您的位置: 首页 > 2022年11月 第37卷 第11期 > 文字全文
2023年7月 第38卷 第7期11
目录

不同植入物在眼眶骨折修复中的应用

Application of different implants in orbital fracture

来源期刊: 眼科学报 | 2022年11月 第37卷 第11期 902-908 发布时间: 收稿时间:2022/12/7 15:32:58 阅读量:8353
作者:
关键词:
眼眶骨折眼眶骨折修复术植入材料异质材料临床应用
orbital fracture orbital fracture reconstruction implant materials heterogeneous materials clinical application
DOI:
10.3978/j.issn.1000-4432.2022.11.01
收稿时间:
 
修订日期:
 
接收日期:
 
眼眶骨折是外伤性疾病常见的眼眶并发症,部分需要行眼眶骨折修复手术治疗。不同材料的植入物,是影响手术效果和预后的重要因素之一。植入物的选择国内外至今尚未有统一的标准。目前临床上使用的植入材料多为异质材料,有不可吸收材料和可吸收材料两类。不可吸收材料使用最多的是钛网和高密度多聚乙烯(Medpor)。可吸收材料主要是各类高分子聚合物。这两类材料在临 床的使用过程中都表现出了不同的优缺点,通过查阅近5年的相关报道,对比这两类材料的优缺点,可以为临床医生的选择提供一些参考。
Orbital fracture is a common orbital complication of traumatic diseases, and some of them need to be treated by orbital fracture repair surgery. Implants of different materials are one of the important factors affecting the surgical outcome and prognosis. There is no uniform standard for the selection of implants at home and abroad. At present, most of the implant materials used in clinical practice are heterogeneous materials, including non-absorbable materials and absorbable materials. The most commonly used non-absorbable materials are titanium mesh and high-density polyethylene (Medpor). Absorbable materials are mainly all kinds of macromolecular polymers. These two types of materials have shown different advantages and disadvantages in clinical. By reviewing the relevant reports recent 5 years, and comparing the advantages and disadvantages of these two types of materials, we can provide some references for clinicians to choose from.
      近年来,随着交通事故等外伤的增多,眼眶骨折的发生率显著增加。临床上将眼眶骨折分为单纯性眶壁骨折(眼眶爆裂性骨折)和复合性眼眶骨折两大类,最常发生的是单纯性眶壁骨折[1]。单纯性眶壁骨折是指不累及眶缘而仅有眶壁受损的骨折,当外力作用于眼眶时,导致眼眶压力突然升高,往往眶壁薄弱处易发生破裂,而眶缘的连续性保持完整[2]。根据累及的眶壁可分为单纯内壁骨折、单纯眶底骨折和眶内-下壁联合骨折,单纯眶 顶和眶外侧壁骨折极少见[3]。骨折部位的眶内组织和肌肉容易发生嵌顿、疝出,引起组织和肌肉的卡压、水肿,常导致眼球内陷和/或移位、复视、 眼球运动障碍等表现,因此大多数眼眶骨折往往需要手术治疗。解除眶内容物的嵌顿,恢复眼眶正常解剖结构和眼球运动功能,避免并发症的发 生,是眼眶骨折修复手术治疗的主要目的[4]
    临床上常通过患者的临床症状和影像学表现,对是否具有眼眶骨折修复手术指征进行评估。早在2014年中华医学会眼科学分会眼整形眼眶病学组范先群教授组织下撰写的《眼眶爆裂性骨折诊疗专家共识》[3]中就提出了眼眶爆裂性骨折手术适应症,但仍存在一些争议,目前国内外对眼眶骨折的手术适应证尚没有统一的标准,可是根据已发表的文章不难看出大部分医者评价是否手术的核心内容基本一致[5-9],包括:1)存在持续性复视;2)被动牵拉试验阳性,CT显示有软组织和/或眼外肌明显嵌顿或疝出;3)眼球内陷>2mm,或大 面积的眶底缺损(多>50%);4)儿童Trapdoor骨折伴有明显恶心呕吐等症状,需尽早手术治疗[10]。一些 研究[5]认为其中临床表现的重要性大于CT扫描结果,因为部分患者CT扫描未见明显的组织或肌肉 卡压征象,但却有明显临床症状,这类患者根据临床经验来看,往往同样需要进行手术治疗。还有医者提出对于手术适应证的评估也应该充分考虑患者的职业,比如极端情况下的复视,Moe等[11] 就观察到一位自行车手在极限上转时出现复视, 这种复视普通患者可能察觉的概率较小,而对这 些特殊职业的患者却有一定的影响,因此这类复视也是他们手术的指征[11]。综合来看,临床上多数眼眶骨折患者具有手术指征。
      而对于眼眶修复手术来说,不同的手术时机、手术入路、植入材料都将对手术效果带来一 定的影响,其中植入材料对患者手术效果和预后情况的影响尤为关键。目前眼眶骨折修复手术使用的植入材料大致可分为同质材料和异质材料两 种。同质材料主要包括自体骨和异体骨,其中自 体骨一直以来被认为是眼眶骨折修复术植入材料 的金标准[12],它具有高度的组织相容性,不产 生免疫反应,没有排斥的风险,同时具有合适强 度和硬度,也有利于血管的生长。但是可塑性不强,同时需要从患者其他部位取材,增加了手术的风险,延长手术时间。异体骨虽然降低了需要 第二手术区域的手术风险,减少了手术时间,但 材料来源稀少,不易获得,其最大的缺点在于异 体组织排斥和疾病传播的风险。因此目前临床上 使用较多的植入物为异质材料。异质材料包括不可吸收材料和可吸收材料两类,这两类材料在临 床中各有其优缺点。

