1、Nickla DL, Wallman J. The multifunctional choroid[ J]. Prog Retin Eye
Res, 2010, 29(2): 144-168. DOI: 10.1016/j.preteyeres.2009.12.002.Nickla DL, Wallman J. The multifunctional choroid[ J]. Prog Retin Eye
Res, 2010, 29(2): 144-168. DOI: 10.1016/j.preteyeres.2009.12.002.
2、Agrawal R, Ding J, Sen P, et al. Exploring choroidal angioarchitecture in
health and disease using choroidal vascularity index[ J]. Prog Retin Eye
Res, 2020, 77: 100829. DOI: 10.1016/j.preteyeres.2020.100829.Agrawal R, Ding J, Sen P, et al. Exploring choroidal angioarchitecture in
health and disease using choroidal vascularity index[ J]. Prog Retin Eye
Res, 2020, 77: 100829. DOI: 10.1016/j.preteyeres.2020.100829.
3、Brinks J, van Dijk EHC, Klaassen I, et al. Exploring the choroidal
vascular labyrinth and its molecular and structural roles in health and
disease[ J]. Prog Retin Eye Res, 2022, 87: 100994. DOI: 10.1016/
j.preteyeres.2021.100994.Brinks J, van Dijk EHC, Klaassen I, et al. Exploring the choroidal
vascular labyrinth and its molecular and structural roles in health and
disease[ J]. Prog Retin Eye Res, 2022, 87: 100994. DOI: 10.1016/
j.preteyeres.2021.100994.
4、Jonas JB, Spaide RF, Ostrin LA, et al. IMI-nonpathological human
ocular tissue changes with axial myopia[ J]. Invest Ophthalmol Vis Sci,
2023, 64(6): 5. DOI: 10.1167/iovs.64.6.5.Jonas JB, Spaide RF, Ostrin LA, et al. IMI-nonpathological human
ocular tissue changes with axial myopia[ J]. Invest Ophthalmol Vis Sci,
2023, 64(6): 5. DOI: 10.1167/iovs.64.6.5.
5、Kur J, Newman EA , Chan-Ling T. Cellular and physiological
mechanisms underlying blood flow regulation in the retina and choroid
in health and disease[ J]. Prog Retin Eye Res, 2012, 31(5): 377-406.
DOI: 10.1016/j.preteyeres.2012.04.004.Kur J, Newman EA , Chan-Ling T. Cellular and physiological
mechanisms underlying blood flow regulation in the retina and choroid
in health and disease[ J]. Prog Retin Eye Res, 2012, 31(5): 377-406.
DOI: 10.1016/j.preteyeres.2012.04.004.
6、Hayreh SS. Segmental nature of the choroidal vasculature[ J]. Br J
Ophthalmol, 1975, 59(11): 631-648. DOI: 10.1136/bjo.59.11.631.Hayreh SS. Segmental nature of the choroidal vasculature[ J]. Br J
Ophthalmol, 1975, 59(11): 631-648. DOI: 10.1136/bjo.59.11.631.
7、Hayreh SS, Hayreh SB. Uveal vascular bed in health and disease: uveal
vascular bed anatomy. Paper 1 of 2[ J]. Eye, 2023, 37(13): 2590-2616.
DOI: 10.1038/s41433-023-02416-z.Hayreh SS, Hayreh SB. Uveal vascular bed in health and disease: uveal
vascular bed anatomy. Paper 1 of 2[ J]. Eye, 2023, 37(13): 2590-2616.
DOI: 10.1038/s41433-023-02416-z.
