1、Michaelides M, Hunt DM, Moore AT. The genetics of inherited macular
dystrophies[ J]. J Med Genet, 2003, 40(9): 641-650. DOI: 10.1136/
jmg.40.9.641.Michaelides M, Hunt DM, Moore AT. The genetics of inherited macular
dystrophies[ J]. J Med Genet, 2003, 40(9): 641-650. DOI: 10.1136/
jmg.40.9.641.
2、Fujinami K, Lois N, Mukherjee R , et al. A longitudinal study of
Stargardt disease: quantitative assessment of fundus autofluorescence,
progression, and genotype correlations[ J]. Invest Ophthalmol Vis Sci,
2013, 54(13): 8181-8190. DOI: 10.1167/iovs.13-12104.Fujinami K, Lois N, Mukherjee R , et al. A longitudinal study of
Stargardt disease: quantitative assessment of fundus autofluorescence,
progression, and genotype correlations[ J]. Invest Ophthalmol Vis Sci,
2013, 54(13): 8181-8190. DOI: 10.1167/iovs.13-12104.
3、Stargardt%20K%20.%20%C3%9Cber%20famili%C3%A4re%2C%20progressive%20Degeneration%20in%20der%20%0AMaculagegend%20des%20Auges%5B%20J%5D.%20Albrecht%20Von%20Graefes%20Arch%20F%C3%BCr%20%0AOphthalmol%2C%201909%2C%2071(3)%3A%20534-550.%20DOI%3A%2010.1007%2FBF01961301.Stargardt%20K%20.%20%C3%9Cber%20famili%C3%A4re%2C%20progressive%20Degeneration%20in%20der%20%0AMaculagegend%20des%20Auges%5B%20J%5D.%20Albrecht%20Von%20Graefes%20Arch%20F%C3%BCr%20%0AOphthalmol%2C%201909%2C%2071(3)%3A%20534-550.%20DOI%3A%2010.1007%2FBF01961301.
4、Kaplan J, Gerber S, Larget-Piet D, et al. A gene for Stargardt's disease
(fundus flavimaculatus) maps to the short arm of chromosome 1[ J].
Nat Genet, 1993, 5(3): 308-311. DOI: 10.1038/ng1193-308.Kaplan J, Gerber S, Larget-Piet D, et al. A gene for Stargardt's disease
(fundus flavimaculatus) maps to the short arm of chromosome 1[ J].
Nat Genet, 1993, 5(3): 308-311. DOI: 10.1038/ng1193-308.
5、Allikmets R. A photoreceptor cell-specific ATP-binding transporter
gene (ABCR) is mutated in recessive Stargardt macular dystrophy[ J].
Nat Genet, 1997, 17(1): 122. DOI: 10.1038/ng0997-122a.Allikmets R. A photoreceptor cell-specific ATP-binding transporter
gene (ABCR) is mutated in recessive Stargardt macular dystrophy[ J].
Nat Genet, 1997, 17(1): 122. DOI: 10.1038/ng0997-122a.
6、Illing M, Molday LL, Molday RS. The 220-kDa rim protein of retinal
rod outer segments is a member of the ABC transporter superfamily[ J].
J Biol Chem, 1997, 272(15): 10303-10310. DOI: 10.1074/jbc.272.15.10303.Illing M, Molday LL, Molday RS. The 220-kDa rim protein of retinal
rod outer segments is a member of the ABC transporter superfamily[ J].
J Biol Chem, 1997, 272(15): 10303-10310. DOI: 10.1074/jbc.272.15.10303.
7、Quazi F, Lenevich S, Molday RS. ABCA4 is an N-retinylidenephosphatidy lethanolamine and phosphatidy lethanolamine
importer[ J]. Nat Commun, 2012, 3: 925. DOI: 10.1038/ncomms1927.Quazi F, Lenevich S, Molday RS. ABCA4 is an N-retinylidenephosphatidy lethanolamine and phosphatidy lethanolamine
importer[ J]. Nat Commun, 2012, 3: 925. DOI: 10.1038/ncomms1927.
