Review Article

Choriocapillaris in non-neovascular age-related macular degeneration as evaluated by optical coherence tomography angiography

:-
 

Abstract: Dramatic advances in retinal imaging technology over the last two decades have significantly improved our understanding of the natural history and pathophysiology of non-neovascular age-related macular degeneration (AMD). Currently, aside from micronutrient supplements, there are no proven treatments for non-neovascular or dry AMD. Recently, a number of pharmacological agents have been evaluated or are under evaluation for treatment of patients with end-stage dry AMD manifesting as geographic atrophy (GA). It may preferable, however, to intervene earlier in the disease before the development of irreversible loss of visual function. Earlier intervention would require a more precise understanding of biomarkers which may increase the risk of progression from early and intermediate stages to the late stage of the disease. The development of optical coherence tomography angiography (OCTA) has allowed the layers of the retinal microcirculation and choriocapillaris (CC) to be visualized and quantified. Flow deficits in the CC have been observed to increase with age, particularly centrally, and these flow deficits appear to worsen with development and progression of AMD. As such, OCTA-based CC assessment appears to be a valuable new biomarker in our assessment and risk-stratification of AMD. Alterations in the CC may also provide new insights into the pathophysiology of the disease. Enhancement of choriocapillaris function may also prove to be a target of future therapeutic strategies or as a biomarker to monitor the effectiveness of therapy. As such, CC imaging may be anticipated to be an integral tool in the management of dry AMD.

Editorial
Review Article
Review Article

Comparison between sodium iodate and lipid peroxide murine models of age-related macular degeneration for drug evaluation—a narrative review

:-
 

Objective: In this review, non-transgenic models of age-related macular degeneration (AMD) are discussed, with focuses on murine retinal degeneration induced by sodium iodate and lipid peroxide (HpODE) as preclinical study platforms.

Background: AMD is the most common cause of vision loss in a world with an increasingly aging population. The major phenotypes of early and intermediate AMD are increased drusen and autofluorescence, Müller glia activation, infiltrated subretinal microglia and inward moving retinal pigment epithelium (RPE) cells. Intermediate AMD may progress to advanced AMD, characterized by geography atrophy and/or choroidal neovascularization (CNV). Various transgenic and non-transgenic animal models related to retinal degeneration have been generated to investigate AMD pathogenesis and pathobiology, and have been widely used as potential therapeutic evaluation platforms.

Methods: Two retinal degeneration murine models induced by sodium iodate and HpODE are described. Distinct pathological features and procedures of these two models are compared. In addition, practical protocol and material preparation and assessment methods are elaborated.

Conclusions: Retina degeneration induced by sodium iodate and HpODE in mouse eye resembles many clinical aspects of human AMD and complimentary to the existent other animal models. However, standardization of procedure and assessment protocols is needed for preclinical studies. Further studies of HpODE on different routes, doses and species will be valuable for the future extensive use. Despite many merits of murine studies, differences between murine and human should be always considered.

Study Protocol

In vitro models of retinal diseases

:-
 

Background: Continuous and primary in vitro cultures are largely used to study cellular mechanisms occurring in several pathologic-like or pathological conditions. Continuous cell lines allow to perform long-lasting experiments since they do not undergo senescence.

Methods: The immortalized Moorfields/Institute of Ophtalmology-Müller 1 (MIO-M1) cell type represents a valuable model to analyze the mechanistic pathways characterizing Müller glial cells, both in health and in disease. MIO-M1 can be used to dissect the response of these glial cells following treatments which mimic pathological condition. For instance, MIO-M1 are useful to study the response of this cell type to stress condition as the case of oxidative stress (OS) (cultured with hydrogen peroxide), pathological neovascularization (cultured with VEGF), hypoxic or hyperoxic condition (cultured in low or high oxygen chamber). On the other hand, primary cultures allow to specifically analyze cellular responses without the interference of the whole organ, although the experimental treatment is performed in vivo. Primary Müller cells can be used to perform electrophysiological analyses of different cell sites.

Discussion: We describe how to manage MIO-M1 cells and how to analyze their response to different stress conditions; moreover, we report how to isolate and identify primary Müller cells and how to perform patch clamp and single cell recordings on them.

Review Article

Animal models of uveal melanoma

:-
 

Abstract: Animal models are crucial for the study of tumorigenesis and therapies in oncology research. Though rare, uveal melanoma (UM) is the most common intraocular tumor and remains one of the most lethal cancers. Given the limitations of studying human UM cells in vitro, animal models have emerged as excellent platforms to investigate disease onset, progression, and metastasis. Since Greene’s initial studies on hamster UM, researchers have dramatically improved the array of animal models. Animals with spontaneous tumors have largely been replaced by engrafted and genetically engineered models. Inoculation techniques continue to be refined and expanded. Newer methods for directed mutagenesis have formed transgenic models to reliably study primary tumorigenesis. Human UM cell lines have been used to generate rapidly growing xenografts. Most recently, patient-derived xenografts have emerged as models that closely mimic the behavior of human UM. Separate animal models to study metastatic UM have also been established. Despite the advancements, the prognosis has only recently improved for UM patients, especially in patients with metastases. There is a need to identify and evaluate new preclinical models. To accomplish this goal, it is important to understand the origin, methods, advantages, and disadvantages of current animal models. In this review, the authors present current and historic animal models for the experimental study of UM. The strengths and shortcomings of each model are discussed and potential future directions are explored.

