敏的反应,即轻微的触碰可导致严重的疼痛反应。眼科术后痛觉过敏的症状表现为角膜区域干燥、烧伤、疼痛、酸痛、刺痛和异物感等,也包括头痛,眼睑痉挛或眼眶,面部和颌骨周围的全身不适等,其诱发因素包括风、空调及光线等。痛觉过敏也是一种疼痛状态,其特征在于伤害感受器对其有害刺激的敏感性和响应性增加。

    角膜伤害感受器分布广泛,其密度是真皮的300~600倍,位于表层上皮细胞之间,泪液薄膜层的内层,包括温度感受器、机械感受器等。瞬时感受器电位(transient receptor potential,TRP)通道能密切感知冷热,化学以及机械刺激的变化,并是产生痛觉反应主要感受器[3]。其中,瞬时受体电位香草酸亚型1(transient receptor potential vanilloid-1,TRPV1)广泛表达三叉神经节(trigeminal ganglion,TG)和迷走神经(vagus,VG)的初级感觉神经元上,且在肽能(富含神经肽CGRP和SP以及神经营养因子受体TrkA)和非肽能神经元均有表达。Yuan等[4]观察了21例角膜屈光术后角膜病理性疼痛患者,发现与TRPV1表达相关的p.Q85R基因变异有关;此外,在痛觉过敏患者中,共聚焦显微镜下,基质下的角膜神经纤维形态及密度已发生改变,这些结果均提示TRPV1在刺激角膜感知并引起眼部痛觉过敏的重要性。
    瞬时受体电位锚蛋白1(transientrecep to rpotential ankyrin-1,TRPA1)能够感受多种有害刺激,如冷热、刺激化合物以及细胞损伤后有关的内源性物质,从而引起痛觉反应。研究[5]发现TRPA1缺陷小鼠对能够激活支配眼睛感受神经元产生痛觉的丙烯酸和其他挥发性刺激物的敏感性大大降低,上述结果充分说明TRPV1/TRPA1是眼科术后产生痛觉过敏的主要离子通道

1 P物质对TRPV1/TRPA1的影响

研究[6]显示:在干眼模型中,TRPM8+冷纤维中TRPV1表达增加,通过释放神经肽物质P,从而引起冷异常性疼痛。Demartini等[7]在研究中指出:TRPA1通道参与了眶下神经慢性损伤介导的疼痛,而且TRPA1拮抗剂ADM_12可以消除眶下神经慢性收缩损伤引起的P物质增加。这说明TRPA1可以通过P物质的释放来介导三叉神经产生的疼痛,进而影响眼睛的痛觉反应发生。

    P物质(SP)是快速激肽家族中高度保守的成员,在哺乳动物的组织和体液中广泛分布,参与多种神经元信号通路,介导感觉和情绪反应[8]。SP在神经系统中合成,储存在致密的核心囊泡中,包括储存在三叉神经节中,在接受伤害性刺激后通过快速轴突运输到周围神经末梢[9]。SP能作用于表达NK1受体的细胞上,促进神经源性炎症的发生而引起疼痛[10]。当机体受到伤害性刺激,C纤维和Aδ类纤维会分泌SP以及使SP结合的NK-1受体,导致神经元兴奋性增高[11]。P物质与NK-1受体结合后激活磷酸酯酶Cβ(PLC),并将脂酰肌醇4,5-二磷酸(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰甘油(DAG),IP3激活细胞膜上的钙离子通道后使其释放钙离子,而间接激活蛋白激酶C(PKC),从而降低TRPV1/TRPA1激活阈值,从而引起痛觉过敏反应,也有报道[12]称DAG也可以直接激活PKC而使TRPV1增敏。

