1、Dibas A, Yorio T. Glucocorticoid therapy and ocular hypertension[ J].
Eur J Pharmacol, 2016, 787: 57-71. DOI: 10.1016/j.ejphar.2016.06.018.Dibas A, Yorio T. Glucocorticoid therapy and ocular hypertension[ J].
Eur J Pharmacol, 2016, 787: 57-71. DOI: 10.1016/j.ejphar.2016.06.018.
2、汪鑫. 糖皮质激素对小梁网功能影响及其调控[D]. 济南: 山东
大学, 2021.
Wang X. The Impact and Regulation of GC on the Function of Small
Beam Mesh [D].Jinan: Shandong University, 2021.汪鑫. 糖皮质激素对小梁网功能影响及其调控[D]. 济南: 山东
大学, 2021.
Wang X. The Impact and Regulation of GC on the Function of Small
Beam Mesh [D].Jinan: Shandong University, 2021.
3、Fini ME, Schwartz SG, Gao X , et al. Steroid-induced ocular
hypertension/glaucoma: focus on pharmacogenomics and implications
for precision medicine[ J]. Prog Retin Eye Res, 2017, 56: 58-83. DOI:
10.1016/j.preteyeres.2016.09.003.Fini ME, Schwartz SG, Gao X , et al. Steroid-induced ocular
hypertension/glaucoma: focus on pharmacogenomics and implications
for precision medicine[ J]. Prog Retin Eye Res, 2017, 56: 58-83. DOI:
10.1016/j.preteyeres.2016.09.003.
4、Roberti G, Oddone F, Agnifili L, et al. Steroid-induced glaucoma:
Epidemiology, pathophysiology, and clinical management[ J]. Surv
Ophthalmol, 2020, 65(4): 458-472. DOI: 10.1016/j.survophthal.
2020.01.002.Roberti G, Oddone F, Agnifili L, et al. Steroid-induced glaucoma:
Epidemiology, pathophysiology, and clinical management[ J]. Surv
Ophthalmol, 2020, 65(4): 458-472. DOI: 10.1016/j.survophthal.
2020.01.002.
5、Clark AF, Wordinger RJ. The role of steroids in outflow resistance[ J].
Exp Eye Res, 2009, 88(4): 752-759. DOI: 10.1016/j.exer.2008.10.004.Clark AF, Wordinger RJ. The role of steroids in outflow resistance[ J].
Exp Eye Res, 2009, 88(4): 752-759. DOI: 10.1016/j.exer.2008.10.004.
6、Clark AF, Wilson K, de Kater AW, et al. Dexamethasone-induced ocular
hypertension in perfusion-cultured human eyes[ J]. Invest Ophthalmol
Vis Sci, 1995, 36(2): 478-489.Clark AF, Wilson K, de Kater AW, et al. Dexamethasone-induced ocular
hypertension in perfusion-cultured human eyes[ J]. Invest Ophthalmol
Vis Sci, 1995, 36(2): 478-489.
7、Wordinger RJ, Clark AF. Effects of glucocorticoids on the trabecular
meshwork: towards a better understanding of glaucoma[ J]. Prog Retin
Eye Res, 1999, 18(5): 629-667. DOI: 10.1016/s1350-9462(98)00035-
4.Wordinger RJ, Clark AF. Effects of glucocorticoids on the trabecular
meshwork: towards a better understanding of glaucoma[ J]. Prog Retin
Eye Res, 1999, 18(5): 629-667. DOI: 10.1016/s1350-9462(98)00035-
4.
8、Kambe T, Tsuji T, Hashimoto A, et al. The physiological, biochemical,
and molecular roles of zinc transporters in zinc homeostasis and
metabolism[ J]. Physiol Rev, 2015, 95(3): 749-784. DOI: 10.1152/
physrev.00035.2014.Kambe T, Tsuji T, Hashimoto A, et al. The physiological, biochemical,
and molecular roles of zinc transporters in zinc homeostasis and
metabolism[ J]. Physiol Rev, 2015, 95(3): 749-784. DOI: 10.1152/
physrev.00035.2014.
9、Andreini C, Banci L, Bertini I, et al. Counting the zinc-proteins
encoded in the human genome[ J]. J Proteome Res, 2006, 5(1): 196-
201. DOI: 10.1021/pr050361j.Andreini C, Banci L, Bertini I, et al. Counting the zinc-proteins
encoded in the human genome[ J]. J Proteome Res, 2006, 5(1): 196-
201. DOI: 10.1021/pr050361j.
10、Maret W. Biomedical and Health Research.[M/OL]. https://ebooks.
iospress.nl/doi/10.3233/978-1-60750-816-8-45.Maret W. Biomedical and Health Research.[M/OL]. https://ebooks.
iospress.nl/doi/10.3233/978-1-60750-816-8-45.
11、Weiss A, Murdoch CC, Edmonds KA, et al. Zn-regulated GTPase
metalloprotein activator 1 modulates vertebrate zinc homeostasis[ J].
Cell, 2022, 185(12): 2148-2163.e27. DOI: 10.1016/j.cell.2022.04.011.Weiss A, Murdoch CC, Edmonds KA, et al. Zn-regulated GTPase
metalloprotein activator 1 modulates vertebrate zinc homeostasis[ J].
Cell, 2022, 185(12): 2148-2163.e27. DOI: 10.1016/j.cell.2022.04.011.
12、Chen YY, O'Halloran TV. A zinc chaperone mediates the flow of an
inorganic commodity to an important cellular client[ J]. Cell, 2022,
185(12): 2013-2015. DOI: 10.1016/j.cell.2022.05.012.Chen YY, O'Halloran TV. A zinc chaperone mediates the flow of an
inorganic commodity to an important cellular client[ J]. Cell, 2022,
185(12): 2013-2015. DOI: 10.1016/j.cell.2022.05.012.
13、Wessels I, Fischer HJ, Rink L. Dietary and physiological effects of zinc
on the immune system[ J]. Annu Rev Nutr, 2021, 41: 133-175. DOI:
10.1146/annurev-nutr-122019-120635.Wessels I, Fischer HJ, Rink L. Dietary and physiological effects of zinc
on the immune system[ J]. Annu Rev Nutr, 2021, 41: 133-175. DOI:
10.1146/annurev-nutr-122019-120635.
14、Kr%C4%99%C5%BCel%20A%2C%20Maret%20W.%20The%20functions%20of%20metamorphic%20metallothioneins%20in%20%0Azinc%20and%20copper%20metabolism%5B%20J%5D.%20Int%20J%20Mol%20Sci%2C%202017%2C%2018(6)%3A%201237.%20DOI%3A%2010.3390%2Fijms18061237.Kr%C4%99%C5%BCel%20A%2C%20Maret%20W.%20The%20functions%20of%20metamorphic%20metallothioneins%20in%20%0Azinc%20and%20copper%20metabolism%5B%20J%5D.%20Int%20J%20Mol%20Sci%2C%202017%2C%2018(6)%3A%201237.%20DOI%3A%2010.3390%2Fijms18061237.