1 不可吸收材料

      不可吸收材料是最早开始使用的异质材料,包括硅胶、钛网(Titanium)、羟基磷灰石 (hydroxyapatite,HA)、高密度多聚乙烯(Medpor) 等。其中钛网和Medpor目前临床报道使用最多。
      2003年,Ellis和Tan[13]首次表明:与骨移植相 比,钛网在眼眶重建中更精确。此后,钛网在眼眶 修复中的应用越来越广泛。钛网呈网状,质轻,菲 薄,具有良好的生物相容性,是目前眼眶骨折手术中使用较多的修补材料之一[14-17]。但因眼眶结构的复杂情况,钛网需按照患者眶壁缺损的大小、形态,及周围血管神经穿过的路径修剪至合适的大小形状,然后嵌入眼眶内[18-19]。由于是金属材料,修剪后的钛网边缘锐利,缺乏光滑性,在植入的过程中难免对周围的组织造成损伤,而且往往为了使钛 网更贴合骨折处眶壁的形态,术中可能需要对钛网的形态、大小和位置进行反复调整,因此可能会反复刺激眼眶周围的组织,对周围血管神经进一步造成损伤,同时可能延长患者手术时间,导致术后水肿加重,恢复时间延长。
      而Medpor是通过美国食品和药品监督管理局批准用于临床的高分子植入性材料[20]。Medpor是一种高密度多孔聚乙烯,生物相容性高,无毒副 作用,其超微结构为多孔状,也可以容纳周围纤维组织和血管长入其中,以增强自身的稳定性, 也可降低感染的风险[21-23]。同时,Medpor可通过 热水浸泡塑形,非金属材料,与钛网相比,边缘光滑,在植入过程中不易损伤临近组织[24]。 但 Medpor最大的缺点是在CT影像中不显影[25]。由于 眼眶结构的空间有限,评估眼眶重建的效果除了患者眼球凹陷和复视等情况的改善外,很大程度上需要借助CT等影像学手段。而Medpor植入后手 术医生很难通过CT评估术后的疗效,术后随访也难以发现其是否发生移位。
      一种Medpor-Titanium新型复合材料,同时解决了两种材料存在的问题[26]。这种复合材料由2层 高密度聚乙烯材料中间镶嵌一层薄的钛网组成, 钛网使得材料能通过CT显影,可以观察到植入物 的位置,以评估其手术效果和预后,而外层的高密度聚乙烯结构包裹钛网,不但减少了手术中邻近组织损伤的风险,而且其多孔结构又能使得组织和血管长入[22],在保证了材料具有可塑性的同时,又增加了稳定性和抗感染性。还有以高密度聚乙烯涂层的钛网制作而成的多孔聚乙烯/钛混合植入物[27],与未涂层的钛网相比,高密度聚乙烯涂层可减少钛网与眶内组织的摩擦,在防止发生黏附等情况方面表现出更好的性能,可以减少术后并发症的发生[28]

2 可吸收材料

      为了解决植入物长期感染、排斥等风险, 可生物降解的分子材料被引入临床领域,可吸收的植入材料开始应用于骨折的固定、修复。目前应用于眼眶骨折重建的可吸收材料包括聚L -乳酸 (poly-L-lactic acid,PLLA)、聚D-丙交酯(poly-Dlactide,PDLLA)、聚乙醇酸(polyglycolic acid, PGA)、聚二恶烷酮(polydioxanone,PDS)和聚己 内酯(polycaprolactone,PCL)等[29-31]
      这些可吸收植入物的应用解决了永久性植入材料在患者体内长时间停留可能发生炎症、感染的问题,大大降低了排斥反应发生率[32],但随即又带来了新的问题。根据不同植入材料的分子特性,其降解时间有所不同,植入物降解后,患者自身组织能否重新完成生长,并支撑眶内组织, 术后是否会复发眼球内陷是可吸收材料应用时需考虑的重要问题[33]。如PLLA,有研究[34]发现一般 可在2~6年内缓慢降解;PDLLA也可快速降解, 4~8周失去强度[35];有研究[36-37]认为PGA在2周内高度降解,其机械强度将会下降一半,因此以上3种较少单独制作为植入物,一般需要彼此共聚形成 共聚物,以提高生物强度。如PLLA/PDLLA共聚物有报道在第8周时仍可保持70%的强度[38];PDS降解3周后将失去一半的支撑强度,6个月内将被迅速吸收,吸收后的瘢痕不足以支撑眼球,尤其是在较大面积的缺损中,因此很容易引起眼球内陷和功能减退。有临床报道[39]显示在PDS植入术后 晚期患者眼球内陷的发生率可达到22%~37%,因此目前相关临床应用的报道较少;PCL降解相对缓慢,一般2~3年内才完全吸收[40],并且在完全吸收 之前,其强度几乎保持不变,因此目前临床应用较多。可吸收材料的生物降解性既是它应用于临床的一大优点,同时由于降解速率过快后续可能有再次发生眼球内陷的风险。除了降解速率和新 生组织间的平衡问题,还需要考虑降解产物能否 最终完全被人体吸收[41]
      并且可吸收材料由于其分子特性,大部分能被CT等射线穿透,不显影,因此对患者术后的影像学评估及随访也是可吸收材料值得考虑的不足之处。但是一种未煅烧的羟基磷灰石颗粒和PLLA 的化合物(unsintered hydroxyapatite/poly-L -lactic acid,uHA/PLLA)如Osteotrans MX,解决了影像 上不显影的问题[42-44]。HA是一种钙化组织的矿物成分,uHA颗粒不能穿透射[45],因此使得uHA/ PLLA能在影像上清晰显影。
      可吸收材料是目前临床研究的热点材料,它结合了异体植入物和自体植入物的优点,既现成可用、无供体部位发病率,其降解后又可以通过自身的组织纤维或骨骼提供眼眶的支撑, 不产生永久性植入材料长时间存在组织内可能发生的排斥、感染等风险[46-47]。但部分学者[30] 认为可吸收材料缺陷也比较明确,就是支撑力有限,不适用于缺失范围过大的骨折。但也有学者[48]认为可吸收材料临床实际能支撑的骨折 范围比报道的平均范围更大。这些观点都还需要临床进一步验证。