8、Fujinami K , Lois N, Davidson AE, et al. A longitudinal study
of stargardt disease: clinical and electrophysiologic assessment,
progression, and genotype correlations[ J]. Am J Ophthalmol, 2013,
155(6): 1075-1088.e13. DOI: 10.1016/j.ajo.2013.01.018.Fujinami K , Lois N, Davidson AE, et al. A longitudinal study
of stargardt disease: clinical and electrophysiologic assessment,
progression, and genotype correlations[ J]. Am J Ophthalmol, 2013,
155(6): 1075-1088.e13. DOI: 10.1016/j.ajo.2013.01.018.
9、Zernant J, Schubert C, Im KM, et al. Analysis of the ABCA4 gene
by next-generation sequencing[ J]. Invest Ophthalmol Vis Sci, 2011,
52(11): 8479-8487. DOI: 10.1167/iovs.11-8182.Zernant J, Schubert C, Im KM, et al. Analysis of the ABCA4 gene
by next-generation sequencing[ J]. Invest Ophthalmol Vis Sci, 2011,
52(11): 8479-8487. DOI: 10.1167/iovs.11-8182.
10、Molday RS, Garces FA, Scortecci JF, et al. Structure and function
of ABCA4 and its role in the visual cycle and Stargardt macular
degeneration[ J]. Prog Retin Eye Res, 2022, 89: 101036. DOI:
10.1016/j.preteyeres.2021.101036.Molday RS, Garces FA, Scortecci JF, et al. Structure and function
of ABCA4 and its role in the visual cycle and Stargardt macular
degeneration[ J]. Prog Retin Eye Res, 2022, 89: 101036. DOI:
10.1016/j.preteyeres.2021.101036.
11、Sparrow JR , Kim SR , Cuervo AM, et al. A2E, a pigment of RPE
lipofuscin, is generated from the precursor, A2PE by a lysosomal
enzyme activity[ J]. Adv Exp Med Biol, 2008, 613: 393-398. DOI:
10.1007/978-0-387-74904-4_46.Sparrow JR , Kim SR , Cuervo AM, et al. A2E, a pigment of RPE
lipofuscin, is generated from the precursor, A2PE by a lysosomal
enzyme activity[ J]. Adv Exp Med Biol, 2008, 613: 393-398. DOI:
10.1007/978-0-387-74904-4_46.
12、Tsybovsky Y, Molday RS, Palczewski K. The ATP-binding cassette
transporter ABCA4: structural and functional properties and role
in retinal disease[ J]. Adv Exp Med Biol, 2010, 703: 105-125. DOI:
10.1007/978-1-4419-5635-4_8.Tsybovsky Y, Molday RS, Palczewski K. The ATP-binding cassette
transporter ABCA4: structural and functional properties and role
in retinal disease[ J]. Adv Exp Med Biol, 2010, 703: 105-125. DOI:
10.1007/978-1-4419-5635-4_8.
13、Sparrow JR , Boulton M. RPE lipofuscin and its role in retinal
pathobiology[ J]. Exp Eye Res, 2005, 80(5): 595-606. DOI: 10.1016/
j.exer.2005.01.007.Sparrow JR , Boulton M. RPE lipofuscin and its role in retinal
pathobiology[ J]. Exp Eye Res, 2005, 80(5): 595-606. DOI: 10.1016/
j.exer.2005.01.007.
14、方艳文, 张勇进. Stargardt病的病因及治疗展望[ J]. 国外医
学(眼科学分册), 2003, 27(5): 306-309. DOI: 10.3760/cma.
j.issn.1673-5803.2003.05.013.
Fang YW, Zhang YJ. Etiology and treatment prospect of Stargardt's
disease[ J]. Int Rev Ophthalmol, 2003, 27(5): 306-309. DOI: 10.3760/
cma.j.issn.1673-5803.2003.05.013.Fang YW, Zhang YJ. Etiology and treatment prospect of Stargardt's
disease[ J]. Int Rev Ophthalmol, 2003, 27(5): 306-309. DOI: 10.3760/
cma.j.issn.1673-5803.2003.05.013.