15、Pasquini M, Grosjean N, Hixson KK, et al. Zng1 is a GTP-dependent
zinc transferase needed for activation of methionine aminopeptidase[ J].
Cell Rep, 2022, 39(7): 110834. DOI: 10.1016/j.celrep.2022.110834.Pasquini M, Grosjean N, Hixson KK, et al. Zng1 is a GTP-dependent
zinc transferase needed for activation of methionine aminopeptidase[ J].
Cell Rep, 2022, 39(7): 110834. DOI: 10.1016/j.celrep.2022.110834.
16、Wang Y, Weisenhorn E, MacDiarmid CW, et al. The cellular economy
of the Saccharomyces cerevisiae zinc proteome[ J]. Metallomics, 2018,
10(12): 1755-1776. DOI: 10.1039/c8mt00269j.Wang Y, Weisenhorn E, MacDiarmid CW, et al. The cellular economy
of the Saccharomyces cerevisiae zinc proteome[ J]. Metallomics, 2018,
10(12): 1755-1776. DOI: 10.1039/c8mt00269j.
17、DeToma AS, Dengler-Crish CM, Deb A, et al. Abnormal metal
levels in the primary visual pathway of the DBA/2J mouse model of
glaucoma[ J]. Biometals, 2014, 27(6): 1291-1301. DOI: 10.1007/
s10534-014-9790-z.DeToma AS, Dengler-Crish CM, Deb A, et al. Abnormal metal
levels in the primary visual pathway of the DBA/2J mouse model of
glaucoma[ J]. Biometals, 2014, 27(6): 1291-1301. DOI: 10.1007/
s10534-014-9790-z.
18、Li Y, Andereggen L, Yuki K, et al. Mobile zinc increases rapidly in the
retina after optic nerve injury and regulates ganglion cell survival and
optic nerve regeneration[ J]. Proc Natl Acad Sci U S A, 2017, 114(2):
E209-E218. DOI: 10.1073/pnas.1616811114.Li Y, Andereggen L, Yuki K, et al. Mobile zinc increases rapidly in the
retina after optic nerve injury and regulates ganglion cell survival and
optic nerve regeneration[ J]. Proc Natl Acad Sci U S A, 2017, 114(2):
E209-E218. DOI: 10.1073/pnas.1616811114.
19、Tang J, Liu Z, Han J, et al. Increased mobile zinc regulates retinal
ganglion cell survival via activating mitochondrial OMA1 and
integrated stress response[ J]. Antioxidants, 2022, 11(10): 2001. DOI:
10.3390/antiox11102001.Tang J, Liu Z, Han J, et al. Increased mobile zinc regulates retinal
ganglion cell survival via activating mitochondrial OMA1 and
integrated stress response[ J]. Antioxidants, 2022, 11(10): 2001. DOI:
10.3390/antiox11102001.
20、Sergeeva EG, Rosenberg PA, Benowitz LI. Non-cell-autonomous
regulation of optic nerve regeneration by amacrine cells[ J]. Front Cell
Neurosci, 2021, 15: 666798. DOI: 10.3389/fncel.2021.666798.Sergeeva EG, Rosenberg PA, Benowitz LI. Non-cell-autonomous
regulation of optic nerve regeneration by amacrine cells[ J]. Front Cell
Neurosci, 2021, 15: 666798. DOI: 10.3389/fncel.2021.666798.
21、李杨佳旎. 原发性青光眼房水锌浓度分析及锌离子视神经损伤
作用[D]. 广州: 中山大学, 2019.李杨佳旎. 原发性青光眼房水锌浓度分析及锌离子视神经损伤
作用[D]. 广州: 中山大学, 2019.
22、Liu C, Tang J, Chen Y, et al. Intracellular Zn2+ promotes extracellular
matrix remodeling in dexamethasone-treated trabecular meshwork[ J].
Am J Physiol Cell Physiol, 2024, 326(5): C1293-C1307. DOI: 10.1152/
ajpcell.00725.2023.Liu C, Tang J, Chen Y, et al. Intracellular Zn2+ promotes extracellular
matrix remodeling in dexamethasone-treated trabecular meshwork[ J].
Am J Physiol Cell Physiol, 2024, 326(5): C1293-C1307. DOI: 10.1152/
ajpcell.00725.2023.
23、Mullin CH, Frings G, Abel J, et al. Specific induction of metallothionein
in hairless mouse skin by zinc and dexamethasone[ J]. J Invest
Dermatol, 1987, 89(2): 164-166. DOI: 10.1111/1523-1747.
ep12470553.Mullin CH, Frings G, Abel J, et al. Specific induction of metallothionein
in hairless mouse skin by zinc and dexamethasone[ J]. J Invest
Dermatol, 1987, 89(2): 164-166. DOI: 10.1111/1523-1747.
ep12470553.
24、Mi y a ha ra T, Ne m o to M , Tu k a m o to S, e t a l . In d u c t i o n o f
metallothionein and stimulation of calcification by dexamethasone in
cultured clonal osteogenic cells, MC3T3-E1[ J]. Toxicol Lett, 1991,
57(3): 257-267. DOI: 10.1016/0378-4274(91)90200-p.Mi y a ha ra T, Ne m o to M , Tu k a m o to S, e t a l . In d u c t i o n o f
metallothionein and stimulation of calcification by dexamethasone in
cultured clonal osteogenic cells, MC3T3-E1[ J]. Toxicol Lett, 1991,
57(3): 257-267. DOI: 10.1016/0378-4274(91)90200-p.
25、Oliver PD, Tate DJ Jr, Newsome DA. Metallothionein in human retinal
pigment epithelial cells: expression, induction and zinc uptake[ J]. Curr
Eye Res, 1992, 11(2): 183-188. DOI: 10.3109/02713689209000069.Oliver PD, Tate DJ Jr, Newsome DA. Metallothionein in human retinal
pigment epithelial cells: expression, induction and zinc uptake[ J]. Curr
Eye Res, 1992, 11(2): 183-188. DOI: 10.3109/02713689209000069.
26、Rodríguez-Menéndez S, Fernández B, García M, et al. Quantitative
study of zinc and metallothioneins in the human retina and RPE cells
by mass spectrometry-based methodologies[ J]. Talanta, 2018, 178:
222-230. DOI: 10.1016/j.talanta.2017.09.024.Rodríguez-Menéndez S, Fernández B, García M, et al. Quantitative
study of zinc and metallothioneins in the human retina and RPE cells
by mass spectrometry-based methodologies[ J]. Talanta, 2018, 178:
222-230. DOI: 10.1016/j.talanta.2017.09.024.