2 神经生长因子对TRPV1/TRPA1的影响

神经生长因子(nerve growth factor,NGF)是一种神经营养蛋白,在哺乳动物中还包括脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)、神经营养因子-3(neurotrophic factor 3, NT-3)和神经营养因子-4/5(neurotrophic factor 4/5,NT-4/5),促进周围神经生长、修复。角膜手术后,由于末梢神经损伤,NGF参与了对角膜末梢神经的修复[13]。NGF也是一种重要的疼痛物质,通过与高表达在三叉神经节上的TrkA受体结合后[14],受体二聚化、自磷酸化,并通过对接和磷酸化下游靶点,从而引起损伤部位的伤害性感受器的直接敏化和背根神经节基因表达的改变来改变痛觉,通过增加TRPV1的磷酸化和转运增强传入中枢神经系统的痛觉信号,从而引起痛觉过敏[15]。Diogene等[16]发现NGF参与三叉神经节神经元中TRPA1的功能上调,并在口面部神经损伤和炎症后痛觉过敏的发展中起重要作用。Patil等[17]也指出TRPA1的致敏作用依赖于NGF和TRP的作用。

3 炎症因子对TRPV1/TRPA1的影响

由于手术切口的创伤,随之引起的切口周围炎症反应[18]。炎症反应释放的炎性介质是经典的伤害感受器敏化剂,炎性介质浓度的增加,伤害性感受器的敏感性也会随之增加[19]

    IL-1β是白细胞介素家族的一员,由活化的单核/巨噬细胞产生,在炎症反应和免疫应答反应中具有重要的生物效应。在酵母聚糖诱导痛觉过敏模型中,IL-1β蛋白表达显著增加[20],充分说明IL-1β在痛觉过敏中的重要作用。IL-1β可在角膜末梢神经损伤后,被小胶质细胞和免疫细胞大量释放[21],激活三叉神经节上的TRPV1[22]。TRPV1的激活后可以通过L型电压依赖性钙离子通道(voltage dependent calcium channels,VDCC)来调节Ca2+内流,继而触发神经末梢释放神经肽类和兴奋性氨基酸,最终引起痛觉过敏的形成[22]。同时,IL-1β可以通过作用在DRG的IL-1R1受体上,通过IL-1β受体的信号转导和p38丝裂原活化蛋白激酶的激活,改变抗河豚毒素钠离子电流依赖门控通道(抗TTX钠通道)缓慢失活和增强抗TTX钠通道的持续电流而促进痛觉过敏的发生[23]。Noh等[24]发现:术后的痛觉过敏可能与NLRP3介导的IL-1β的释放作用关系密切,后者作用于C纤维和免疫细胞上的非选择性阳离子通道TRPA1,从而产生痛觉过敏反应。在干眼动物模型中,小胶质细胞NLRP6/ NLRP3、NLRP12及NLRC4等炎性小体活化失衡是眼部炎症的主要通路,促进放大并扭曲传入的疼痛信号,导致对正常无害刺激产生异常性的疼痛反应,且是引起干眼疼痛症状的重要因素[25]

4 围手术期阿片类药物对TRPV1/TRPA1 的影响

随着患者对舒适化需求的增多,需要在镇静或全身麻醉下的手术日趋增加。而在一项眼科术后疼痛调查研究中,全身麻醉是其危险因素之一,提示围手术期阿片类药物使用与眼科术后痛觉过敏关系密切。阿片类镇痛药物是缓解眼科手术期间急性疼痛的主要药物,在发生术后痛觉过敏的患者中,相当比例与围手术期阿片类药物的持续使用有关,也可称为阿片源性痛觉过敏(opioid-induced hyperalgesia,OIH)[26]。阿片药物与手术创伤对痛觉过敏的作用难以隔离,两者相互促进,共同发展为术后痛觉过敏,从而延迟手术后的康复,影响到眼科手术患者的康复。Schmidt等[27]指出:眼科手术患者在接受高剂量的瑞芬太尼输注后,在术后30min会出现显著的机械痛阈降低,说明围手术期阿片类药物使用与眼科术后痛觉过敏关系密切。