3 结语

      植入物材料目前仍是眼眶骨折修复手术选择的困境之一,至今尚未有统一的标准。特别是目前使 用最多的两类异质材料,需要医生根据患者的情况进行选择。可以参考以下几个方面进行考量。

3.1 眼眶骨折的类型

      根据眼眶骨折的分类,眶内-下壁联合骨折和复合性骨折的损伤涉及不同部位,需要固定的范围较大,适合承重能力强,固定稳固的材料, 因此不可吸收材料较为适用,它们可以永久性存在,不会有材料吸收后新生组织承重力不够,再次发生眼球内陷的情况,对眶内容物有很好的支撑作用,能够较好地重建眼眶结构。而单壁骨折 (包括单纯性眶内壁骨折和单纯性眶底骨折),由于是孤立的眶壁损伤,眼眶组织脱出的较少,需要修复的部位较少,大部分可选择可吸收材料,此时选择可吸收材料的优点很明确,它既有防止组织疝入的作用,同时也可逐渐被人体降解吸收, 不存留异物在体内,不存在后续因留存时间较长而发生感染和排斥的风险,理想的结局是材料在被组织降解软化后,骨折部位已经被新生的组织或纤维修复,代替原组织或材料的作用。

3.2 骨折范围

      单壁骨折虽然较为理想的材料是可吸收材料,但也要根据骨折的具体损伤范围来考虑。可吸收材料能修复的骨折范围往往因其降解性而有所限制,大部分研究[49-51]认为可吸收材料比较适合应用于缺损范围在2cm2内的骨折,损伤范围超过2cm2的单壁骨折需要的支撑力仍然较大,还是应选择不可吸收材料。虽然也有研究[37]报道可吸收材料应用于较大范围(>2cm2)的骨折,但是研究数据较少,缺乏充足的证据。

3.3 患者的年龄

      骨折患者的年龄范围十分广泛,但是情况比较特殊的是儿童。儿童眼眶骨折中有一类特 殊的骨折叫儿童Trapdoor骨折[52],这类患儿在眼球运动受限,复视的症状外还伴有恶心、呕吐的表现,甚至可能因眼外肌卡压而诱发心眼反射引起心动过缓,因此需要尽早手术治疗。 儿童骨质纤维十分丰富,同时眼眶发育又不完全,导致眼眶容积较成年人更小,所以儿童眼眶骨折大多移位较少,缺损范围较小,因此可吸收材料对儿童眼眶骨折来说是最为适合的材料[53]。可吸收材料对儿童眶内组织有足够的支撑力,同时基于儿童眼眶发育不完全的特性,相比于永久性固定的不可吸收材料来说,可吸收材料自动降解后不会对儿童眼眶的发育带来影响。因此,相比于成人,儿童眼眶骨折最理想的修复材料是可吸收材料。

4 展望

      不同的植入材料在临床应用中有各自的优缺点,临床医生为患者选择材料时需要综合考虑多种因素。理想的植入材料应同时具备易获得、生物相容性好、可塑性高、可降解、有足够的支撑强度、影像学易观察、价格便宜等特点,因此,可吸收材料未来可能具有更好的发展前景。组织工程骨也在深入研究阶段,未来可能成为更理想的骨替代材料。同时近年来3D打印技术和术中导航系统逐渐在手术中应用, 可以有效弥补部分植入材料的不足,为医生提供更多选择。