27、Suzuki M, Sato Y, Tamura K , et al. R apid intracellular Zn2+
dysregulation via membrane corticosteroid receptor activation affects in vivo CA1 LTP[ J]. Mol Neurobiol, 2019, 56(2): 1356-1365. DOI:
10.1007/s12035-018-1159-9.Suzuki M, Sato Y, Tamura K , et al. R apid intracellular Zn2+
dysregulation via membrane corticosteroid receptor activation affects in vivo CA1 LTP[ J]. Mol Neurobiol, 2019, 56(2): 1356-1365. DOI:
10.1007/s12035-018-1159-9.
28、Zheng Y, Huang J, Tao L, et al. Corticosterone increases intracellular
Zn(2+) release in hippocampal HT-22 cells[ J]. Neurosci Lett, 2015,
588: 172-177. DOI: 10.1016/j.neulet.2015.01.016.Zheng Y, Huang J, Tao L, et al. Corticosterone increases intracellular
Zn(2+) release in hippocampal HT-22 cells[ J]. Neurosci Lett, 2015,
588: 172-177. DOI: 10.1016/j.neulet.2015.01.016.
29、Takeda A, Tamano H. Insight into cognitive decline from Zn2+
dy namics through ex tracel lular signaling of glutamate and
glucocorticoids[ J]. Arch Biochem Biophys, 2016, 611: 93-99. DOI:
10.1016/j.abb.2016.06.021.Takeda A, Tamano H. Insight into cognitive decline from Zn2+
dy namics through ex tracel lular signaling of glutamate and
glucocorticoids[ J]. Arch Biochem Biophys, 2016, 611: 93-99. DOI:
10.1016/j.abb.2016.06.021.
30、Takeda A, Tamano H. Cognitive decline due to excess synaptic Zn(2+)
signaling in the hippocampus[ J]. Front Aging Neurosci, 2014, 6: 26.
DOI: 10.3389/fnagi.2014.00026.Takeda A, Tamano H. Cognitive decline due to excess synaptic Zn(2+)
signaling in the hippocampus[ J]. Front Aging Neurosci, 2014, 6: 26.
DOI: 10.3389/fnagi.2014.00026.
31、Li D, Wang G, Han D, et al. MP resulting in autophagic cell death of
microglia through zinc changes against spinal cord injury[ J]. Biomed
Res Int, 2016, 2016: 6090316. DOI: 10.1155/2016/6090316.Li D, Wang G, Han D, et al. MP resulting in autophagic cell death of
microglia through zinc changes against spinal cord injury[ J]. Biomed
Res Int, 2016, 2016: 6090316. DOI: 10.1155/2016/6090316.
32、Hua C, Geng Y, Chen Q, et al. Dexamethasone impacts zinc levels in
goats by regulating zinc transportation in the colon and the metabolism
in the liver[ J]. Anim Sci J, 2018, 89(9): 1296-1301. DOI: 10.1111/
asj.13059.Hua C, Geng Y, Chen Q, et al. Dexamethasone impacts zinc levels in
goats by regulating zinc transportation in the colon and the metabolism
in the liver[ J]. Anim Sci J, 2018, 89(9): 1296-1301. DOI: 10.1111/
asj.13059.
33、Han Y, Sanford L, Simpson DM, et al. Remodeling of Zn2+ homeostasis
upon differentiation of mammary epithelial cells[ J]. Metallomics, 2020,
12(3): 346-362. DOI: 10.1039/c9mt00301k.Han Y, Sanford L, Simpson DM, et al. Remodeling of Zn2+ homeostasis
upon differentiation of mammary epithelial cells[ J]. Metallomics, 2020,
12(3): 346-362. DOI: 10.1039/c9mt00301k.
34、Tian X, Zheng Y, Li Y, et al. Psychological stress induced zinc
accumulation and up-regulation of ZIP14 and metallothionein in rat
liver[ J]. BMC Gastroenterol, 2014, 14: 32. DOI: 10.1186/1471-230X-
14-32.Tian X, Zheng Y, Li Y, et al. Psychological stress induced zinc
accumulation and up-regulation of ZIP14 and metallothionein in rat
liver[ J]. BMC Gastroenterol, 2014, 14: 32. DOI: 10.1186/1471-230X-
14-32.
35、Liu Y, Yan F, Yang WL, et al. Effects of zinc transporter on differentiation
of bone marrow mesenchymal stem cells to osteoblasts[ J]. Biol Trace
Elem Res, 2013, 154(2): 234-243. DOI: 10.1007/s12011-013-9683-y.Liu Y, Yan F, Yang WL, et al. Effects of zinc transporter on differentiation
of bone marrow mesenchymal stem cells to osteoblasts[ J]. Biol Trace
Elem Res, 2013, 154(2): 234-243. DOI: 10.1007/s12011-013-9683-y.
36、Guo L, Lichten LA, Ryu MS, et al. STAT5-glucocorticoid receptor
interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in
pancreatic acinar cells[ J]. Proc Natl Acad Sci U S A, 2010, 107(7):
2818-2823. DOI: 10.1073/pnas.0914941107.Guo L, Lichten LA, Ryu MS, et al. STAT5-glucocorticoid receptor
interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in
pancreatic acinar cells[ J]. Proc Natl Acad Sci U S A, 2010, 107(7):
2818-2823. DOI: 10.1073/pnas.0914941107.
37、Faralli JA, Filla MS, Peters DM. Role of fibronectin in primary
open angle glaucoma[ J]. Cells, 2019, 8(12): 1518. DOI: 10.3390/
cells8121518.Faralli JA, Filla MS, Peters DM. Role of fibronectin in primary
open angle glaucoma[ J]. Cells, 2019, 8(12): 1518. DOI: 10.3390/
cells8121518.
38、Johnson D, Gottanka J, Flügel C, et al. Ultrastructural changes in the
trabecular meshwork of human eyes treated with corticosteroids[ J].
Arch Ophthalmol, 1997, 115(3): 375-383. DOI: 10.1001/
archopht.1997.01100150377011.Johnson D, Gottanka J, Flügel C, et al. Ultrastructural changes in the
trabecular meshwork of human eyes treated with corticosteroids[ J].
Arch Ophthalmol, 1997, 115(3): 375-383. DOI: 10.1001/
archopht.1997.01100150377011.
39、Overby DR, Bertrand J, Tektas OY, et al. Ultrastructural changes
associated with dexamethasone-induced ocular hypertension in
mice[ J]. Invest Ophthalmol Vis Sci, 2014, 55(8): 4922-4933. DOI:
10.1167/iovs.14-14429.Overby DR, Bertrand J, Tektas OY, et al. Ultrastructural changes
associated with dexamethasone-induced ocular hypertension in
mice[ J]. Invest Ophthalmol Vis Sci, 2014, 55(8): 4922-4933. DOI:
10.1167/iovs.14-14429.
40、Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease[ J]. Adv Pharmacol, 2018, 81: 241-330. DOI:
10.1016/bs.apha.2017.08.002.Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease[ J]. Adv Pharmacol, 2018, 81: 241-330. DOI:
10.1016/bs.apha.2017.08.002.