    阿片类药物作用的受体是μ-阿片类受体( μ -opioid receptor,MOR),是一种G蛋白偶联受体(G protein-coupled receptor,GPCR)。与其他GPCR一样,MOR的信号转导收G蛋白信号转导调节蛋白偶联受体(Gprotein-coupled receptor kinase,GRK),β-抑制蛋白(β-arrestin)等影响。G蛋白信号通路通过MOR偶联Gαi亚基,抑制环磷酸腺苷(cyclic adenosine monophosphate,cAMP)的产生,从而发挥镇痛作用。而GRK通过MOR受体C末端尾部的磷酸化促进β-arrestin与MOR的结合,这阻止了后者与G蛋白异源三聚体的关联,破坏G蛋白介导的信号转导,抑制G蛋白信号介导的镇痛,并产生阿片类几种主要的不良反应[28]。TRPV1可以抑制GRK引起的磷酸化,通过TRPV1的钙流入,导致G蛋白偶联受体激酶5(GRK5)远离质膜的钙/钙调蛋白依赖性易位,从而阻断其磷酸化MOR的能力,但同时不影响G蛋白信号转导[29]。经典的GPCR下游分子PLC、DAG、IP3都参与了阿片类药物的镇痛作用,有研究[30]发现:给小鼠鞘内注射TRPA1激动剂肉桂醛在诱发机械痛觉过敏后,再抑制PLC,可以显著降低肉桂醛引起的机械性痛觉过敏。这表明TRPA1可以通过调节经典的GPCR下游分子PLC参与GPCR受体的伤害性传递。

5 肥大细胞激活对TRPV1/TRPA1的影响

在痛觉过敏进程中,肥大细胞也发挥了重要作用。如肥大细胞被激活并导致内脏神经高敏感性,并且是内脏痛的主要诱因[31-32]。肥大细胞能促进角膜新生血管的产生[33],且肥大细胞释放组胺在过敏性结膜炎及瘙痒进程中发挥重要作用[34],与激活TRPV/TRPA1有关[35],说明肥大细胞激活可能在眼科术后痛觉过敏中起关键作用。

    肥大细胞特异性受体MrgprX2是一种新型的Gαq偶联阿片样受体[36],提示肥大细胞存在被阿片类药物激活可能性。蛋白酶激活受体2(protease activated receptor 2,PAR-2)可以被肥大细胞释放的胰蛋白酶激活,参与躯体和内脏疼痛信号转导。研究[37]发现:足底注射PAR-2拮抗剂可以引起缓解术后早期疼痛,而注射PAR-2激动剂会引起术后疼痛的加剧。PAR-2在三叉神经节中大量表达, 激活后的PAR-2通过激活下游PLC,将膜上的PIP2分解为DAG和IP3,IP3动员细胞内钙库释放钙离子到胞质中与钙调蛋白结合,而DAG在钙离子的协同下激活PKC?,PKC?活化促进TRPV1磷酸化来增强门控通道[38]。Kopruszinski等[39]指出:给大鼠使用PAR-2抑制剂PAR650097可以有效防止潜在致敏动物中由TRPA1激动剂引起的皮肤异常性疼痛,TRPA1可以通过三叉神经上的PAR-2介导疼痛的发生;此外,PAR-2诱导TRPV1的致敏也可导致脊髓中神经肽释放增强,从而加剧热痛。

6 TRPV1/TRPA1的应用对眼科术后痛觉过敏现象的意义

在目前去阿片化模式镇痛中,瞬时受体电位(transient receptor potential,TRP)通道的在病理生理条件下是重要的参与者得到了越来越多的关注。无论是TRP激动剂还是TRP拮抗剂都能产生镇痛效果。但在产生镇痛效果的同时,它们产生的毒副作用仍然是阻碍它们成为临床镇痛用药的主要原因。

6.1 TRPV1激动剂镇痛模式

1)辣椒素是TRPV1的经典激动剂,在过去常会使用含有辣椒素的酒精或者香口胶治疗牙痛。辣椒素的激活与镇痛之间保持一种平衡。当使用足够高浓度的辣椒素会引起感觉神经元的脱敏产生镇痛作用。但是,这种镇痛方式也存在其弊端,当辣椒素浓度未达到脱敏浓度时,会引起患者的疼痛,而且会有潜在的神经毒副作用。2)树脂胶毒素是目前已知的最强大的TRPV1激动剂,它能刺激TRPV1诱导极长时间的钙内流,从而使感觉神经元脱敏。正在进行的临床试验[40]表示通过鞘内注射的方式可以持久缓解晚期癌症患者的疼痛,但结果显示树脂胶毒素会引起表达TRPV1阳性的感觉神经元细胞死亡。