开放获取声明

    本文适用于知识共享许可协议 (Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/
1、刘伟, 刘韶瑞, 施沃栋, 等. 可吸收眶底板在眼眶骨折手术中的应 用[ J]. 国际眼科杂志, 2020, 20(1): 181-185.
LIU Wei, LIU Shaorui, SHI Wodong, et al. Clinical application of resorbable plate in orbital fracture surgery[ J]. International Eye Science, 2020, 20(1): 181-185.
刘伟, 刘韶瑞, 施沃栋, 等. 可吸收眶底板在眼眶骨折手术中的应 用[ J]. 国际眼科杂志, 2020, 20(1): 181-185.
LIU Wei, LIU Shaorui, SHI Wodong, et al. Clinical application of resorbable plate in orbital fracture surgery[ J]. International Eye Science, 2020, 20(1): 181-185.
2、王彬, 卜战云. 青少年眼眶爆裂性骨折修复手术的临床分析. 中 华眼外伤职业眼病杂志, 2020, 42(4): 241-245.
WANG Bing, BU Zhanyun. Clinical analysis of the repairing surgery for adolescent orbital blow-out fractures[ J]. Chinese Journal of Ocular Trauma and Occupational Eye Disease, 2020, 42(4): 241-245.
王彬, 卜战云. 青少年眼眶爆裂性骨折修复手术的临床分析. 中 华眼外伤职业眼病杂志, 2020, 42(4): 241-245.
WANG Bing, BU Zhanyun. Clinical analysis of the repairing surgery for adolescent orbital blow-out fractures[ J]. Chinese Journal of Ocular Trauma and Occupational Eye Disease, 2020, 42(4): 241-245.
3、中华医学会眼科学分会眼整形眼眶病学组. 眼眶爆裂性骨折诊 疗专家共识(2014年)[ J]. 中华眼科杂志, 2014, 50(8): 624-625.
Oculoplastic and Orbital Disease Group of Chinese Ophthalmological Society of Chinese Medical Association. Expert consensus on diagnosis and treatment of orbital blow-out fractures (2014)[ J]. Chinese Journal of Ophthalmology, 2014, 50(8): 624-625.
中华医学会眼科学分会眼整形眼眶病学组. 眼眶爆裂性骨折诊 疗专家共识(2014年)[ J]. 中华眼科杂志, 2014, 50(8): 624-625.
Oculoplastic and Orbital Disease Group of Chinese Ophthalmological Society of Chinese Medical Association. Expert consensus on diagnosis and treatment of orbital blow-out fractures (2014)[ J]. Chinese Journal of Ophthalmology, 2014, 50(8): 624-625.
4、Sivam A, Enninghorst N. The dilemma of reconstructive material choice for orbital floor fracture: a narrative review[ J]. Medicines (Basel), 2022, 9(1): 6.Sivam A, Enninghorst N. The dilemma of reconstructive material choice for orbital floor fracture: a narrative review[ J]. Medicines (Basel), 2022, 9(1): 6.
5、Yamanaka Y, Watanabe A, Rajak SN, et al. Correlation between surgical timing and postoperative ocular motility in orbital blowout fractures[ J]. Graefes Arch Clin Exp Ophthalmol, 2022, 260(1): 319-325.Yamanaka Y, Watanabe A, Rajak SN, et al. Correlation between surgical timing and postoperative ocular motility in orbital blowout fractures[ J]. Graefes Arch Clin Exp Ophthalmol, 2022, 260(1): 319-325.
6、Patel S, Shokri T, Ziai K, et al. Controversies and contemporary management of orbital floor fractures[ J]. Craniomaxillofac Trauma Reconstr, 2022, 15(3): 237-245.Patel S, Shokri T, Ziai K, et al. Controversies and contemporary management of orbital floor fractures[ J]. Craniomaxillofac Trauma Reconstr, 2022, 15(3): 237-245.
7、Valencia MR, Miyazaki H, Ito M, et al. Radiological findings of orbital blowout fractures: a review[ J]. Orbit, 2021, 40(2): 98-109.Valencia MR, Miyazaki H, Ito M, et al. Radiological findings of orbital blowout fractures: a review[ J]. Orbit, 2021, 40(2): 98-109.
8、Wood J, Adeoye J. Literature Review to create evidence based care pathway for isolated adult orbital blowout fractures[ J]. Strabismus, 2021, 29(2): 120-124.Wood J, Adeoye J. Literature Review to create evidence based care pathway for isolated adult orbital blowout fractures[ J]. Strabismus, 2021, 29(2): 120-124.
9、Schlund M, Lutz JC, Sentucq C, et al. Prediction of post-traumatic enophthalmos based on orbital volume measurements: a systematic review[ J]. J Oral Maxillofac Surg, 2020, 78(11): 2032-2041.Schlund M, Lutz JC, Sentucq C, et al. Prediction of post-traumatic enophthalmos based on orbital volume measurements: a systematic review[ J]. J Oral Maxillofac Surg, 2020, 78(11): 2032-2041.
10、Hsieh PJ, Liao HT. Outcome analysis of surgical timing in pediatric orbital trapdoor fracture with different entrapment contents: a retrospective study[ J]. Children (Basel), 2022, 9(3): 398.Hsieh PJ, Liao HT. Outcome analysis of surgical timing in pediatric orbital trapdoor fracture with different entrapment contents: a retrospective study[ J]. Children (Basel), 2022, 9(3): 398.