41、Kim MH, Lim SH. Matrix metalloproteinases and glaucoma[ J].
Biomolecules, 2022, 12(10): 1368. DOI: 10.3390/biom12101368.Kim MH, Lim SH. Matrix metalloproteinases and glaucoma[ J].
Biomolecules, 2022, 12(10): 1368. DOI: 10.3390/biom12101368.
42、Keller KE, Acott TS. The juxtacanalicular region of ocular trabecular
meshwork: a tissue with a unique extracellular matrix and specialized
function[ J]. J Ocul Biol, 2013, 1(1): 3.Keller KE, Acott TS. The juxtacanalicular region of ocular trabecular
meshwork: a tissue with a unique extracellular matrix and specialized
function[ J]. J Ocul Biol, 2013, 1(1): 3.
43、O'Callaghan J, Cassidy PS, Humphries P. Open-angle glaucoma:
therapeutically targeting the extracellular matrix of the conventional
outflow pathway[ J]. Expert Opin Ther Targets, 2017, 21(11): 1037-
1050. DOI: 10.1080/14728222.2017.1386174.O'Callaghan J, Cassidy PS, Humphries P. Open-angle glaucoma:
therapeutically targeting the extracellular matrix of the conventional
outflow pathway[ J]. Expert Opin Ther Targets, 2017, 21(11): 1037-
1050. DOI: 10.1080/14728222.2017.1386174.
44、Stamer WD, Clark AF. The many faces of the trabecular meshwork
cell[ J]. Exp Eye Res, 2017, 158: 112-123. DOI: 10.1016/
j.exer.2016.07.009.Stamer WD, Clark AF. The many faces of the trabecular meshwork
cell[ J]. Exp Eye Res, 2017, 158: 112-123. DOI: 10.1016/
j.exer.2016.07.009.
45、De%20Groef%20L%2C%20van%20Hove%20I%2C%20Dekeyster%20E%2C%20et%20al.%20MMPs%20in%20the%20trabecular%20%0Ameshwork%3A%20promising%20targets%20for%20future%20glaucoma%20therapies%3F%5B%20J%5D.%20Invest%20%0AOphthalmol%20Vis%20Sci%2C%202013%2C%2054(12)%3A%207756-7763.%20DOI%3A%2010.1167%2Fiovs.13-%0A13088.De%20Groef%20L%2C%20van%20Hove%20I%2C%20Dekeyster%20E%2C%20et%20al.%20MMPs%20in%20the%20trabecular%20%0Ameshwork%3A%20promising%20targets%20for%20future%20glaucoma%20therapies%3F%5B%20J%5D.%20Invest%20%0AOphthalmol%20Vis%20Sci%2C%202013%2C%2054(12)%3A%207756-7763.%20DOI%3A%2010.1167%2Fiovs.13-%0A13088.
46、Gerometta R, Spiga MG, Borrás T, et al. Treatment of sheep steroidinduced ocular hypertension with a glucocorticoid-inducible MMP1
gene therapy virus[ J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 3042-
3048. DOI: 10.1167/iovs.09-4920.Gerometta R, Spiga MG, Borrás T, et al. Treatment of sheep steroidinduced ocular hypertension with a glucocorticoid-inducible MMP1
gene therapy virus[ J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 3042-
3048. DOI: 10.1167/iovs.09-4920.
47、Kasetti RB, Maddineni P, Kodati B, et al. Astragaloside IV attenuates
ocular hypertension in a mouse model of TGFβ2 induced primary
open angle glaucoma[ J]. Int J Mol Sci, 2021, 22(22): 12508. DOI:
10.3390/ijms222212508.Kasetti RB, Maddineni P, Kodati B, et al. Astragaloside IV attenuates
ocular hypertension in a mouse model of TGFβ2 induced primary
open angle glaucoma[ J]. Int J Mol Sci, 2021, 22(22): 12508. DOI:
10.3390/ijms222212508.
48、Mohd Nasir NA, Agarwal R, Krasilnikova A, et al. Effect of transresveratrol on dexamethasone-induced changes in the expression of
MMPs by human trabecular meshwork cells: involvement of adenosine
A1 receptors and NFkB[ J]. Eur J Pharmacol, 2020, 887: 173431. DOI:
10.1016/j.ejphar.2020.173431.Mohd Nasir NA, Agarwal R, Krasilnikova A, et al. Effect of transresveratrol on dexamethasone-induced changes in the expression of
MMPs by human trabecular meshwork cells: involvement of adenosine
A1 receptors and NFkB[ J]. Eur J Pharmacol, 2020, 887: 173431. DOI:
10.1016/j.ejphar.2020.173431.
49、Morozumi W, Aoshima K, Inagaki S, et al. Piezo 1 is involved in
intraocular pressure regulation[ J]. J Pharmacol Sci, 2021, 147(2): 211-
221. DOI: 10.1016/j.jphs.2021.06.005.Morozumi W, Aoshima K, Inagaki S, et al. Piezo 1 is involved in
intraocular pressure regulation[ J]. J Pharmacol Sci, 2021, 147(2): 211-
221. DOI: 10.1016/j.jphs.2021.06.005.
50、Li G, Torrejon KY, Unser AM, et al. Trabodenoson, an adenosine
mimetic with A1 receptor selectivity lowers intraocular pressure by
increasing conventional outflow facility in mice[ J]. Invest Ophthalmol
Vis Sci, 2018, 59(1): 383-392. DOI: 10.1167/iovs.17-23212.Li G, Torrejon KY, Unser AM, et al. Trabodenoson, an adenosine
mimetic with A1 receptor selectivity lowers intraocular pressure by
increasing conventional outflow facility in mice[ J]. Invest Ophthalmol
Vis Sci, 2018, 59(1): 383-392. DOI: 10.1167/iovs.17-23212.
51、Maddineni P, Kasetti RB, Kodati B, et al. Sodium 4-phenylbutyrate
reduces ocular hypertension by degrading extracellular matrix
deposition via activation of MMP9[ J]. Int J Mol Sci, 2021, 22(18):
10095. DOI: 10.3390/ijms221810095.Maddineni P, Kasetti RB, Kodati B, et al. Sodium 4-phenylbutyrate
reduces ocular hypertension by degrading extracellular matrix
deposition via activation of MMP9[ J]. Int J Mol Sci, 2021, 22(18):
10095. DOI: 10.3390/ijms221810095.
52、Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the
regulation of tissue remodelling[ J]. Nat Rev Mol Cell Biol, 2007, 8(3):
221-233. DOI: 10.1038/nrm2125.Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the
regulation of tissue remodelling[ J]. Nat Rev Mol Cell Biol, 2007, 8(3):
221-233. DOI: 10.1038/nrm2125.