6.2 TRPV1拮抗剂镇痛模式

1)SB-705489(葛兰素史克)是第1个进入临床研究的选择性TRPV1拮抗剂。在单剂量安慰剂对照I期研究[40]中,SB-705489在400mg下提高了正常皮肤热痛阈和减少辣椒素诱发鼻炎症状。目前没有高热或低热不良事件的报道,但在第2期牙痛实验中,SB-705489并没有表现良好的镇痛效果。

6.3 多模态拮抗剂ABT-102

多模态拮抗剂ABT-102是一种多模态的拮抗剂,使用二氧化碳激光对正常和炎症的皮肤诱发疼痛刺激。在这项实验性疼痛研究[41]中,6mg剂量的ABT-102被发现在减轻疼痛方面有效,甚至优于对照组。不幸的是,该化合物显示出与温度相关的毒副作用。TRPV1拮抗剂的主要通过结合TRPV1离子通道,阻止钠离子和钙离子的内流,进而产生镇痛作用。但热副作用一直是阻碍TRPV1拮抗剂被作为临床镇痛的主要原因。

7 结语

我们对目前TRP在临床上的治疗研究进行了回顾,靶向TRP受体通道可以降低疼痛的反应,且被证明是一种很有前途的潜在策略。但无论激动剂还是拮抗剂仍存在明显的毒副作用。因此,需要开发新的辣椒素衍生激动剂,或其他特异性拮抗剂,为眼科手术后的阿片源性痛觉过敏提供更好治疗窗口。未来仍需进一步深入探讨TRPV1/TRPA1伤害性感受器在眼科术后痛觉过敏中的作用机制,从而为临床痛觉过敏的防治提供新的作用靶点。