11、Moe KS, Murr AH, Wester ST. Orbital fractures[ J]. Facial Plast Surg Clin North Am, 2018, 26(2): 237-251.Moe KS, Murr AH, Wester ST. Orbital fractures[ J]. Facial Plast Surg Clin North Am, 2018, 26(2): 237-251.
12、Dubois L, Dillon J, Jansen J, et al. Ongoing debate in clinical decision making in orbital fractures: indications, timing, and biomaterials[ J]. Atlas Oral Maxillofac Surg Clin North Am, 2021, 29(1): 29-39.Dubois L, Dillon J, Jansen J, et al. Ongoing debate in clinical decision making in orbital fractures: indications, timing, and biomaterials[ J]. Atlas Oral Maxillofac Surg Clin North Am, 2021, 29(1): 29-39.
13、Ellis E 3rd, Tan Y. Assessment of internal orbital reconstructions for pure blowout fractures: cranial bone grafts versus titanium mesh[ J]. J Oral Maxillofac Surg, 2003, 61(4): 442-453.Ellis E 3rd, Tan Y. Assessment of internal orbital reconstructions for pure blowout fractures: cranial bone grafts versus titanium mesh[ J]. J Oral Maxillofac Surg, 2003, 61(4): 442-453.
14、Nikunen M, Rajantie H, Marttila E, et al. Implant malposition and revision surgery in primary orbital fracture reconstructions[ J]. J Craniomaxillofac Surg, 2021, 49(9): 837-844.Nikunen M, Rajantie H, Marttila E, et al. Implant malposition and revision surgery in primary orbital fracture reconstructions[ J]. J Craniomaxillofac Surg, 2021, 49(9): 837-844.
15、Mangan MS, Goker AE, Yurttaser Ocak S, et al. Comparison of nasoseptal cartilage graft versus titanium mesh in reconstruction of pure orbital blowout fractures[ J]. J Craniofac Surg, 2021, 32(4): 1511-1514.Mangan MS, Goker AE, Yurttaser Ocak S, et al. Comparison of nasoseptal cartilage graft versus titanium mesh in reconstruction of pure orbital blowout fractures[ J]. J Craniofac Surg, 2021, 32(4): 1511-1514.
16、Düzgün S, Kayahan Sirkeci B. Comparison of post-operative outcomes of graft materials used in reconstruction of blow-out fractures[ J]. Ulus Travma Acil Cerrahi Derg, 2020, 26(4): 538-544.Düzgün S, Kayahan Sirkeci B. Comparison of post-operative outcomes of graft materials used in reconstruction of blow-out fractures[ J]. Ulus Travma Acil Cerrahi Derg, 2020, 26(4): 538-544.
17、Canzi G, Corradi F, Novelli G, et al. "6 Anatomical Landmarks" technique for satisfactory free-hand orbital reconstruction with standard preformed titanium mesh[ J]. Craniomaxillofac Trauma Reconstr, 2022, 15(1): 51-57.Canzi G, Corradi F, Novelli G, et al. "6 Anatomical Landmarks" technique for satisfactory free-hand orbital reconstruction with standard preformed titanium mesh[ J]. Craniomaxillofac Trauma Reconstr, 2022, 15(1): 51-57.
18、Chattopadhyay C, Dev V, Pilania D, et al. Reconstruction of orbital floor fractures with titanium micromesh: our experience[ J]. J Maxillofac Oral Surg, 2022, 21(2): 369-378.Chattopadhyay C, Dev V, Pilania D, et al. Reconstruction of orbital floor fractures with titanium micromesh: our experience[ J]. J Maxillofac Oral Surg, 2022, 21(2): 369-378.
19、Rajendiran S, Krishnan B. A stepwise guide to freehand bending of orbital floor mesh[ J]. Plast Reconstr Surg Glob Open, 2022, 10(3): e4159.Rajendiran S, Krishnan B. A stepwise guide to freehand bending of orbital floor mesh[ J]. Plast Reconstr Surg Glob Open, 2022, 10(3): e4159.
20、余进海, 徐柒华, 王耀华, 等. 眼眶爆裂性骨折修复材料的应用研 究进展[ J]. 中华眼科杂志, 2019, 55(11): 876-880.
YU Jinhai, XU Qihua, WANG Yaohua, et al. Advances in the research and application of orbital blowout fracture repair material[ J]. Chinese Journal of Ophthalmology, 2019, 55(11): 876-880.
余进海, 徐柒华, 王耀华, 等. 眼眶爆裂性骨折修复材料的应用研 究进展[ J]. 中华眼科杂志, 2019, 55(11): 876-880.
YU Jinhai, XU Qihua, WANG Yaohua, et al. Advances in the research and application of orbital blowout fracture repair material[ J]. Chinese Journal of Ophthalmology, 2019, 55(11): 876-880.
21、李玲玲. Medpor治疗眼眶爆裂性骨折的临床疗效分析[ J]. 中国 实用医药, 2021, 16(2): 102-103.
LI Lingling. Clinical analysis of Medpor in the treatment of orbital blow-out fracture[ J]. China Practical Medical, 2021, 16(2): 102-103.
李玲玲. Medpor治疗眼眶爆裂性骨折的临床疗效分析[ J]. 中国 实用医药, 2021, 16(2): 102-103.