53、Jing M, Chen X, Qiu H, et al. Insights into the immunomodulatory
regulation of matrix metalloproteinase at the maternal-fetal interface
during early pregnancy and pregnancy-related diseases[ J]. Front
Immunol, 2022, 13: 1067661. DOI: 10.3389/fimmu.2022.1067661.Jing M, Chen X, Qiu H, et al. Insights into the immunomodulatory
regulation of matrix metalloproteinase at the maternal-fetal interface
during early pregnancy and pregnancy-related diseases[ J]. Front
Immunol, 2022, 13: 1067661. DOI: 10.3389/fimmu.2022.1067661.
54、Foster AW, Osman D, Robinson NJ. Metal preferences and
metallation[ J]. J Biol Chem, 2014, 289(41): 28095-28103. DOI:
10.1074/jbc.R114.588145.Foster AW, Osman D, Robinson NJ. Metal preferences and
metallation[ J]. J Biol Chem, 2014, 289(41): 28095-28103. DOI:
10.1074/jbc.R114.588145.
55、Liu MJ, Bao S, Gálvez-Peralta M, et al. ZIP8 regulates host defense
through zinc-mediated inhibition of NF-κB[ J]. Cell Rep, 2013, 3(2):
386-400. DOI: 10.1016/j.celrep.2013.01.009.Liu MJ, Bao S, Gálvez-Peralta M, et al. ZIP8 regulates host defense
through zinc-mediated inhibition of NF-κB[ J]. Cell Rep, 2013, 3(2):
386-400. DOI: 10.1016/j.celrep.2013.01.009.
56、Kim JH, Jeon J, Shin M, et al. Regulation of the catabolic cascade in
osteoarthritis by the zinc-ZIP8-MTF1 axis[ J]. Cell, 2014, 156(4): 730-
743. DOI: 10.1016/j.cell.2014.01.007.Kim JH, Jeon J, Shin M, et al. Regulation of the catabolic cascade in
osteoarthritis by the zinc-ZIP8-MTF1 axis[ J]. Cell, 2014, 156(4): 730-
743. DOI: 10.1016/j.cell.2014.01.007.
57、Hatano N, Matsubara M, Suzuki H, et al. HIF-1α dependent
upregulation of ZIP8, ZIP14, and TRPA1 modify intracellular Zn2+
accumulation in inflammatory synoviocytes[ J]. Int J Mol Sci, 2021,
22(12): 6349. DOI: 10.3390/ijms22126349.Hatano N, Matsubara M, Suzuki H, et al. HIF-1α dependent
upregulation of ZIP8, ZIP14, and TRPA1 modify intracellular Zn2+
accumulation in inflammatory synoviocytes[ J]. Int J Mol Sci, 2021,
22(12): 6349. DOI: 10.3390/ijms22126349.
58、Lin W, Li D, Cheng L, et al. Zinc transporter Slc39a8 is essential for
cardiac ventricular compaction[ J]. J Clin Invest, 2018, 128(2): 826-
833. DOI: 10.1172/JCI96993.Lin W, Li D, Cheng L, et al. Zinc transporter Slc39a8 is essential for
cardiac ventricular compaction[ J]. J Clin Invest, 2018, 128(2): 826-
833. DOI: 10.1172/JCI96993.
59、Liang J, Huang G, Liu X, et al. The ZIP8/SIRT1 axis regulates alveolar
progenitor cell renewal in aging and idiopathic pulmonary fibrosis[ J]. J
Clin Invest, 2022, 132(11): e157338. DOI: 10.1172/JCI157338.Liang J, Huang G, Liu X, et al. The ZIP8/SIRT1 axis regulates alveolar
progenitor cell renewal in aging and idiopathic pulmonary fibrosis[ J]. J
Clin Invest, 2022, 132(11): e157338. DOI: 10.1172/JCI157338.
60、Gonzalez-Iglesias H, Alvarez L, García M, et al. Metallothioneins (MTs)
in the human eye: a perspective article on the zinc-MT redox cycle[ J].
Metallomics, 2014, 6(2): 201-208. DOI: 10.1039/c3mt00298e.Gonzalez-Iglesias H, Alvarez L, García M, et al. Metallothioneins (MTs)
in the human eye: a perspective article on the zinc-MT redox cycle[ J].
Metallomics, 2014, 6(2): 201-208. DOI: 10.1039/c3mt00298e.
61、Tang J, Zhuo Y, Li Y. Effects of iron and zinc on mitochondria: potential
mechanisms of glaucomatous injury[ J]. Front Cell Dev Biol, 2021, 9:
720288. DOI: 10.3389/fcell.2021.720288.Tang J, Zhuo Y, Li Y. Effects of iron and zinc on mitochondria: potential
mechanisms of glaucomatous injury[ J]. Front Cell Dev Biol, 2021, 9:
720288. DOI: 10.3389/fcell.2021.720288.
62、Ugarte M, Osborne NN. Recent advances in the understanding of the
role of zinc in ocular tissues[ J]. Metallomics, 2014, 6(2): 189-200.
DOI: 10.1039/c3mt00291h.Ugarte M, Osborne NN. Recent advances in the understanding of the
role of zinc in ocular tissues[ J]. Metallomics, 2014, 6(2): 189-200.
DOI: 10.1039/c3mt00291h.
63、Lieven CJ, Hoegger MJ, Schlieve CR , et al. Retinal ganglion cell
axotomy induces an increase in intracellular superoxide anion[ J]. Invest
Ophthalmol Vis Sci, 2006, 47(4): 1477-1485. DOI: 10.1167/iovs.05-
0921.Lieven CJ, Hoegger MJ, Schlieve CR , et al. Retinal ganglion cell
axotomy induces an increase in intracellular superoxide anion[ J]. Invest
Ophthalmol Vis Sci, 2006, 47(4): 1477-1485. DOI: 10.1167/iovs.05-
0921.
64、Du Y, Cai M, Mu J, et al. Type I collagen-adhesive and ROS-scavenging
nanoreactors enhanced retinal ganglion cell survival in an experimental
optic nerve crush model[ J]. Macromol Rapid Commun, 2023, 44(23):
e2300389. DOI: 10.1002/marc.202300389.Du Y, Cai M, Mu J, et al. Type I collagen-adhesive and ROS-scavenging
nanoreactors enhanced retinal ganglion cell survival in an experimental
optic nerve crush model[ J]. Macromol Rapid Commun, 2023, 44(23):
e2300389. DOI: 10.1002/marc.202300389.
65、Hübner C, Haase H. Interactions of zinc- and redox-signaling
pathways[ J]. Redox Biol, 2021, 41: 101916. DOI: 10.1016/
j.redox.2021.101916.Hübner C, Haase H. Interactions of zinc- and redox-signaling
pathways[ J]. Redox Biol, 2021, 41: 101916. DOI: 10.1016/
j.redox.2021.101916.