8、Hayreh SS, Hayreh SB. Uveal vascular bed in health and disease:
lesions produced by occlusion of the uveal vascular bed and acute uveal
ischaemic lesions seen clinically. Paper 2 of 2[ J]. Eye, 2023, 37: 2617-
2648. DOI: 10.1038/s41433-023-02417-y.Hayreh SS, Hayreh SB. Uveal vascular bed in health and disease:
lesions produced by occlusion of the uveal vascular bed and acute uveal
ischaemic lesions seen clinically. Paper 2 of 2[ J]. Eye, 2023, 37: 2617-
2648. DOI: 10.1038/s41433-023-02417-y.
9、Hanyuda N, Akiyama H, Shimoda Y, et al. Different filling patterns of
the choriocapillaris in fluorescein and indocyanine green angiography
in primate eyes under elevated intraocular pressure[ J]. Invest
Ophthalmol Vis Sci, 2017, 58(13): 5856-5861. DOI: 10.1167/iovs.17-
22223.Hanyuda N, Akiyama H, Shimoda Y, et al. Different filling patterns of
the choriocapillaris in fluorescein and indocyanine green angiography
in primate eyes under elevated intraocular pressure[ J]. Invest
Ophthalmol Vis Sci, 2017, 58(13): 5856-5861. DOI: 10.1167/iovs.17-
22223.
10、Lejoyeux R, Benillouche J, Ong J, et al. Choriocapillaris: fundamentals
and advancements[ J]. Prog Retin Eye Res, 2022, 87: 100997. DOI:
10.1016/j.preteyeres.2021.100997.Lejoyeux R, Benillouche J, Ong J, et al. Choriocapillaris: fundamentals
and advancements[ J]. Prog Retin Eye Res, 2022, 87: 100997. DOI:
10.1016/j.preteyeres.2021.100997.
11、Hayreh SS. In vivo choroidal circulation and its watershed zones[ J].
Eye, 1990, 4( Pt 2): 273-289. DOI: 10.1038/eye.1990.39.Hayreh SS. In vivo choroidal circulation and its watershed zones[ J].
Eye, 1990, 4( Pt 2): 273-289. DOI: 10.1038/eye.1990.39.
12、刘文,文峰. 临床眼底病:内科卷[M]. 北京: 人民卫生出版社,
2015.
Liu W, Wen F. Clinical Fundus Disease - Internal Medicine Volume[M].
Beijing: People’s Medical Publishing House, 2015.刘文,文峰. 临床眼底病:内科卷[M]. 北京: 人民卫生出版社,
2015.
Liu W, Wen F. Clinical Fundus Disease - Internal Medicine Volume[M].
Beijing: People’s Medical Publishing House, 2015.
13、Yu DY, Yu PK , Cringle SJ, et al. Functional and morphological
characteristics of the retinal and choroidal vasculature[ J]. Prog Retin
Eye Res, 2014, 40: 53-93. DOI: 10.1016/j.preteyeres.2014.02.001.Yu DY, Yu PK , Cringle SJ, et al. Functional and morphological
characteristics of the retinal and choroidal vasculature[ J]. Prog Retin
Eye Res, 2014, 40: 53-93. DOI: 10.1016/j.preteyeres.2014.02.001.
14、Yu PK, Tan PE, Cringle SJ, et al. Phenotypic heterogeneity in the
endothelium of the human vortex vein system[ J]. Exp Eye Res, 2013,
115: 144-152. DOI: 10.1016/j.exer.2013.07.006.Yu PK, Tan PE, Cringle SJ, et al. Phenotypic heterogeneity in the
endothelium of the human vortex vein system[ J]. Exp Eye Res, 2013,
115: 144-152. DOI: 10.1016/j.exer.2013.07.006.
15、Mihara N, Sonoda S, Terasaki H, et al. Sex- and age-dependent widefield choroidal thickness differences in healthy eyes[ J]. J Clin Med,
2023, 12(4): 1505. DOI: 10.3390/jcm12041505.Mihara N, Sonoda S, Terasaki H, et al. Sex- and age-dependent widefield choroidal thickness differences in healthy eyes[ J]. J Clin Med,
2023, 12(4): 1505. DOI: 10.3390/jcm12041505.