LI Lingling. Clinical analysis of Medpor in the treatment of orbital blow-out fracture[ J]. China Practical Medical, 2021, 16(2): 102-103.
22、Sp?ter T, Menger MD, Laschke MW. Vascularization strategies for porous polyethylene implants[ J]. Tissue Eng Part B Rev, 2021, 27(1): 29-38.Sp?ter T, Menger MD, Laschke MW. Vascularization strategies for porous polyethylene implants[ J]. Tissue Eng Part B Rev, 2021, 27(1): 29-38.
23、Gupta S, Mehrotra D, Singh PK, et al. Quality of life after reconstruction of traumatic orbital floor defects using titanium mesh and medpore: A randomised controlled trial[ J]. J Oral Biol Craniofac Res, 2021, 11(2): 200-203.Gupta S, Mehrotra D, Singh PK, et al. Quality of life after reconstruction of traumatic orbital floor defects using titanium mesh and medpore: A randomised controlled trial[ J]. J Oral Biol Craniofac Res, 2021, 11(2): 200-203.
24、Marella VG, Rohit, Khetrapal P, et al. Titanium mesh versus medpor implant in orbital floor reconstructions: a comparative study[ J]. J Pharm Bioallied Sci, 2021, 13(Suppl 1): S76-S79. Marella VG, Rohit, Khetrapal P, et al. Titanium mesh versus medpor implant in orbital floor reconstructions: a comparative study[ J]. J Pharm Bioallied Sci, 2021, 13(Suppl 1): S76-S79.
25、王星力. Medpor骨板在眼眶爆裂性骨折修复术中的应用分 析[ J]. 中国实用医药, 2020, 15(28): 76-78.
WANG Xingli. Application of Medpor bone plate in repair of orbital blow-out fracture[ J]. China Practical Medical, 2020, 15(28): 76-78.
王星力. Medpor骨板在眼眶爆裂性骨折修复术中的应用分 析[ J]. 中国实用医药, 2020, 15(28): 76-78.
WANG Xingli. Application of Medpor bone plate in repair of orbital blow-out fracture[ J]. China Practical Medical, 2020, 15(28): 76-78.
26、Blessing NW, Rong AJ, Tse BC, et al. Orbital bony reconstruction with presized and precontoured porous polyethylene-titanium implants[ J]. Ophthalmic Plast Reconstr Surg, 2021, 37(3): 284-289.Blessing NW, Rong AJ, Tse BC, et al. Orbital bony reconstruction with presized and precontoured porous polyethylene-titanium implants[ J]. Ophthalmic Plast Reconstr Surg, 2021, 37(3): 284-289.
27、Peng MY, Merbs SL, Grant MP, et al. Orbital fracture repair outcomes with preformed titanium mesh implants and comparison to porous polyethylene coated titanium sheets[ J]. J Craniomaxillofac Surg, 2017, 45(2): 271-274.Peng MY, Merbs SL, Grant MP, et al. Orbital fracture repair outcomes with preformed titanium mesh implants and comparison to porous polyethylene coated titanium sheets[ J]. J Craniomaxillofac Surg, 2017, 45(2): 271-274.
28、Costa PJC, de Gauw JH, Costa Filho JZ, et al. Late complication associated with the treatment of orbital floor fracture with titanium mesh[ J]. J Craniofac Surg, 2018, 29(6): e623-e624.Costa PJC, de Gauw JH, Costa Filho JZ, et al. Late complication associated with the treatment of orbital floor fracture with titanium mesh[ J]. J Craniofac Surg, 2018, 29(6): e623-e624.
29、Jang HU, Kim SY. Biodegradable implants for orbital wall fracture reconstruction[ J]. Arch Craniofac Surg, 2020, 21(2): 99-105.Jang HU, Kim SY. Biodegradable implants for orbital wall fracture reconstruction[ J]. Arch Craniofac Surg, 2020, 21(2): 99-105.
30、Esmail MEK, Ibrahiem MFK, Abdallah RMA, et al. Resorbable polylactic acid polymer plates in repair of blow-out orbital floor fractures[ J]. Eur J Ophthalmol, 2021, 31(3): 1384-1390.Esmail MEK, Ibrahiem MFK, Abdallah RMA, et al. Resorbable polylactic acid polymer plates in repair of blow-out orbital floor fractures[ J]. Eur J Ophthalmol, 2021, 31(3): 1384-1390.
31、Vasile VA, Istrate S, Iancu RC, et al. Biocompatible materials for orbital wall reconstruction—an overview[ J]. Materials (Basel), 2022, 15(6): 2183.Vasile VA, Istrate S, Iancu RC, et al. Biocompatible materials for orbital wall reconstruction—an overview[ J]. Materials (Basel), 2022, 15(6): 2183.
32、Chu SG, Lee JS, Lee JW, et al. Comparisons among four types of absorbable plates used for internal fixation of zygomaticomaxillary complex fractures[ J]. J Craniomaxillofac Surg, 2019, 47(3): 383-388.Chu SG, Lee JS, Lee JW, et al. Comparisons among four types of absorbable plates used for internal fixation of zygomaticomaxillary complex fractures[ J]. J Craniomaxillofac Surg, 2019, 47(3): 383-388.