66、Wu C, Han J, Wu S, et al. Reduced Zn2+ promotes retinal ganglion cells
survival and optic nerve regeneration after injury through inhibiting autophagy mediated by ROS/Nrf2[ J]. Free Radic Biol Med, 2024, 212:
415-432. DOI: 10.1016/j.freeradbiomed.2023.12.008.Wu C, Han J, Wu S, et al. Reduced Zn2+ promotes retinal ganglion cells
survival and optic nerve regeneration after injury through inhibiting autophagy mediated by ROS/Nrf2[ J]. Free Radic Biol Med, 2024, 212:
415-432. DOI: 10.1016/j.freeradbiomed.2023.12.008.
67、Chidlow G, Wood JPM, Sia PI, et al. Distribution and activity of
mitochondrial proteins in vascular and avascular retinas: implications
for retinal metabolism[ J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 331-
344. DOI: 10.1167/iovs.18-25536.Chidlow G, Wood JPM, Sia PI, et al. Distribution and activity of
mitochondrial proteins in vascular and avascular retinas: implications
for retinal metabolism[ J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 331-
344. DOI: 10.1167/iovs.18-25536.
68、Lin WJ, Kuang HY. Oxidative stress induces autophagy in response to
multiple noxious stimuli in retinal ganglion cells[ J]. Autophagy, 2014,
10(10): 1692-1701. DOI: 10.4161/auto.36076.Lin WJ, Kuang HY. Oxidative stress induces autophagy in response to
multiple noxious stimuli in retinal ganglion cells[ J]. Autophagy, 2014,
10(10): 1692-1701. DOI: 10.4161/auto.36076.
69、Ding WX, Ni HM, Li M, et al. Nix is critical to two distinct phases of
mitophagy, reactive oxygen species-mediated autophagy induction
and Parkin-ubiquitin-p62-mediated mitochondrial priming[ J]. J Biol
Chem, 2010, 285(36): 27879-27890. DOI: 10.1074/jbc.M110.119537.Ding WX, Ni HM, Li M, et al. Nix is critical to two distinct phases of
mitophagy, reactive oxygen species-mediated autophagy induction
and Parkin-ubiquitin-p62-mediated mitochondrial priming[ J]. J Biol
Chem, 2010, 285(36): 27879-27890. DOI: 10.1074/jbc.M110.119537.
70、Xu D, Duan H, Zhang Z, et al. The novel tetramethylpyrazine
bis-nitrone (TN-2) protects against MPTP/MPP+-induced
neurotoxicity via inhibition of mitochondrial-dependent apoptosis[ J].
J Neuroimmune Pharmacol, 2014, 9(2): 245-258. DOI: 10.1007/
s11481-013-9514-0.Xu D, Duan H, Zhang Z, et al. The novel tetramethylpyrazine
bis-nitrone (TN-2) protects against MPTP/MPP+-induced
neurotoxicity via inhibition of mitochondrial-dependent apoptosis[ J].
J Neuroimmune Pharmacol, 2014, 9(2): 245-258. DOI: 10.1007/
s11481-013-9514-0.
71、Sensi SL, Ton-That D, Sullivan PG, et al. Modulation of mitochondrial
function by endogenous Zn2+ pools[ J]. Proc Natl Acad Sci USA, 2003,
100(10): 6157-6162. DOI: 10.1073/pnas.1031598100.Sensi SL, Ton-That D, Sullivan PG, et al. Modulation of mitochondrial
function by endogenous Zn2+ pools[ J]. Proc Natl Acad Sci USA, 2003,
100(10): 6157-6162. DOI: 10.1073/pnas.1031598100.
72、Dineley KE, Richards LL, Votyakova TV, et al. Zinc causes loss of
membrane potential and elevates reactive oxygen species in rat brain
mitochondria[ J]. Mitochondrion, 2005, 5(1): 55-65. DOI: 10.1016/
j.mito.2004.11.001.Dineley KE, Richards LL, Votyakova TV, et al. Zinc causes loss of
membrane potential and elevates reactive oxygen species in rat brain
mitochondria[ J]. Mitochondrion, 2005, 5(1): 55-65. DOI: 10.1016/
j.mito.2004.11.001.
73、Gazaryan IG, Krasinskaya IP, Kristal BS, et al. Zinc irreversibly damages
major enzymes of energy production and antioxidant defense prior to
mitochondrial permeability transition[ J]. J Biol Chem, 2007, 282(33):
24373-24380. DOI: 10.1074/jbc.M611376200.Gazaryan IG, Krasinskaya IP, Kristal BS, et al. Zinc irreversibly damages
major enzymes of energy production and antioxidant defense prior to
mitochondrial permeability transition[ J]. J Biol Chem, 2007, 282(33):
24373-24380. DOI: 10.1074/jbc.M611376200.
74、Jiang D, Sullivan PG, Sensi SL, et al. Zn(2+) induces permeability
transition pore opening and release of pro-apoptotic peptides from
neuronal mitochondria[ J]. J Biol Chem, 2001, 276(50): 47524-47529.
DOI: 10.1074/jbc.M108834200.Jiang D, Sullivan PG, Sensi SL, et al. Zn(2+) induces permeability
transition pore opening and release of pro-apoptotic peptides from
neuronal mitochondria[ J]. J Biol Chem, 2001, 276(50): 47524-47529.
DOI: 10.1074/jbc.M108834200.
75、Kaser M, Kambacheld M, Kisters-Woike B, et al. Oma1, a novel
membrane-bound metallopeptidase in mitochondria with activities
overlapping with the m-AAA protease[ J]. J Biol Chem, 2003, 278(47):
46414-46423. DOI: 10.1074/jbc.M305584200.Kaser M, Kambacheld M, Kisters-Woike B, et al. Oma1, a novel
membrane-bound metallopeptidase in mitochondria with activities
overlapping with the m-AAA protease[ J]. J Biol Chem, 2003, 278(47):
46414-46423. DOI: 10.1074/jbc.M305584200.
76、Szabo G, Mitchell M, McClain CJ, et al. IL-1 receptor antagonist plus
pentoxifylline and zinc for severe alcohol-associated hepatitis[ J].
Hepatology, 2022, 76(4): 1058-1068. DOI: 10.1002/hep.32478.Szabo G, Mitchell M, McClain CJ, et al. IL-1 receptor antagonist plus
pentoxifylline and zinc for severe alcohol-associated hepatitis[ J].
Hepatology, 2022, 76(4): 1058-1068. DOI: 10.1002/hep.32478.
77、Ali M, Aziz T. The combination of zinc and melatonin enhanced
neuroprotection and attenuated neuropathy in oxaliplatin-induced
neurotoxicity[ J]. Drug Des Devel Ther, 2022, 16: 3447-3463. DOI:
10.2147/DDDT.S385914.Ali M, Aziz T. The combination of zinc and melatonin enhanced
neuroprotection and attenuated neuropathy in oxaliplatin-induced
neurotoxicity[ J]. Drug Des Devel Ther, 2022, 16: 3447-3463. DOI:
10.2147/DDDT.S385914.