开放获取声明

本文适用于知识共享许可协议 (Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/
1、Belmonte C, Nichols JJ, Cox SM, et al. TFOS DEWS II pain and sensation report[ J]. Ocul Surf, 2017, 15(3): 404-437.Belmonte C, Nichols JJ, Cox SM, et al. TFOS DEWS II pain and sensation report[ J]. Ocul Surf, 2017, 15(3): 404-437.
2、Levitt AE, Galor A, Small L, et al. Pain sensitivity and autonomic nervous system parameters as predictors of dry eye symptoms after LASIK[ J]. Ocul Surf, 2021, 19: 275-281.Levitt AE, Galor A, Small L, et al. Pain sensitivity and autonomic nervous system parameters as predictors of dry eye symptoms after LASIK[ J]. Ocul Surf, 2021, 19: 275-281.
3、卜凡洁, 张彦青, 解军波. TRPA1离子通道及其功能研究进展[ J].中国现代应用药学, 2021, 38(13): 1618-1626.
BU Fanjie, ZHANG Yanqing, XIE Junbo. Research progress of TRPA 1 ion channel and its function[ J]. Chinese Journal of Modern Applied Pharmacy, 2021, 38(13): 1618-1626.
卜凡洁, 张彦青, 解军波. TRPA1离子通道及其功能研究进展[ J].中国现代应用药学, 2021, 38(13): 1618-1626.
BU Fanjie, ZHANG Yanqing, XIE Junbo. Research progress of TRPA 1 ion channel and its function[ J]. Chinese Journal of Modern Applied Pharmacy, 2021, 38(13): 1618-1626.
4、Yuan JH, Schulman BR, Effraim PR, et al. Genomic analysis of 21 patients with corneal neuralgia after refractive surgery[ J]. Pain Rep,2020, 5(4): e826.Yuan JH, Schulman BR, Effraim PR, et al. Genomic analysis of 21 patients with corneal neuralgia after refractive surgery[ J]. Pain Rep,2020, 5(4): e826.
5、Horváth á, Tékus V, Boros M, et al. Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice[ J]. Arthritis Res Ther, 2016, 18: 6.Horváth á, Tékus V, Boros M, et al. Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice[ J]. Arthritis Res Ther, 2016, 18: 6.
6、Li F, Yang W, Jiang H, et al. TRPV1 activity and substance P release are required for corneal cold nociception[ J]. Nat Commun, 2019,10(1): 5678.Li F, Yang W, Jiang H, et al. TRPV1 activity and substance P release are required for corneal cold nociception[ J]. Nat Commun, 2019,10(1): 5678.
7、Demartini C, Greco R, Zanaboni AM, et al. Antagonism of transient receptor potential ankyrin type-1 channels as a potential target for the treatment of trigeminal neuropathic pain: study in an animal model[ J]. Int J Mol Sci, 2018, 19(11): 3320.Demartini C, Greco R, Zanaboni AM, et al. Antagonism of transient receptor potential ankyrin type-1 channels as a potential target for the treatment of trigeminal neuropathic pain: study in an animal model[ J]. Int J Mol Sci, 2018, 19(11): 3320.
8、Steinhoff MS, von Mentzer B, Geppetti P, et al. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease[ J]. Physiol Rev, 2014, 94(1): 265-301.Steinhoff MS, von Mentzer B, Geppetti P, et al. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease[ J]. Physiol Rev, 2014, 94(1): 265-301.
9、Zieglg?nsberger W. Substance P and pain chronicity[ J]. Cell Tissue Res, 2019, 375(1): 227-241.Zieglg?nsberger W. Substance P and pain chronicity[ J]. Cell Tissue Res, 2019, 375(1): 227-241.
10、 Graefe SB, Mohiuddin SS. Biochemistry, Substance P[M]. Treasure Island (FL): StatPearls Publishing, 2022. Graefe SB, Mohiuddin SS. Biochemistry, Substance P[M]. Treasure Island (FL): StatPearls Publishing, 2022.
11、Bignami F, Rama P, Ferrari G. Substance P and its inhibition in ocular inflammation[ J]. Curr Drug Targets, 2016, 17(11): 1265-1274.Bignami F, Rama P, Ferrari G. Substance P and its inhibition in ocular inflammation[ J]. Curr Drug Targets, 2016, 17(11): 1265-1274.
12、Liu L, Yudin Y, Rohacs T. Diacylglycerol kinases regulate TRPV1 channel activity[ J]. J Biol Chem, 2020, 295(24): 8174-8185.Liu L, Yudin Y, Rohacs T. Diacylglycerol kinases regulate TRPV1 channel activity[ J]. J Biol Chem, 2020, 295(24): 8174-8185.