33、Park HY, Kim TH, Yoon JS, et al. Quantitative assessment of increase in orbital volume after orbital floor fracture reconstruction using a bioabsorbable implant[ J]. Graefes Arch Clin Exp Ophthalmol, 2022, 260(9): 3027-3036.Park HY, Kim TH, Yoon JS, et al. Quantitative assessment of increase in orbital volume after orbital floor fracture reconstruction using a bioabsorbable implant[ J]. Graefes Arch Clin Exp Ophthalmol, 2022, 260(9): 3027-3036.
34、Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers[ J]. J Polym Sci B Polym Phys, 2011, 49(12): 832-864.Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers[ J]. J Polym Sci B Polym Phys, 2011, 49(12): 832-864.
35、Pilling E, Mai R, Theissig F, et al. An experimental in vivo analysis of the resorption to ultrasound activated pins (Sonic weld) and standard biodegradable screws (ResorbX) in sheep[ J]. Br J Oral Maxillofac Surg, 2007, 45(6): 447-450.Pilling E, Mai R, Theissig F, et al. An experimental in vivo analysis of the resorption to ultrasound activated pins (Sonic weld) and standard biodegradable screws (ResorbX) in sheep[ J]. Br J Oral Maxillofac Surg, 2007, 45(6): 447-450.
36、Hollier LH, Rogers N, Berzin E, et al. Resorbable mesh in the treatment of orbital floor fractures[ J]. J Craniofac Surg, 2001, 12(3): 242-246.Hollier LH, Rogers N, Berzin E, et al. Resorbable mesh in the treatment of orbital floor fractures[ J]. J Craniofac Surg, 2001, 12(3): 242-246.
37、Pillai CK, Sharma CP. Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance[ J]. J Biomater Appl, 2010, 25(4): 291-366.Pillai CK, Sharma CP. Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance[ J]. J Biomater Appl, 2010, 25(4): 291-366.
38、Pyh?lt? T, Lapinsuo M, P?ti?l? H, et al. Fixation of distal femoral osteotomies with self-reinforced poly(L/DL)lactide 70:30 and self- reinforced poly(L/DL)lactide 70: 30/bioactive glass composite rods. an experimental study on rabbits[ J]. J Biomater Sci Polym Ed, 2005, 16(6): 725-744.Pyh?lt? T, Lapinsuo M, P?ti?l? H, et al. Fixation of distal femoral osteotomies with self-reinforced poly(L/DL)lactide 70:30 and self- reinforced poly(L/DL)lactide 70: 30/bioactive glass composite rods. an experimental study on rabbits[ J]. J Biomater Sci Polym Ed, 2005, 16(6): 725-744.
39、Ramesh S, Hubschman S, Goldberg R . Resorbable implants for orbital fractures: a systematic review[ J]. Ann Plast Surg, 2018, 81(3): 372-379.Ramesh S, Hubschman S, Goldberg R . Resorbable implants for orbital fractures: a systematic review[ J]. Ann Plast Surg, 2018, 81(3): 372-379.
40、Tong SY, Wang Z , Lim PN, etal . Uniformly - dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application[ J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 2): 1149-1155.Tong SY, Wang Z , Lim PN, etal . Uniformly - dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application[ J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 2): 1149-1155.
41、Xavier M, Farez N, Salvatierra PL, et al. Biological performance of a bioabsorbable poly (L-lactic acid) produced in polymerization unit: in vivo studies[ J]. F1000Res, 2021, 10: 1275.Xavier M, Farez N, Salvatierra PL, et al. Biological performance of a bioabsorbable poly (L-lactic acid) produced in polymerization unit: in vivo studies[ J]. F1000Res, 2021, 10: 1275.
42、Hwang K. In vivo degradation of forged-unsintered hydroxyapatite and poly-L-lactide mesh used for orbital reconstruction[ J]. J Craniofac Surg, 2019, 30(4): 1208-1210.Hwang K. In vivo degradation of forged-unsintered hydroxyapatite and poly-L-lactide mesh used for orbital reconstruction[ J]. J Craniofac Surg, 2019, 30(4): 1208-1210.
43、Kono S, Lee PAL, Kakizaki H, et al. Orbital haematoma after orbital fracture repair using silicone, polytetrafluorethylene, and poly-L-lactic acid/hydroxyapatite implants[ J]. Br J Oral Maxillofac Surg, 2021, 59(9): 1036-1039.Kono S, Lee PAL, Kakizaki H, et al. Orbital haematoma after orbital fracture repair using silicone, polytetrafluorethylene, and poly-L-lactic acid/hydroxyapatite implants[ J]. Br J Oral Maxillofac Surg, 2021, 59(9): 1036-1039.