78、Hennigar SR, Olson CI, Kelley AM, et al. Slc39a4 in the small intestine predicts zinc absorption and utilization: a comprehensive analysis of
zinc transporter expression in response to diets of varied zinc content
in young mice[ J]. J Nutr Biochem, 2022, 101: 108927. DOI: 10.1016/
j.jnutbio.2021.108927.Hennigar SR, Olson CI, Kelley AM, et al. Slc39a4 in the small intestine predicts zinc absorption and utilization: a comprehensive analysis of
zinc transporter expression in response to diets of varied zinc content
in young mice[ J]. J Nutr Biochem, 2022, 101: 108927. DOI: 10.1016/
j.jnutbio.2021.108927.
79、Prasad AS, Beck FW, Bao B, et al. Zinc supplementation decreases
incidence of infections in the elderly: effect of zinc on generation of
cytokines and oxidative stress[ J]. Am J Clin Nutr, 2007, 85(3): 837-
844. DOI: 10.1093/ajcn/85.3.837.Prasad AS, Beck FW, Bao B, et al. Zinc supplementation decreases
incidence of infections in the elderly: effect of zinc on generation of
cytokines and oxidative stress[ J]. Am J Clin Nutr, 2007, 85(3): 837-
844. DOI: 10.1093/ajcn/85.3.837.
80、Lippi SLP, Craven KM, Hernandez CM, et al. Perfusion alters free zinc
levels in the rodent brain[ J]. J Neurosci Methods, 2019, 315: 14-16.
DOI: 10.1016/j.jneumeth.2018.12.018.Lippi SLP, Craven KM, Hernandez CM, et al. Perfusion alters free zinc
levels in the rodent brain[ J]. J Neurosci Methods, 2019, 315: 14-16.
DOI: 10.1016/j.jneumeth.2018.12.018.
81、Young B, Ott L, Kasarskis E, et al. Zinc supplementation is associated
with improved neurologic recovery rate and visceral protein levels of
patients with severe closed head injury[ J]. J Neurotrauma, 1996, 13(1):
25-34. DOI: 10.1089/neu.1996.13.25.Young B, Ott L, Kasarskis E, et al. Zinc supplementation is associated
with improved neurologic recovery rate and visceral protein levels of
patients with severe closed head injury[ J]. J Neurotrauma, 1996, 13(1):
25-34. DOI: 10.1089/neu.1996.13.25.
82、Tseng WC, Reinhart V, Lanz TA, et al. Schizophrenia-associated
SLC39A8 polymorphism is a loss-of-function allele altering glutamate
receptor and innate immune signaling[ J]. Transl Psychiatry, 2021,
11(1): 136. DOI: 10.1038/s41398-021-01262-5.Tseng WC, Reinhart V, Lanz TA, et al. Schizophrenia-associated
SLC39A8 polymorphism is a loss-of-function allele altering glutamate
receptor and innate immune signaling[ J]. Transl Psychiatry, 2021,
11(1): 136. DOI: 10.1038/s41398-021-01262-5.
83、Nyarko-Danquah I, Pajarillo E, Digman A , et al. Manganese
accumulation in the brain via various transporters and its neurotoxicity
mechanisms[ J]. Molecules, 2020, 25(24): 5880. DOI: 10.3390/
molecules25245880.Nyarko-Danquah I, Pajarillo E, Digman A , et al. Manganese
accumulation in the brain via various transporters and its neurotoxicity
mechanisms[ J]. Molecules, 2020, 25(24): 5880. DOI: 10.3390/
molecules25245880.
84、Evans JR, Lawrenson JG. Antioxidant vitamin and mineral supplements
for slowing the progression of age-related macular degeneration[ J].
Cochrane Database Syst Rev, 2017, 7(7): CD000254. DOI:
10.1002/14651858.CD000254.pub4.Evans JR, Lawrenson JG. Antioxidant vitamin and mineral supplements
for slowing the progression of age-related macular degeneration[ J].
Cochrane Database Syst Rev, 2017, 7(7): CD000254. DOI:
10.1002/14651858.CD000254.pub4.
85、Grahn BH, Paterson PG, Gottschall-Pass KT, et al. Zinc and the eye[ J].
J Am Coll Nutr, 2001, 20(2 Suppl): 106-118. DOI: 10.1080/07315724
.2001.10719022.Grahn BH, Paterson PG, Gottschall-Pass KT, et al. Zinc and the eye[ J].
J Am Coll Nutr, 2001, 20(2 Suppl): 106-118. DOI: 10.1080/07315724
.2001.10719022.
86、Peng S, Li JJ, Song W, et al. CRB1-associated retinal degeneration
is dependent on bacterial translocation from the gut[ J]. Cell, 2024,
187(6): 1387-1401.e13. DOI: 10.1016/j.cell.2024.01.040.Peng S, Li JJ, Song W, et al. CRB1-associated retinal degeneration
is dependent on bacterial translocation from the gut[ J]. Cell, 2024,
187(6): 1387-1401.e13. DOI: 10.1016/j.cell.2024.01.040.
87、Wr%C3%B3bel%20A%2C%20Serefko%20A%2C%20Wla%C5%BA%20P%2C%20et%20al.%20The%20effect%20of%20imipramine%2C%20ketamine%2C%20%0Aand%20zinc%20in%20the%20mouse%20model%20of%20depression%5B%20J%5D.%20Metab%20Brain%20Dis%2C%202015%2C%20%0A30(6)%3A%201379-1386.%20DOI%3A%2010.1007%2Fs11011-015-9709-6.Wr%C3%B3bel%20A%2C%20Serefko%20A%2C%20Wla%C5%BA%20P%2C%20et%20al.%20The%20effect%20of%20imipramine%2C%20ketamine%2C%20%0Aand%20zinc%20in%20the%20mouse%20model%20of%20depression%5B%20J%5D.%20Metab%20Brain%20Dis%2C%202015%2C%20%0A30(6)%3A%201379-1386.%20DOI%3A%2010.1007%2Fs11011-015-9709-6.
88、Lin JQ, Tian H, Zhao XG, et al. Zinc provides neuroprotection
by regulating NLRP3 inflammasome through autophagy and
ubiquitination in a spinal contusion injury model[ J]. CNS Neurosci
Ther, 2021, 27(4): 413-425. DOI: 10.1111/cns.13460.Lin JQ, Tian H, Zhao XG, et al. Zinc provides neuroprotection
by regulating NLRP3 inflammasome through autophagy and
ubiquitination in a spinal contusion injury model[ J]. CNS Neurosci
Ther, 2021, 27(4): 413-425. DOI: 10.1111/cns.13460.
89、Li N, Li Y, Duan X. Heat shock protein 72 confers protection in retinal
ganglion cells and lateral geniculate nucleus neurons via blockade of
the SAPK/JNK pathway in a chronic ocular-hypertensive rat model[ J].
Neural Regen Res, 2014, 9(14): 1395-1401. DOI: 10.4103/1673-
5374.137595.Li N, Li Y, Duan X. Heat shock protein 72 confers protection in retinal
ganglion cells and lateral geniculate nucleus neurons via blockade of
the SAPK/JNK pathway in a chronic ocular-hypertensive rat model[ J].