15、Piotter E, McClements ME, MacLaren RE. The scope of pathogenic
ABCA4 mutations targetable by CRISPR DNA base editing systems-a
systematic review[ J]. Front Genet, 2021, 12: 814131. DOI: 10.3389/
fgene.2021.814131.Piotter E, McClements ME, MacLaren RE. The scope of pathogenic
ABCA4 mutations targetable by CRISPR DNA base editing systems-a
systematic review[ J]. Front Genet, 2021, 12: 814131. DOI: 10.3389/
fgene.2021.814131.
16、Colella P, Auricchio A. Gene therapy of inherited retinopathies: a long
and successful road from viral vectors to patients[ J]. Hum Gene Ther,
2012, 23(8): 796-807. DOI: 10.1089/hum.2012.123.Colella P, Auricchio A. Gene therapy of inherited retinopathies: a long
and successful road from viral vectors to patients[ J]. Hum Gene Ther,
2012, 23(8): 796-807. DOI: 10.1089/hum.2012.123.
17、Colella P, Cotugno G, Auricchio A. Ocular gene therapy: current
progress and future prospects[ J]. Trends Mol Med, 2009, 15(1): 23-
31. DOI: 10.1016/j.molmed.2008.11.003.Colella P, Cotugno G, Auricchio A. Ocular gene therapy: current
progress and future prospects[ J]. Trends Mol Med, 2009, 15(1): 23-
31. DOI: 10.1016/j.molmed.2008.11.003.
18、Vandenberghe LH, Auricchio A. Novel adeno-associated viral vectors
for retinal gene therapy[ J]. Gene Ther, 2012, 19(2): 162-168. DOI:
10.1038/gt.2011.151.Vandenberghe LH, Auricchio A. Novel adeno-associated viral vectors
for retinal gene therapy[ J]. Gene Ther, 2012, 19(2): 162-168. DOI:
10.1038/gt.2011.151.
19、Hermonat PL, Quirk JG, Bishop BM, et al. The packaging capacity of
adeno-associated virus (AAV) and the potential for wild-type-plus
AAV gene therapy vectors[ J]. FEBS Lett, 1997, 407(1): 78-84. DOI:
10.1016/s0014-5793(97)00311-6.Hermonat PL, Quirk JG, Bishop BM, et al. The packaging capacity of
adeno-associated virus (AAV) and the potential for wild-type-plus
AAV gene therapy vectors[ J]. FEBS Lett, 1997, 407(1): 78-84. DOI:
10.1016/s0014-5793(97)00311-6.
20、Colella P, Trapani I, Cesi G, et al. Efficient gene delivery to the coneenriched pig retina by dual AAV vectors[ J]. Gene Ther, 2014, 21(4):
450-456. DOI: 10.1038/gt.2014.8.Colella P, Trapani I, Cesi G, et al. Efficient gene delivery to the coneenriched pig retina by dual AAV vectors[ J]. Gene Ther, 2014, 21(4):
450-456. DOI: 10.1038/gt.2014.8.
21、Trapani I, Toriello E, de Simone S, et al. Improved dual AAV vectors
with reduced expression of truncated proteins are safe and effective in
the retina of a mouse model of Stargardt disease[ J]. Hum Mol Genet,
2015, 24(23): 6811-6825. DOI: 10.1093/hmg/ddv386.Trapani I, Toriello E, de Simone S, et al. Improved dual AAV vectors
with reduced expression of truncated proteins are safe and effective in
the retina of a mouse model of Stargardt disease[ J]. Hum Mol Genet,
2015, 24(23): 6811-6825. DOI: 10.1093/hmg/ddv386.
22、Dyka FM, Molday LL, Chiodo VA, et al. Dual ABCA4-AAV vector
treatment reduces pathogenic retinal A2E accumulation in a mouse
model of autosomal recessive stargardt disease[ J]. Hum Gene Ther,
2019, 30(11): 1361-1370. DOI: 10.1089/hum.2019.132.Dyka FM, Molday LL, Chiodo VA, et al. Dual ABCA4-AAV vector
treatment reduces pathogenic retinal A2E accumulation in a mouse
model of autosomal recessive stargardt disease[ J]. Hum Gene Ther,
2019, 30(11): 1361-1370. DOI: 10.1089/hum.2019.132.