13、Rocco ML, Soligo M, Manni L, et al. Nerve growth factor: early studies and recent clinical trials[ J]. Curr Neuropharmacol, 2018, 16(10):1455-1465.Rocco ML, Soligo M, Manni L, et al. Nerve growth factor: early studies and recent clinical trials[ J]. Curr Neuropharmacol, 2018, 16(10):1455-1465.
14、Barker PA, Mantyh P, Arendt-Nielsen L, et al. Nerve growth factor signaling and its contribution to pain[ J]. J Pain Res, 2020, 13:1223-1241.Barker PA, Mantyh P, Arendt-Nielsen L, et al. Nerve growth factor signaling and its contribution to pain[ J]. J Pain Res, 2020, 13:1223-1241.
15、Chang CH, Chang YS, Hsieh YL. Transient receptor potential vanilloid subtype 1 depletion mediates mechanical allodynia through cellular signal alterations in small-fiber neuropathy[ J]. Pain Rep,2021, 6(1): e922.Chang CH, Chang YS, Hsieh YL. Transient receptor potential vanilloid subtype 1 depletion mediates mechanical allodynia through cellular signal alterations in small-fiber neuropathy[ J]. Pain Rep,2021, 6(1): e922.
16、Diogenes A, Akopian AN, Hargreaves KM. NGF up-regulates TRPA1: implications for orofacial pain[ J]. J Dent Res, 2007, 86(6): 550-555.Diogenes A, Akopian AN, Hargreaves KM. NGF up-regulates TRPA1: implications for orofacial pain[ J]. J Dent Res, 2007, 86(6): 550-555.
17、Patil MJ, Salas M, Bialuhin S, et al. Sensitization of small-diameter sensory neurons is controlled by TRPV1 and TRPA1 association[ J]. FASEB J, 2020, 34(1): 287-302.Patil MJ, Salas M, Bialuhin S, et al. Sensitization of small-diameter sensory neurons is controlled by TRPV1 and TRPA1 association[ J]. FASEB J, 2020, 34(1): 287-302.
18、Lee A, Blair HA. Dexamethasone intracanalicular insert: a review in treating post-surgical ocular pain and inflammation[ J]. Drugs, 2020,80(11): 1101-1108.Lee A, Blair HA. Dexamethasone intracanalicular insert: a review in treating post-surgical ocular pain and inflammation[ J]. Drugs, 2020,80(11): 1101-1108.
19、Schneider AH, Machado CC, Veras FP, et al. Neutrophil extracellular traps mediate joint hyperalgesia induced by immune inflammation[ J].Rheumatology (Oxford), 2021, 60(7): 3461-3473.Schneider AH, Machado CC, Veras FP, et al. Neutrophil extracellular traps mediate joint hyperalgesia induced by immune inflammation[ J].Rheumatology (Oxford), 2021, 60(7): 3461-3473.
20、 Kodji X, Kee Z, McKenna R, et al. Evidence that a TRPA1-mediated murine model of temporomandibular joint pain involves NLRP3 inflammasome activation[ J]. Pharmaceuticals (Basel), 2021,14(11): 1073. Kodji X, Kee Z, McKenna R, et al. Evidence that a TRPA1-mediated murine model of temporomandibular joint pain involves NLRP3 inflammasome activation[ J]. Pharmaceuticals (Basel), 2021,14(11): 1073.
21、Yi MH, Liu YU, Umpierre AD, et al. Optogenetic activation of spinal microglia triggers chronic pain in mice[ J]. PLoS Biol, 2021, 19(3): e3001154.Yi MH, Liu YU, Umpierre AD, et al. Optogenetic activation of spinal microglia triggers chronic pain in mice[ J]. PLoS Biol, 2021, 19(3): e3001154.
22、Kanno K, Shimizu K, Shinoda M, et al. Role of macrophage-mediated Toll-like receptor 4-interleukin-1R signaling in ectopic tongue pain associated with tooth pulp inflammation[ J]. J Neuroinflammation,2020, 17(1): 312.Kanno K, Shimizu K, Shinoda M, et al. Role of macrophage-mediated Toll-like receptor 4-interleukin-1R signaling in ectopic tongue pain associated with tooth pulp inflammation[ J]. J Neuroinflammation,2020, 17(1): 312.
23、李秋月, 许海玉, 杨洪军. 促炎因子TNF-α, IL-1β, IL-6在神经病理性疼痛中的研究进展[ J]. 中国中药杂志, 2017, 42(19):3709-3712. LI Qiuyue, XU Haiyu, YANG Hongjun. Research progress of pro- inflammatory factors TNF-α, IL-1β, IL-6 in neuropathic pain[ J]. China Journal of Chinese Materia Medica, 2017, 42(19): 3709-3712.李秋月, 许海玉, 杨洪军. 促炎因子TNF-α, IL-1β, IL-6在神经病理性疼痛中的研究进展[ J]. 中国中药杂志, 2017, 42(19):3709-3712. LI Qiuyue, XU Haiyu, YANG Hongjun. Research progress of pro- inflammatory factors TNF-α, IL-1β, IL-6 in neuropathic pain[ J]. China Journal of Chinese Materia Medica, 2017, 42(19): 3709-3712.