16、Ikuno Y, Kawaguchi K, Nouchi T, et al. Choroidal thickness in healthy
Japanese subjects[ J]. Invest Ophthalmol Vis Sci, 2010, 51(4): 2173-
2176. DOI: 10.1167/iovs.09-4383.Ikuno Y, Kawaguchi K, Nouchi T, et al. Choroidal thickness in healthy
Japanese subjects[ J]. Invest Ophthalmol Vis Sci, 2010, 51(4): 2173-
2176. DOI: 10.1167/iovs.09-4383.
17、Margolis R, Spaide RF. A pilot study of enhanced depth imaging
optical coherence tomography of the choroid in normal eyes[ J]. Am J
Ophthalmol, 2009, 147(5): 811-815. DOI: 10.1016/j.ajo.2008.12.008.Margolis R, Spaide RF. A pilot study of enhanced depth imaging
optical coherence tomography of the choroid in normal eyes[ J]. Am J
Ophthalmol, 2009, 147(5): 811-815. DOI: 10.1016/j.ajo.2008.12.008.
18、Ding X, Li J, Zeng J, et al. Choroidal thickness in healthy Chinese
subjects[ J]. Invest Ophthalmol Vis Sci, 2011, 52(13): 9555-9560.
DOI: 10.1167/iovs.11-8076.Ding X, Li J, Zeng J, et al. Choroidal thickness in healthy Chinese
subjects[ J]. Invest Ophthalmol Vis Sci, 2011, 52(13): 9555-9560.
DOI: 10.1167/iovs.11-8076.
19、Lee SW, Yu SY, Seo KH, et al. Diurnal variation in choroidal thickness
in relation to sex, axial length, and baseline choroidal thickness in
healthy Korean subjects[ J]. Retina, 2014, 34(2): 385-393. DOI:
10.1097/IAE.0b013e3182993f29.Lee SW, Yu SY, Seo KH, et al. Diurnal variation in choroidal thickness
in relation to sex, axial length, and baseline choroidal thickness in
healthy Korean subjects[ J]. Retina, 2014, 34(2): 385-393. DOI:
10.1097/IAE.0b013e3182993f29.
20、Manjunath V, Taha M, Fujimoto JG, et al. Choroidal thickness
in normal eyes measured using Cirrus HD optical coherence
tomography[ J]. Am J Ophthalmol, 2010, 150(3): 325-329.e1. DOI:
10.1016/j.ajo.2010.04.018.Manjunath V, Taha M, Fujimoto JG, et al. Choroidal thickness
in normal eyes measured using Cirrus HD optical coherence
tomography[ J]. Am J Ophthalmol, 2010, 150(3): 325-329.e1. DOI:
10.1016/j.ajo.2010.04.018.
21、Alanazi M, Caroline P, Alshamrani A, et al. Regional distribution of
choroidal thickness and diurnal variation in choroidal thickness and
axial length in young adults[ J]. Clin Ophthalmol, 2021, 15: 4573-4584.
DOI: 10.2147/OPTH.S334619.Alanazi M, Caroline P, Alshamrani A, et al. Regional distribution of
choroidal thickness and diurnal variation in choroidal thickness and
axial length in young adults[ J]. Clin Ophthalmol, 2021, 15: 4573-4584.
DOI: 10.2147/OPTH.S334619.
22、Chakraborty R, Read SA, Collins MJ. Diurnal variations in axial length,
choroidal thickness, intraocular pressure, and ocular biometrics[ J].
Invest Ophthalmol Vis Sci, 2011, 52(8): 5121-5129. DOI: 10.1167/ iovs.11-7364.Chakraborty R, Read SA, Collins MJ. Diurnal variations in axial length,
choroidal thickness, intraocular pressure, and ocular biometrics[ J].
Invest Ophthalmol Vis Sci, 2011, 52(8): 5121-5129. DOI: 10.1167/ iovs.11-7364.
23、Papastergiou GI, Schmid GF, Riva CE, et al. Ocular axial length and
choroidal thickness in newly hatched chicks and one-year-old chickens
fluctuate in a diurnal pattern that is influenced by visual experience and
intraocular pressure changes[ J]. Exp Eye Res, 1998, 66(2): 195-205.
DOI: 10.1006/exer.1997.0421.Papastergiou GI, Schmid GF, Riva CE, et al. Ocular axial length and
choroidal thickness in newly hatched chicks and one-year-old chickens
fluctuate in a diurnal pattern that is influenced by visual experience and
intraocular pressure changes[ J]. Exp Eye Res, 1998, 66(2): 195-205.