23、McClements ME, Barnard AR, Singh MS, et al. An AAV dual vector
strategy ameliorates the stargardt phenotype in adult Abca4-/- mice[ J].
Hum Gene Ther, 2019, 30(5): 590-600. DOI: 10.1089/hum.2018.156.McClements ME, Barnard AR, Singh MS, et al. An AAV dual vector
strategy ameliorates the stargardt phenotype in adult Abca4-/- mice[ J].
Hum Gene Ther, 2019, 30(5): 590-600. DOI: 10.1089/hum.2018.156.
24、Riedmayr LM, Hinrichsmeyer KS, Thalhammer SB, et al. mRNA transsplicing dual AAV vectors for (epi)genome editing and gene therapy[ J].
Nat Commun, 2023, 14(1): 6578. DOI: 10.1038/s41467-023-42386-
0.Riedmayr LM, Hinrichsmeyer KS, Thalhammer SB, et al. mRNA transsplicing dual AAV vectors for (epi)genome editing and gene therapy[ J].
Nat Commun, 2023, 14(1): 6578. DOI: 10.1038/s41467-023-42386-
0.
25、Kong J, Kim SR, Binley K, et al. Correction of the disease phenotype
in the mouse model of Stargardt disease by lentiviral gene therapy[ J].
Gene Ther, 2008, 15(19): 1311-1320. DOI: 10.1038/gt.2008.78.Kong J, Kim SR, Binley K, et al. Correction of the disease phenotype
in the mouse model of Stargardt disease by lentiviral gene therapy[ J].
Gene Ther, 2008, 15(19): 1311-1320. DOI: 10.1038/gt.2008.78.
26、Binley K, Widdowson P, Loader J, et al. Transduction of photoreceptors
with equine infectious anemia virus lentiviral vectors: safety and
biodistribution of StarGen for Stargardt disease[ J]. Invest Ophthalmol
Vis Sci, 2013, 54(6): 4061-4071. DOI: 10.1167/iovs.13-11871.Binley K, Widdowson P, Loader J, et al. Transduction of photoreceptors
with equine infectious anemia virus lentiviral vectors: safety and
biodistribution of StarGen for Stargardt disease[ J]. Invest Ophthalmol
Vis Sci, 2013, 54(6): 4061-4071. DOI: 10.1167/iovs.13-11871.
27、Tanna P, Strauss RW, Fujinami K, et al. Stargardt disease: clinical
features, molecular genetics, animal models and therapeutic
options[ J]. Br J Ophthalmol, 2017, 101(1): 25-30. DOI: 10.1136/
bjophthalmol-2016-308823.Tanna P, Strauss RW, Fujinami K, et al. Stargardt disease: clinical
features, molecular genetics, animal models and therapeutic
options[ J]. Br J Ophthalmol, 2017, 101(1): 25-30. DOI: 10.1136/
bjophthalmol-2016-308823.
28、Parker MA, Erker LR , Audo I, et al. Three-year safety results of
SAR422459 (EIAV-ABCA4) gene therapy in patients with ABCA4-
associated stargardt disease: an open-label dose-escalation phase I/IIa
clinical trial, cohorts 1-5[ J]. Am J Ophthalmol, 2022, 240: 285-301.
DOI: 10.1016/j.ajo.2022.02.013.Parker MA, Erker LR , Audo I, et al. Three-year safety results of
SAR422459 (EIAV-ABCA4) gene therapy in patients with ABCA4-
associated stargardt disease: an open-label dose-escalation phase I/IIa
clinical trial, cohorts 1-5[ J]. Am J Ophthalmol, 2022, 240: 285-301.
DOI: 10.1016/j.ajo.2022.02.013.
29、Bucher K, Rodríguez-Bocanegra E, Dauletbekov D, et al. Immune responses to retinal gene therapy using adeno-associated viral vectors
- Implications for treatment success and safety[ J]. Prog Retin Eye Res,
2021, 83: 100915. DOI: 10.1016/j.preteyeres.2020.100915.Bucher K, Rodríguez-Bocanegra E, Dauletbekov D, et al. Immune
responses to retinal gene therapy using adeno-associated viral vectors
- Implications for treatment success and safety[ J]. Prog Retin Eye Res,
2021, 83: 100915. DOI: 10.1016/j.preteyeres.2020.100915.