Original Article

Sodium iodate-induced retina degeneration observed in non-separate sclerochoroid/retina pigment epithelium/retina whole mounts

:-
 

Background: Sodium iodate (SI) is a chemical widely applied to induce retina degeneration in animal models. SI treatment caused formation of rosettes/folds in the outer nuclear layer (ONL) of the rat retina, but it was previously unclear whether SI also forms rosettes in mice. In addition, SI induced retina degeneration was never addressed in non-separate sclerochoroid/retina pigment epithelium/retina whole mount. Here we displayed features of retina degeneration including rosette formation in mice and developed a morphological analytic assessment using sclerochoroid/retina pigment epithelium/retina whole mounts.

Methods: SI was intraperitoneally injected in Sprague-Dawley (SD) rats and C57BL/6J mice using a single dose (50 mg/kg) or with a dose range (10 to 50 mg/kg) in BALB/C mice. Rat retinas were investigated up to 2-week post-injection by histology and whole mounts, and mouse retinas were investigated up to 3-week post-injection by histology, fluorescent staining of sections and/or sclerochoroid/retina pigment epithelium/retina whole mounts for the morphological evaluations of the SI-induced retina damage.

Results: SI-induced retina damage caused photoreceptor (PR) degeneration and rosettes/folds formation, as well as retina pigment epithelium degeneration and inward migration. It displayed mixed nuclei from choroid to PRs, due to layer disorganization, as shown by single horizontal images in the sclerochoroid/retina pigment epithelium/retina whole mounts. Measurement of the PR rosette area induced by SI provided a quantitative, morphological evaluation of retina degeneration.

Conclusions: The method of non-separate sclerochoroid/retina pigment epithelium/retina whole staining and mount allows us to observe the integral horizontal view of damage from sclera to PR layers, which cannot be addressed by using sectioned and separate whole mount methods. This method is applicable for morphological evaluation of retina damage, especially in the subretinal layer.

Editorial
Perspective

Submacular hemorrhage: treatment update and remaining challenges

:-
 

Abstract: Submacular haemorrhage (SMH) is a sight threatening complication that can occur in exudative age related macular degeneration (AMD), but has been described to occur more frequently in eyes with polypoidal choroidal vasculopathy (PCV). Left untreated, SMH carries a grave visual prognosis. Thus, expedient diagnosis and effective management of this complication is of paramount importance. The treatment strategies for SMH include (I) displacement of blood from the fovea, usually by injection of an expansile gas; (II) pharmacologic clot lysis such as with recombinant tissue plasminogen activator (rtPA); and (III) treatment of the underlying choroidal neovascularization (CNV) or PCV, such as with anti-vascular endothelial growth factor (anti-VEGF) agents. These three strategies have been employed in isolation or in combination, some concurrently and others in stages. rtPA has demonstrable effect on the liquefaction of submacular clots but there are remaining uncertainties with regards to the dose, safety and the timing of initial and repeat treatments. Potential side effects of rtPA include retinal pigment epithelial toxicity, increased risk of breakthrough vitreous haemorrhage and systemic toxicity. In cases presenting early, pneumatic displacement alone with anti-VEGF may be sufficient. Anti-VEGF monotherapy is a viable treatment option particularly in patients with thinner SMH and those who are unable to posture post pneumatic displacement.

Review Article

Subthreshold laser systems: a narrative review of the current status and advancements for retinal diseases

:-
 

Background and Objective: Subthreshold laser therapy has emerged as a therapeutic alternative to traditional laser photocoagulation for certain ophthalmic diseases including central serous chorioretinopathy (CSCR), diabetic macular edema (DME), macular edema secondary to branch retinal vein occlusion (BRVO), and age-related macular degeneration (AMD). The objective of this paper is to review and discuss the clinical applications of subthreshold laser and the mechanisms of different subthreshold laser techniques including subthreshold micropulse laser (SMPL), selective retina therapy (SRT), subthreshold nanosecond laser (SNL), endpoint management (EpM), and transpupillary thermotherapy (TTT).

Methods: A narrative review of English literature and publicly available information published before November 2021 from literature databases and computerized texts. We discuss the currently available subthreshold laser systems and the advancements made to perform different subthreshold laser techniques for various ophthalmic diseases. We highlight various clinical studies and therapeutic techniques that have been conducted to further understand the effectiveness of subthreshold laser in the clinical setting. We conclude the article by covering emerging subthreshold laser systems that are currently being developed for future clinical use. The PubMed database was utilized for peer-reviewed articles and pertinent information on subthreshold systems was cited from publicly available online websites covering specific systems.

Key Content and Findings: Various subthreshold laser systems have been developed to treat certain retinal diseases. Several systems are currently in development for future clinical applications.

Conclusions: While conventional laser photocoagulation has been effective in treating various retinal diseases, subthreshold laser systems aim to provide a therapeutic effect without visible signs of damage to the underlying tissue. This technology may be particularly effective in treating macular disorders. Further clinical studies are needed to evaluate their role in the management of retinal diseases.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息