DOI: 10.1006/exer.1997.0421.
24、Nickla DL, Wildsoet C, Wallman J. Visual influences on diurnal
rhythms in ocular length and choroidal thickness in chick eyes[ J]. Exp
Eye Res, 1998, 66(2): 163-181. DOI: 10.1006/exer.1997.0420.Nickla DL, Wildsoet C, Wallman J. Visual influences on diurnal
rhythms in ocular length and choroidal thickness in chick eyes[ J]. Exp
Eye Res, 1998, 66(2): 163-181. DOI: 10.1006/exer.1997.0420.
25、He G, Zhang X, Zhuang X, et al. Diurnal variation in choroidal
parameters among healthy subjects using wide-field swept-source
optical coherence tomography angiography[ J]. Transl Vis Sci Technol,
2024, 13(5): 16. DOI: 10.1167/tvst.13.5.16.He G, Zhang X, Zhuang X, et al. Diurnal variation in choroidal
parameters among healthy subjects using wide-field swept-source
optical coherence tomography angiography[ J]. Transl Vis Sci Technol,
2024, 13(5): 16. DOI: 10.1167/tvst.13.5.16.
26、Zhuang X, He G, Zeng Y, et al. Quantitative evaluation of choroidal and
retinal microvasculature post-alcohol consumption: a pilot study[ J].
Microvasc Res, 2024, 152: 104629. DOI: 10.1016/j.mvr.2023.104629.Zhuang X, He G, Zeng Y, et al. Quantitative evaluation of choroidal and
retinal microvasculature post-alcohol consumption: a pilot study[ J].
Microvasc Res, 2024, 152: 104629. DOI: 10.1016/j.mvr.2023.104629.
27、Rutnin U. Fundus appearance in normal eyes. I. The choroid[ J].
Am J Ophthalmol, 1967, 64(5): 821-839. DOI: 10.1016/0002-
9394(67)92225-8.Rutnin U. Fundus appearance in normal eyes. I. The choroid[ J].
Am J Ophthalmol, 1967, 64(5): 821-839. DOI: 10.1016/0002-
9394(67)92225-8.
28、Kutoglu T, Yalcin B, Kocabiyik N, et al. Vortex veins: anatomic
investigations on human eyes[ J]. Clin Anat, 2005, 18(4): 269-273.
DOI: 10.1002/ca.20092.Kutoglu T, Yalcin B, Kocabiyik N, et al. Vortex veins: anatomic
investigations on human eyes[ J]. Clin Anat, 2005, 18(4): 269-273.
DOI: 10.1002/ca.20092.
29、Spaide RF, Gemmy Cheung CM, Matsumoto H, et al. Venous
overload choroidopathy: a hypothetical framework for central serous
chorioretinopathy and allied disorders[ J]. Prog Retin Eye Res, 2022,
86: 100973. DOI: 10.1016/j.preteyeres.2021.100973.Spaide RF, Gemmy Cheung CM, Matsumoto H, et al. Venous
overload choroidopathy: a hypothetical framework for central serous
chorioretinopathy and allied disorders[ J]. Prog Retin Eye Res, 2022,
86: 100973. DOI: 10.1016/j.preteyeres.2021.100973.
30、Mori K, Gehlbach PL, Yoneya S, et al. Asymmetry of choroidal venous
vascular patterns in the human eye[ J]. Ophthalmology, 2004, 111(3):
507-512. DOI: 10.1016/j.ophtha.2003.06.009.Mori K, Gehlbach PL, Yoneya S, et al. Asymmetry of choroidal venous
vascular patterns in the human eye[ J]. Ophthalmology, 2004, 111(3):
507-512. DOI: 10.1016/j.ophtha.2003.06.009.
31、Savastano MC, Rispoli M, Savastano A, et al. En face optical coherence
tomography for visualization of the choroid[ J]. Ophthalmic Surg Lasers
Imaging Retina, 2015, 46(5): 561-565. DOI: 10.3928/23258160-
20150521-07.Savastano MC, Rispoli M, Savastano A, et al. En face optical coherence
tomography for visualization of the choroid[ J]. Ophthalmic Surg Lasers
Imaging Retina, 2015, 46(5): 561-565. DOI: 10.3928/23258160-
20150521-07.