30、Sun D, Sahu B, Gao S, et al. Targeted multifunctional lipid ECO
plasmid DNA nanoparticles as efficient non-viral gene therapy for
leber's congenital amaurosis[ J]. Mol Ther Nucleic Acids, 2017, 7: 42-
52. DOI: 10.1016/j.omtn.2017.02.005.Sun D, Sahu B, Gao S, et al. Targeted multifunctional lipid ECO
plasmid DNA nanoparticles as efficient non-viral gene therapy for
leber's congenital amaurosis[ J]. Mol Ther Nucleic Acids, 2017, 7: 42-
52. DOI: 10.1016/j.omtn.2017.02.005.
31、Sun D, Schur RM, Sears AE, et al. Non-viral gene therapy for stargardt
disease with ECO/pRHO-ABCA4 self-assembled nanoparticles[ J].
Mol Ther, 2020, 28(1): 293-303. DOI: 10.1016/j.ymthe.2019.09.010.Sun D, Schur RM, Sears AE, et al. Non-viral gene therapy for stargardt
disease with ECO/pRHO-ABCA4 self-assembled nanoparticles[ J].
Mol Ther, 2020, 28(1): 293-303. DOI: 10.1016/j.ymthe.2019.09.010.
32、Sun D, Sun W, Gao SQ, et al. Formulation and efficacy of ECO/pRHOABCA4-SV40 nanoparticles for nonviral gene therapy of Stargardt
disease in a mouse model[ J]. J Control Release, 2021, 330: 329-340.
DOI: 10.1016/j.jconrel.2020.12.010.Sun D, Sun W, Gao SQ, et al. Formulation and efficacy of ECO/pRHOABCA4-SV40 nanoparticles for nonviral gene therapy of Stargardt
disease in a mouse model[ J]. J Control Release, 2021, 330: 329-340.
DOI: 10.1016/j.jconrel.2020.12.010.
33、Sun D, Sun W, Gao SQ, et al. Effective gene therapy of Stargardt disease
with PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles[ J]. Mol Ther
Nucleic Acids, 2022, 29: 823-835. DOI: 10.1016/j.omtn.2022.08.026.Sun D, Sun W, Gao SQ, et al. Effective gene therapy of Stargardt disease
with PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles[ J]. Mol Ther
Nucleic Acids, 2022, 29: 823-835. DOI: 10.1016/j.omtn.2022.08.026.
34、Wright W, Gajjeraman S, Batabyal S, et al. Restoring v ision
in mice w ith retinal degeneration using multicharacteristic
opsin[ J]. Neurophotonics, 2017, 4(4): 041505. DOI: 10.1117/1.
NPh.4.4.041505.Wright W, Gajjeraman S, Batabyal S, et al. Restoring v ision
in mice w ith retinal degeneration using multicharacteristic
opsin[ J]. Neurophotonics, 2017, 4(4): 041505. DOI: 10.1117/1.
NPh.4.4.041505.
35、Therapeutics, N. Nanoscope Therapeutics Unveils Clinical Trial Results for MCO-010 in Treating Stargardt Disease [EB/OL].(2023-09-01).
https://www.prnewswire.com/news-releases/nanoscope-therapeutics-unveils-clinical-trial-results-for-mco-010-in-treating-stargardt-disease-301896754.html.Therapeutics, N. Nanoscope Therapeutics Unveils Clinical Trial Results for MCO-010 in Treating Stargardt Disease [EB/OL].(2023-09-01).
https://www.prnewswire.com/news-releases/nanoscope-therapeutics-unveils-clinical-trial-results-for-mco-010-in-treating-stargardt-disease-301896754.html.