44、Kohyama K, Ishihara T, Tsuboi Y, et al. Intermediate outcomes of orbital wall reconstruction using different alloplastic materials: which is ideal?[ J]. Plast Reconstr Surg, 2022, 150(4): 865-875.Kohyama K, Ishihara T, Tsuboi Y, et al. Intermediate outcomes of orbital wall reconstruction using different alloplastic materials: which is ideal?[ J]. Plast Reconstr Surg, 2022, 150(4): 865-875.
45、Ngo HX, Bai Y, Sha J, et al. A narrative review of u-HA/PLLA, a bioactive resorbable reconstruction material: applications in oral and maxillofacial surgery[ J]. Materials (Basel), 2021, 15(1): 150.Ngo HX, Bai Y, Sha J, et al. A narrative review of u-HA/PLLA, a bioactive resorbable reconstruction material: applications in oral and maxillofacial surgery[ J]. Materials (Basel), 2021, 15(1): 150.
46、Cha HG, Nam SM, Kim YB, et al. A comparative study of porous polyethylene versus absorbable polydextro- and polylevolactic-lactide plate in reconstruction of isolated medial orbital wall fracture[ J]. J Plast Reconstr Aesthet Surg, 2022, 75(2): 782-787.Cha HG, Nam SM, Kim YB, et al. A comparative study of porous polyethylene versus absorbable polydextro- and polylevolactic-lactide plate in reconstruction of isolated medial orbital wall fracture[ J]. J Plast Reconstr Aesthet Surg, 2022, 75(2): 782-787.
47、Seen S, Young S, Lang SS, et al. Orbital implants in orbital fracture reconstruction: a ten-year series[ J]. Craniomaxillofac Trauma Reconstr, 2021, 14(1): 56-63.Seen S, Young S, Lang SS, et al. Orbital implants in orbital fracture reconstruction: a ten-year series[ J]. Craniomaxillofac Trauma Reconstr, 2021, 14(1): 56-63.
48、Seifert LB, Mainka T, Herrera-Vizcaino C, et al. Orbital floor fractures: epidemiology and outcomes of 1594 reconstructions[ J]. Eur J Trauma Emerg Surg, 2022, 48(2): 1427-1436.Seifert LB, Mainka T, Herrera-Vizcaino C, et al. Orbital floor fractures: epidemiology and outcomes of 1594 reconstructions[ J]. Eur J Trauma Emerg Surg, 2022, 48(2): 1427-1436.
49、Touil H, Mabrouk H, Msellmi F, et al. Reconstruction of orbital floor fractures with Polypropylen mesh[ J]. Tunis Med, 2020, 98(1): 49-54.Touil H, Mabrouk H, Msellmi F, et al. Reconstruction of orbital floor fractures with Polypropylen mesh[ J]. Tunis Med, 2020, 98(1): 49-54.
50、Kim EH, Lee SH. Early hypoglobus in orbital floor reconstruction with resorbable implants[ J]. J Craniofac Surg, 2021, 32(4): 1322-1324.Kim EH, Lee SH. Early hypoglobus in orbital floor reconstruction with resorbable implants[ J]. J Craniofac Surg, 2021, 32(4): 1322-1324.
51、Steinmassl O, Laimer J, Offermanns V, et al. Clinical outcome following surgical repair of small versus large orbital floor fractures using polyglactin 910/polydioxanone (Ethisorb?)[ J]. Materials (Basel), 2020, 13(1): 206. Steinmassl O, Laimer J, Offermanns V, et al. Clinical outcome following surgical repair of small versus large orbital floor fractures using polyglactin 910/polydioxanone (Ethisorb?)[ J]. Materials (Basel), 2020, 13(1): 206.
52、刘伟, 林明, 施沃栋. 可吸收眶底板在儿童Trapdoor眼眶骨折修复术中的应用[ J]. 国际眼科杂志, 2021, 21(8): 1482-1485.
LIU Wei, LIN Ming, SHI Wodong. Application of absorbable plate in the repairment of orbital Trapdoor fracture in children[ J]. International Eye Science, 2021, 21(8): 1482-1485.
刘伟, 林明, 施沃栋. 可吸收眶底板在儿童Trapdoor眼眶骨折修复术中的应用[ J]. 国际眼科杂志, 2021, 21(8): 1482-1485.
LIU Wei, LIN Ming, SHI Wodong. Application of absorbable plate in the repairment of orbital Trapdoor fracture in children[ J]. International Eye Science, 2021, 21(8): 1482-1485.
53、Zhao Y, Sun J, Li Z, et al. Bioresorbable implants in reduction of paediatric zygomaticomaxillary complex fractures concurrent with internal orbital reconstruction[ J]. J Craniofac Surg, 2022, 33(7): 2138-2141.Zhao Y, Sun J, Li Z, et al. Bioresorbable implants in reduction of paediatric zygomaticomaxillary complex fractures concurrent with internal orbital reconstruction[ J]. J Craniofac Surg, 2022, 33(7): 2138-2141.
1、郭丽旭,陈擎宇,袁钊辉等.眼眶异物DR角膜缝环定位法与CT三维重建定位法临床价值评估[J].中山大学学报(医学科学版),2023,44(6):1016-1021.
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录