32、Jung JJ, Yu DJG, Ito K, et al. Quantitative assessment of asymmetric
choroidal outflow in pachychoroid eyes on ultra-widefield indocyanine
green angiography[ J]. Invest Ophthalmol Vis Sci, 2020, 61(8): 50.
DOI: 10.1167/iovs.61.8.50.Jung JJ, Yu DJG, Ito K, et al. Quantitative assessment of asymmetric
choroidal outflow in pachychoroid eyes on ultra-widefield indocyanine
green angiography[ J]. Invest Ophthalmol Vis Sci, 2020, 61(8): 50.
DOI: 10.1167/iovs.61.8.50.
33、Hayreh SS, Baines JA. Occlusion of the vortex veins. An experimental
study[ J]. Br J Ophthalmol, 1973, 57(4): 217-238. DOI: 10.1136/
bjo.57.4.217.Hayreh SS, Baines JA. Occlusion of the vortex veins. An experimental
study[ J]. Br J Ophthalmol, 1973, 57(4): 217-238. DOI: 10.1136/
bjo.57.4.217.
34、Lim MC, Bateman JB, Glasgow BJ. Vortex vein exit sites. Scleral
coordinates[ J]. Ophthalmology, 1995, 102(6): 942-946. DOI:
10.1016/s0161-6420(95)30930-x.Lim MC, Bateman JB, Glasgow BJ. Vortex vein exit sites. Scleral
coordinates[ J]. Ophthalmology, 1995, 102(6): 942-946. DOI:
10.1016/s0161-6420(95)30930-x.
35、Funatsu R, Terasaki H, Shiihara H, et al. Quantitative evaluations
of vortex vein ampullae by adjusted 3D reverse projection model of
ultra-widefield fundus images[ J]. Sci Rep, 2021, 11(1): 8916. DOI:
10.1038/s41598-021-88265-w.Funatsu R, Terasaki H, Shiihara H, et al. Quantitative evaluations
of vortex vein ampullae by adjusted 3D reverse projection model of
ultra-widefield fundus images[ J]. Sci Rep, 2021, 11(1): 8916. DOI:
10.1038/s41598-021-88265-w.
36、Verma A, Maram J, Alagorie AR, et al. Distribution and location of
vortex vein ampullae in healthy human eyes as assessed by ultrawidefield indocyanine green angiography[ J]. Ophthalmol Retina,
2020, 4(5): 530-534. DOI: 10.1016/j.oret.2019.11.009.Verma A, Maram J, Alagorie AR, et al. Distribution and location of
vortex vein ampullae in healthy human eyes as assessed by ultrawidefield indocyanine green angiography[ J]. Ophthalmol Retina,
2020, 4(5): 530-534. DOI: 10.1016/j.oret.2019.11.009.
37、Ohno-Matsui K, Morishima N, Ito M, et al. Posterior routes of
choroidal blood outflow in high myopia[ J]. Retina, 1996, 16(5): 419-
425. DOI: 10.1097/00006982-199616050-00009.Ohno-Matsui K, Morishima N, Ito M, et al. Posterior routes of
choroidal blood outflow in high myopia[ J]. Retina, 1996, 16(5): 419-
425. DOI: 10.1097/00006982-199616050-00009.
38、Moriyama M, Ohno-Matsui K, Futagami S, et al. Morphology and longterm changes of choroidal vascular structure in highly myopic eyes with
and without posterior staphyloma[ J]. Ophthalmology, 2007, 114(9):
1755-1762. DOI: 10.1016/j.ophtha.2006.11.034.Moriyama M, Ohno-Matsui K, Futagami S, et al. Morphology and longterm changes of choroidal vascular structure in highly myopic eyes with
and without posterior staphyloma[ J]. Ophthalmology, 2007, 114(9):
1755-1762. DOI: 10.1016/j.ophtha.2006.11.034.