24、Noh MC, Stemkowski PL, Smith PA. Long-term actions of interleukin- 1β on K+, Na+ and Ca2+ channel currents in small, IB4-positive dorsal root ganglion neurons; possible relevance to the etiology of neuropathic pain[ J]. J Neuroimmunol, 2019, 332: 198-211.Noh MC, Stemkowski PL, Smith PA. Long-term actions of interleukin- 1β on K+, Na+ and Ca2+ channel currents in small, IB4-positive dorsal root ganglion neurons; possible relevance to the etiology of neuropathic pain[ J]. J Neuroimmunol, 2019, 332: 198-211.
25、Chen H, Gan X, Li Y, et al. NLRP12- and NLRC4-mediated corneal epithelial pyroptosis is driven by GSDMD cleavage accompanied by IL-33 processing in dry eye[ J]. Ocul Surf, 2020, 18(4): 783-794.Chen H, Gan X, Li Y, et al. NLRP12- and NLRC4-mediated corneal epithelial pyroptosis is driven by GSDMD cleavage accompanied by IL-33 processing in dry eye[ J]. Ocul Surf, 2020, 18(4): 783-794.
26、 Mercadante S, Arcuri E, Santoni A. Opioid-Induced Tolerance and Hyperalgesia[ J]. CNS Drugs, 2019, 33(10): 943-955. Mercadante S, Arcuri E, Santoni A. Opioid-Induced Tolerance and Hyperalgesia[ J]. CNS Drugs, 2019, 33(10): 943-955.
27、Schmidt S, Bethge C, F?rster MH, et al. Enhanced postoperative sensitivity to painful pressure stimulation after intraoperative high dose remifentanil in patients without significant surgical site pain[ J]. Clin J Pain, 2007, 23(7): 605-611.Schmidt S, Bethge C, F?rster MH, et al. Enhanced postoperative sensitivity to painful pressure stimulation after intraoperative high dose remifentanil in patients without significant surgical site pain[ J]. Clin J Pain, 2007, 23(7): 605-611.
28、聂登云, 吕志刚. 调节阿片受体MOR胞内信号转导的分子机制研究进展[ J]. 中国疼痛医学杂志, 2019, 25(10): 725-731.
NIE Dengyun, Lü Zhigang. Research progress in the molecular mechanism regulating the intracellular signal transduction of the opioid receptor MOR[ J]. Chinese Journal of Pain Medicine, 2019, 25(10):725-731.
聂登云, 吕志刚. 调节阿片受体MOR胞内信号转导的分子机制研究进展[ J]. 中国疼痛医学杂志, 2019, 25(10): 725-731.
NIE Dengyun, Lü Zhigang. Research progress in the molecular mechanism regulating the intracellular signal transduction of the opioid receptor MOR[ J]. Chinese Journal of Pain Medicine, 2019, 25(10):725-731.
29、Scherer PC, Zaccor NW, Neumann NM, et al. TRPV1 is a physiological regulator of μ-opioid receptors[ J]. Proc Natl Acad Sci U S A, 2017,114(51): 13561-13566.Scherer PC, Zaccor NW, Neumann NM, et al. TRPV1 is a physiological regulator of μ-opioid receptors[ J]. Proc Natl Acad Sci U S A, 2017,114(51): 13561-13566.
30、 Meotti FC, Figueiredo CP, Manjavachi M, et al. The transient receptor potential ankyrin-1 mediates mechanical hyperalgesia induced by the activation of B1 receptor in mice[ J]. Biochem Pharmacol, 2017, 125:75-83. Meotti FC, Figueiredo CP, Manjavachi M, et al. The transient receptor potential ankyrin-1 mediates mechanical hyperalgesia induced by the activation of B1 receptor in mice[ J]. Biochem Pharmacol, 2017, 125:75-83.
31、Grabauskas G, Wu X, Gao J, et al. Prostaglandin E2, produced by mast cells in colon tissues from patients with irritable bowel syndrome, contributes to visceral hypersensitivity in mice[ J]. Gastroenterology,2020, 158(8): 2195-2207.e6.Grabauskas G, Wu X, Gao J, et al. Prostaglandin E2, produced by mast cells in colon tissues from patients with irritable bowel syndrome, contributes to visceral hypersensitivity in mice[ J]. Gastroenterology,2020, 158(8): 2195-2207.e6.
32、Guilarte M, Vicario M, Martínez C, et al. Peripheral corticotropin-releasing factor triggers jejunal mast cell activation and abdominal pain in patients with diarrhea-predominant irritable bowel syndrome[ J].Am J Gastroenterol, 2020, 115(12): 2047-2059.Guilarte M, Vicario M, Martínez C, et al. Peripheral corticotropin-releasing factor triggers jejunal mast cell activation and abdominal pain in patients with diarrhea-predominant irritable bowel syndrome[ J].Am J Gastroenterol, 2020, 115(12): 2047-2059.