Neural Regen Res, 2014, 9(14): 1395-1401. DOI: 10.4103/1673-
5374.137595.
90、Lee JY, Oh SB, Hwang JJ, et al. Indomethacin preconditioning induces ischemic tolerance by modifying zinc availability in the brain[ J].
Neurobiol Dis, 2015, 81: 186-195. DOI: 10.1016/j.nbd.2014.12.019.Lee JY, Oh SB, Hwang JJ, et al. Indomethacin preconditioning induces ischemic tolerance by modifying zinc availability in the brain[ J].
Neurobiol Dis, 2015, 81: 186-195. DOI: 10.1016/j.nbd.2014.12.019.
91、Liuzzi JP, Guo L, Chang SM, et al. Krüppel-like factor 4 regulates
adaptive expression of the zinc transporter Zip4 in mouse small
intestine[ J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296(3):
G517-G523. DOI: 10.1152/ajpgi.90568.2008.Liuzzi JP, Guo L, Chang SM, et al. Krüppel-like factor 4 regulates
adaptive expression of the zinc transporter Zip4 in mouse small
intestine[ J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296(3):
G517-G523. DOI: 10.1152/ajpgi.90568.2008.
92、Kawahara M, Tanaka KI, Kato-Negishi M. Zinc, carnosine, and
neurodegenerative diseases[ J]. Nutrients, 2018, 10(2): 147. DOI:
10.3390/nu10020147.Kawahara M, Tanaka KI, Kato-Negishi M. Zinc, carnosine, and
neurodegenerative diseases[ J]. Nutrients, 2018, 10(2): 147. DOI:
10.3390/nu10020147.
93、Prasad S, Lall R . Zinc-curcumin based complexes in health
and diseases: an approach in chemopreventive and therapeutic
improvement[ J]. J Trace Elem Med Biol, 2022, 73: 127023. DOI:
10.1016/j.jtemb.2022.127023.Prasad S, Lall R . Zinc-curcumin based complexes in health
and diseases: an approach in chemopreventive and therapeutic
improvement[ J]. J Trace Elem Med Biol, 2022, 73: 127023. DOI:
10.1016/j.jtemb.2022.127023.
94、Lee JM, Zipfel GJ, Park KH, et al. Zinc translocation accelerates
infarction after mild transient focal ischemia[ J]. Neuroscience, 2002,
115(3): 871-878. DOI: 10.1016/s0306-4522(02)00513-4.Lee JM, Zipfel GJ, Park KH, et al. Zinc translocation accelerates
infarction after mild transient focal ischemia[ J]. Neuroscience, 2002,
115(3): 871-878. DOI: 10.1016/s0306-4522(02)00513-4.
95、R ad f o rd R J, L i p pa rd S J. C h e l ato r s f o r i nv e s t i gat i ng z i n c
metalloneurochemistry[ J]. Curr Opin Chem Biol, 2013, 17(2): 129-
136. DOI: 10.1016/j.cbpa.2013.01.009.R ad f o rd R J, L i p pa rd S J. C h e l ato r s f o r i nv e s t i gat i ng z i n c
metalloneurochemistry[ J]. Curr Opin Chem Biol, 2013, 17(2): 129-
136. DOI: 10.1016/j.cbpa.2013.01.009.
96、Zhao Y, Pan R , Li S, et al. Chelating intracellularly accumulated
zinc decreased ischemic brain injury through reducing neuronal
apoptotic death[ J]. Stroke, 2014, 45(4): 1139-1147. DOI: 10.1161/
STROKEAHA.113.004296.Zhao Y, Pan R , Li S, et al. Chelating intracellularly accumulated
zinc decreased ischemic brain injury through reducing neuronal
apoptotic death[ J]. Stroke, 2014, 45(4): 1139-1147. DOI: 10.1161/
STROKEAHA.113.004296.
97、Huang Z, Qian K , Chen J, et al. A biomimetic zeolite-based
nanoenzyme contributes to neuroprotection in the neurovascular unit
after ischaemic stroke via efficient removal of zinc and ROS[ J]. Acta
Biomater, 2022, 144: 142-156. DOI: 10.1016/j.actbio.2022.03.018.Huang Z, Qian K , Chen J, et al. A biomimetic zeolite-based
nanoenzyme contributes to neuroprotection in the neurovascular unit
after ischaemic stroke via efficient removal of zinc and ROS[ J]. Acta
Biomater, 2022, 144: 142-156. DOI: 10.1016/j.actbio.2022.03.018.
98、Dong W, Qi Z, Liang J, et al. Reduction of zinc accumulation in
mitochondria contributes to decreased cerebral ischemic injury
by normobaric hyperoxia treatment in an experimental stroke
model[ J]. Exp Neurol, 2015, 272: 181-189. DOI: 10.1016/
j.expneurol.2015.04.005.Dong W, Qi Z, Liang J, et al. Reduction of zinc accumulation in
mitochondria contributes to decreased cerebral ischemic injury
by normobaric hyperoxia treatment in an experimental stroke
model[ J]. Exp Neurol, 2015, 272: 181-189. DOI: 10.1016/
j.expneurol.2015.04.005.
99、Ding W, Ge Y, Sun H, et al. ZIP8 mediates the extracellular matrix
degradation of nucleus pulposus cells via NF-κB signaling pathway[ J].
Biochem Biophys Res Commun, 2021, 550: 30-36. DOI: 10.1016/
j.bbrc.2021.02.129.Ding W, Ge Y, Sun H, et al. ZIP8 mediates the extracellular matrix
degradation of nucleus pulposus cells via NF-κB signaling pathway[ J].
Biochem Biophys Res Commun, 2021, 550: 30-36. DOI: 10.1016/
j.bbrc.2021.02.129.
100、 Palmiter RD, Huang L. Efflux and compartmentalization of zinc by
members of the SLC30 family of solute carriers[ J]. Pflugers Arch, 2004,
447(5): 744-751. DOI: 10.1007/s00424-003-1070-7. Palmiter RD, Huang L. Efflux and compartmentalization of zinc by
members of the SLC30 family of solute carriers[ J]. Pflugers Arch, 2004,
447(5): 744-751. DOI: 10.1007/s00424-003-1070-7.
101、Liu Z, Xue J, Liu C, et al. Selective deletion of zinc transporter 3 in
amacrine cells promotes retinal ganglion cell survival and optic nerve
regeneration after injury[ J]. Neural Regen Res, 2023, 18(12): 2773-
2780. DOI: 10.4103/1673-5374.373660. Liu Z, Xue J, Liu C, et al. Selective deletion of zinc transporter 3 in
amacrine cells promotes retinal ganglion cell survival and optic nerve
regeneration after injury[ J]. Neural Regen Res, 2023, 18(12): 2773-
2780. DOI: 10.4103/1673-5374.373660.