39、Sekimoto M, Hayasaka S, Watanabe M, et al. Vortex veins in
the macula[ J]. Ophthalmologica, 1988, 197(1): 34-35. DOI:
10.1159/000309914.Sekimoto M, Hayasaka S, Watanabe M, et al. Vortex veins in
the macula[ J]. Ophthalmologica, 1988, 197(1): 34-35. DOI:
10.1159/000309914.
40、Lobo S, Pradeep N, Rajendran A. Bilateral macular vortex veins in
oculocutaneous albinism[ J]. JAMA Ophthalmol, 2022, 140(11):
e223926. DOI: 10.1001/jamaophthalmol.2022.3926.Lobo S, Pradeep N, Rajendran A. Bilateral macular vortex veins in
oculocutaneous albinism[ J]. JAMA Ophthalmol, 2022, 140(11):
e223926. DOI: 10.1001/jamaophthalmol.2022.3926.
41、Lichter PR , Schmickel RD. Posterior vortex vein and congenital
glaucoma in a patient with trisomy 13 syndrome[ J]. Am J Ophthalmol,
1975, 80(5): 939-942. DOI: 10.1016/0002-9394(75)90292-5.Lichter PR , Schmickel RD. Posterior vortex vein and congenital
glaucoma in a patient with trisomy 13 syndrome[ J]. Am J Ophthalmol,
1975, 80(5): 939-942. DOI: 10.1016/0002-9394(75)90292-5.
42、Ohno-Matsui K, Morishima N, Teramatsu T, et al. The long-term
follow-up of a highly myopic patient with a macular vortex vein[ J].
Acta Ophthalmol Scand, 1997, 75(3): 329-332. DOI: 10.1111/j.1600-
0420.1997.tb00789.x.Ohno-Matsui K, Morishima N, Teramatsu T, et al. The long-term
follow-up of a highly myopic patient with a macular vortex vein[ J].
Acta Ophthalmol Scand, 1997, 75(3): 329-332. DOI: 10.1111/j.1600-
0420.1997.tb00789.x.
43、He G, Zhang X, Wen F. Subfoveal focal choroidal excavation with
macular vortex vein[ J]. Ophthalmol Retina, 2024, 8(1): 9. DOI:
10.1016/j.oret.2023.06.001.He G, Zhang X, Wen F. Subfoveal focal choroidal excavation with
macular vortex vein[ J]. Ophthalmol Retina, 2024, 8(1): 9. DOI:
10.1016/j.oret.2023.06.001.
44、Moriyama M, Cao K, Ogata S, et al. Detection of posterior vortex veins
in eyes with pathologic myopia by ultra-widefield indocyanine green
angiography[ J]. Br J Ophthalmol, 2017, 101(9): 1179-1184. DOI:
10.1136/bjophthalmol-2016-309877.Moriyama M, Cao K, Ogata S, et al. Detection of posterior vortex veins
in eyes with pathologic myopia by ultra-widefield indocyanine green
angiography[ J]. Br J Ophthalmol, 2017, 101(9): 1179-1184. DOI:
10.1136/bjophthalmol-2016-309877.
45、Lu H, Chen C, Xiong J, et al. Longitudinal changes of posterior vortex
veins in highly myopic eyes determined by retrospective analyses of
indocyanine green angiograms[ J]. Retina, 2024, 44(3): 438-445. DOI:
10.1097/IAE.0000000000003975.Lu H, Chen C, Xiong J, et al. Longitudinal changes of posterior vortex
veins in highly myopic eyes determined by retrospective analyses of
indocyanine green angiograms[ J]. Retina, 2024, 44(3): 438-445. DOI:
10.1097/IAE.0000000000003975.
46、He G, Zhang X, Zhuang X, et al. A novel exploration of the choroidal
vortex vein system: incidence and characteristics of posterior vortex
veins in healthy eyes[ J]. Invest Ophthalmol Vis Sci, 2024, 65(2): 21.
DOI: 10.1167/iovs.65.2.21.He G, Zhang X, Zhuang X, et al. A novel exploration of the choroidal
vortex vein system: incidence and characteristics of posterior vortex
veins in healthy eyes[ J]. Invest Ophthalmol Vis Sci, 2024, 65(2): 21.
DOI: 10.1167/iovs.65.2.21.