33、Cho W, Mittal SK, Elbasiony E, et al. Spatial distribution of mast cells regulates asymmetrical angiogenesis at the ocular surface[ J]. Am J Pathol, 2021, 191(6): 1108-1117.Cho W, Mittal SK, Elbasiony E, et al. Spatial distribution of mast cells regulates asymmetrical angiogenesis at the ocular surface[ J]. Am J Pathol, 2021, 191(6): 1108-1117.
34、Bielory L. Allergic inflammation of the anterior surface of the eye[ J].Allergy Asthma Proc, 2020, 41(6): 449-453.Bielory L. Allergic inflammation of the anterior surface of the eye[ J].Allergy Asthma Proc, 2020, 41(6): 449-453.
35、Tsagareli MG, Nozadze I, Tsiklauri N, et al. Thermal hyperalgesia and mechanical allodynia elicited by histamine and non-histaminergic itch mediators: respective involvement of TRPV1 and TRPA1[ J]. Neuroscience, 2020, 449: 35-45.Tsagareli MG, Nozadze I, Tsiklauri N, et al. Thermal hyperalgesia and mechanical allodynia elicited by histamine and non-histaminergic itch mediators: respective involvement of TRPV1 and TRPA1[ J]. Neuroscience, 2020, 449: 35-45.
36、Lansu K, Karpiak J, Liu J, et al. In silico design of novel probes for the atypical opioid receptor MRGPRX2[ J]. Nat Chem Biol, 2017, 13(5):529-536.Lansu K, Karpiak J, Liu J, et al. In silico design of novel probes for the atypical opioid receptor MRGPRX2[ J]. Nat Chem Biol, 2017, 13(5):529-536.
37、Kido K, Katagiri N, Kawana H, et al. Nociceptive sensitization by activation of protease-activated receptor 2 in a rat model of incisional pain[ J]. Brain Sci, 2021, 11(2): 144.Kido K, Katagiri N, Kawana H, et al. Nociceptive sensitization by activation of protease-activated receptor 2 in a rat model of incisional pain[ J]. Brain Sci, 2021, 11(2): 144.
38、Mrozkova P, Palecek J, Spicarova D. The role of protease-activated receptor type 2 in nociceptive signaling and pain[ J]. Physiol Res, 2016,65(3): 357-367.Mrozkova P, Palecek J, Spicarova D. The role of protease-activated receptor type 2 in nociceptive signaling and pain[ J]. Physiol Res, 2016,65(3): 357-367.
39、Kopruszinski CM, Thornton P, Arnold J, et al. Characterization and preclinical evaluation of a protease activated receptor 2 (PAR2) monoclonal antibody as a preventive therapy for migraine[ J]. Cephalalgia, 2020, 40(14): 1535-1550.Kopruszinski CM, Thornton P, Arnold J, et al. Characterization and preclinical evaluation of a protease activated receptor 2 (PAR2) monoclonal antibody as a preventive therapy for migraine[ J]. Cephalalgia, 2020, 40(14): 1535-1550.
40、Neubert JK, Mannes AJ, Karai LJ, et al. Perineural resiniferatoxin selectively inhibits inflammatory hyperalgesia[ J]. Mol Pain, 2008, 4: 3.Neubert JK, Mannes AJ, Karai LJ, et al. Perineural resiniferatoxin selectively inhibits inflammatory hyperalgesia[ J]. Mol Pain, 2008, 4: 3.
41、Surowy CS, Neelands TR, Bianchi BR, et al. (R)-(5-tert-butyl-2,3- dihydro-1H-inden-1-yl)-3-(1H-indazol-4-yl)-urea (ABT-102) blocks polymodal activation of transient receptor potential vanilloid 1 receptors in vitro and heat-evoked firing of spinal dorsal horn neurons in vivo[ J]. J Pharmacol Exp Ther, 2008, 326(3): 879-888.Surowy CS, Neelands TR, Bianchi BR, et al. (R)-(5-tert-butyl-2,3- dihydro-1H-inden-1-yl)-3-(1H-indazol-4-yl)-urea (ABT-102) blocks polymodal activation of transient receptor potential vanilloid 1 receptors in vitro and heat-evoked firing of spinal dorsal horn neurons in vivo[ J]. J Pharmacol Exp Ther, 2008, 326(3): 879-888.
1、吴云涛,叶伟娣.学龄期儿童斜视手术后阿片类药物镇痛需求的影响因素分析[J].中国当代医药,2023,30(26):134-137.
1、国家自然科学基金 (8157080247)。This work was supported by the National Natural Science Foundation of China (8157080247)()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录