36、Xue K, MacLaren RE. Antisense oligonucleotide therapeutics in
clinical trials for the treatment of inherited retinal diseases[ J].Expert Opin Investig Drugs, 2020, 29(10): 1163-1170. DOI:
10.1080/13543784.2020.1804853.Xue K, MacLaren RE. Antisense oligonucleotide therapeutics in
clinical trials for the treatment of inherited retinal diseases[ J].Expert Opin Investig Drugs, 2020, 29(10): 1163-1170. DOI:
10.1080/13543784.2020.1804853.
37、Kaltak M, de Bruijn P, Piccolo D, et al. Antisense oligonucleotide
therapy corrects splicing in the common Stargardt disease type
1-causing variant ABCA4 c.5461-10T>C[ J]. Mol Ther Nucleic Acids,
2023, 31: 674-688. DOI: 10.1016/j.omtn.2023.02.020.Kaltak M, de Bruijn P, Piccolo D, et al. Antisense oligonucleotide
therapy corrects splicing in the common Stargardt disease type
1-causing variant ABCA4 c.5461-10T>C[ J]. Mol Ther Nucleic Acids,
2023, 31: 674-688. DOI: 10.1016/j.omtn.2023.02.020.
38、Kaltak M, de Bruijn P, van Leeuwen W, et al. QR-1011 restores
defective ABCA4 splicing caused by multiple severe ABCA4 variants
underlying Stargardt disease[ J]. Sci Rep, 2024, 14(1): 684. DOI:
10.1038/s41598-024-51203-7.Kaltak M, de Bruijn P, van Leeuwen W, et al. QR-1011 restores
defective ABCA4 splicing caused by multiple severe ABCA4 variants
underlying Stargardt disease[ J]. Sci Rep, 2024, 14(1): 684. DOI:
10.1038/s41598-024-51203-7.
39、Tomkiewicz TZ, Nieuwenhuis SE, Cremers FPM, et al. Correction
of the splicing defect caused by a recurrent variant in ABCA4 (c.769-
784C>T) that underlies stargardt disease[ J]. Cells, 2022, 11(24):
3947. DOI: 10.3390/cells11243947.Tomkiewicz TZ, Nieuwenhuis SE, Cremers FPM, et al. Correction
of the splicing defect caused by a recurrent variant in ABCA4 (c.769-
784C>T) that underlies stargardt disease[ J]. Cells, 2022, 11(24):
3947. DOI: 10.3390/cells11243947.
40、Khan M, Arno G, Fakin A, et al. Detailed phenotyping and therapeutic
strategies for intronic ABCA4 variants in stargardt disease[ J]. Mol Ther
Nucleic Acids, 2020, 21: 412-427. DOI: 10.1016/j.omtn.2020.06.007.Khan M, Arno G, Fakin A, et al. Detailed phenotyping and therapeutic
strategies for intronic ABCA4 variants in stargardt disease[ J]. Mol Ther
Nucleic Acids, 2020, 21: 412-427. DOI: 10.1016/j.omtn.2020.06.007.
41、Suárez-Herrera N, Riswick IB, Vázquez-Domínguez I, et al. Proof-ofconcept for multiple AON delivery by a single U7snRNA vector to
restore splicing defects in ABCA4[ J]. Mol Ther, 2024, 32(3): 837-851.
DOI: 10.1016/j.ymthe.2024.01.019.Suárez-Herrera N, Riswick IB, Vázquez-Domínguez I, et al. Proof-ofconcept for multiple AON delivery by a single U7snRNA vector to
restore splicing defects in ABCA4[ J]. Mol Ther, 2024, 32(3): 837-851.
DOI: 10.1016/j.ymthe.2024.01.019.
42、Suárez-Herrera N, Li CHZ, Leijsten N, et al. Preclinical development
of antisense oligonucleotides to rescue aberrant splicing caused by an
ultrarare ABCA4 variant in a child with early-onset stargardt disease[ J].
Cells, 2024, 13(7): 601. DOI: 10.3390/cells13070601.Suárez-Herrera N, Li CHZ, Leijsten N, et al. Preclinical development
of antisense oligonucleotides to rescue aberrant splicing caused by an
ultrarare ABCA4 variant in a child with early-onset stargardt disease[ J].
Cells, 2024, 13(7): 601. DOI: 10.3390/cells13070601.