您的位置: 首页 > 2017年5月 第2卷 第5期 > 文字全文

AB011. A collagen-alginate-based cell-encapsulation intraocular implant for retinal disease therapy

AB011. A collagen-alginate-based cell-encapsulation intraocular implant for retinal disease therapy

来源期刊: Annals of Eye Science | 2017年5月 第2卷 第5期 - 发布时间:阅读量:708
作者:
关键词:
Neuroprotection neurotrophic factor sustained drug release RCS rat
Neuroprotection neurotrophic factor sustained drug release RCS rat
DOI:

Abstract: Encapsulated-cell therapy (ECT) is an attractive approach for continuously delivering freshly synthesized therapeutics to treat sight-threatening posterior eye diseases, circumventing repeated invasive intravitreal injections and improving local drug availability clinically. Composite collagen-alginate (CAC) scaffold in ECT contains an interpenetrating network that integrates the physical and biological merits of its constituents, including biocompatibility, mild gelling properties and availability. An injectable CAC system that supported the growth of HEK293 cells with sustainable glial-derived neurotrophic factor (GDNF) delivery has been developed. Continuous GDNF delivery was detected in culture and in healthy rat eyes for at least 14 days. The gels were well tolerated with no host tissue attachment and contained living cell colonies. Most importantly, gel implantation in dystrophic Royal College of Surgeons rat eyes for 28 days retained photoreceptors while those gels containing higher initial cell number yielded better photoreceptor rescue effect. This rescue effect is clinically relevant as photoreceptor death is a common pathology in many retinal diseases. Moreover, since cells including autologous cells can be genetically engineered to secrete various therapeutic agents, CAC gel offers a flexible system design and is a potential treatment option for other chronic neurodegenerative diseases.

Abstract: Encapsulated-cell therapy (ECT) is an attractive approach for continuously delivering freshly synthesized therapeutics to treat sight-threatening posterior eye diseases, circumventing repeated invasive intravitreal injections and improving local drug availability clinically. Composite collagen-alginate (CAC) scaffold in ECT contains an interpenetrating network that integrates the physical and biological merits of its constituents, including biocompatibility, mild gelling properties and availability. An injectable CAC system that supported the growth of HEK293 cells with sustainable glial-derived neurotrophic factor (GDNF) delivery has been developed. Continuous GDNF delivery was detected in culture and in healthy rat eyes for at least 14 days. The gels were well tolerated with no host tissue attachment and contained living cell colonies. Most importantly, gel implantation in dystrophic Royal College of Surgeons rat eyes for 28 days retained photoreceptors while those gels containing higher initial cell number yielded better photoreceptor rescue effect. This rescue effect is clinically relevant as photoreceptor death is a common pathology in many retinal diseases. Moreover, since cells including autologous cells can be genetically engineered to secrete various therapeutic agents, CAC gel offers a flexible system design and is a potential treatment option for other chronic neurodegenerative diseases.

Cite this abstract as: Lo A. A collagen-alginate-based cell-encapsulation intraocular implant for retinal disease therapy. Ann Eye Sci 2017;2:AB011. doi: 10.21037/aes.2017.AB011
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息
目录