Review Article

A revisit to staining reagents for neuronal tissues

:-
 

Abstract: In the early days of deciphering the injured neuronal tissues led to the realization that contrast is necessary to discern the parts of the recovering tissues from the damaged ones. Early attempts relied on available (and often naturally occurring) staining substances. Incidentally, the active ingredients of most of them were small molecules. With the advent of time, the knowledge of chemistry helped identify compounds and conditions for staining. The staining reagents were even found to enhance the visibility of the organelles. Silver impregnation identification of Golgi bodies was discovered in owl optic nerve. Staining reagents since the late 1800s were widely used across all disciplines and for nerve tissue and became a key contributor to advancement in nerve-related research. The use of these reagents provided insight into the organization of the neuronal tissues and helped distinguish nerve degeneration from regeneration. The neuronal staining reagents have played a fundamental role in the clinical research facilitating the identification of biological mechanisms underlying eye and neuropsychiatric diseases. We found a lack of systematic description of all staining reagents, whether they had been used historically or currently used. There is a lack of readily available information for optimal staining of different neuronal tissues for a given purpose. We present here a grouping of the reagents based on their target location: (I) the central nervous system (CNS), (II) the peripheral nervous system (PNS), or (III) both. The biochemical reactions of most of the staining reagents is based on acidic or basic pH and specific reaction partners such as organelle or biomolecules that exists within the given tissue type. We present here a summary of the chemical composition, optimal staining condition, use for given neuronal tissue and, where possible, historic usage. Several biomolecules such as lipids and metabolites lack specific antibodies. Despite being non-specific the reagents enhance contrast and provide corroboration about the microenvironment. In future, these reagents in combination with emerging techniques such as imaging mass spectrometry and kinetic histochemistry will validate or expand our understanding of localization of molecules within tissues or cells that are important for ophthalmology and vision science.

Original Article

RegenX: an NLP recommendation engine for neuroregeneration topics over time

:-
 

Background: In this investigation, we explore the literature regarding neuroregeneration from the 1700s to the present. The regeneration of central nervous system neurons or the regeneration of axons from cell bodies and their reconnection with other neurons remains a major hurdle. Injuries relating to war and accidents attracted medical professionals throughout early history to regenerate and reconnect nerves. Early literature till 1990 lacked specific molecular details and is likely provide some clues to conditions that promoted neuron and/or axon regeneration. This is an avenue for the application of natural language processing (NLP) to gain actionable intelligence. Post 1990 period saw an explosion of all molecular details. With the advent of genomic, transcriptomics, proteomics, and other omics—there is an emergence of big data sets and is another rich area for application of NLP. How the neuron and/or axon regeneration related keywords have changed over the years is a first step towards this endeavor.

Methods: Specifically, this article curates over 600 published works in the field of neuroregeneration. We then apply a dynamic topic modeling algorithm based on the Latent Dirichlet allocation (LDA) algorithm to assess how topics cluster based on topics.

Results: Based on how documents are assigned to topics, we then build a recommendation engine to assist researchers to access domain-specific literature based on how their search text matches to recommended document topics. The interface further includes interactive topic visualizations for researchers to understand how topics grow closer and further apart, and how intra-topic composition changes over time.

Conclusions: We present a recommendation engine and interactive interface that enables dynamic topic modeling for neuronal regeneration.

Editorial
Perspective

Submacular hemorrhage: treatment update and remaining challenges

:-
 

Abstract: Submacular haemorrhage (SMH) is a sight threatening complication that can occur in exudative age related macular degeneration (AMD), but has been described to occur more frequently in eyes with polypoidal choroidal vasculopathy (PCV). Left untreated, SMH carries a grave visual prognosis. Thus, expedient diagnosis and effective management of this complication is of paramount importance. The treatment strategies for SMH include (I) displacement of blood from the fovea, usually by injection of an expansile gas; (II) pharmacologic clot lysis such as with recombinant tissue plasminogen activator (rtPA); and (III) treatment of the underlying choroidal neovascularization (CNV) or PCV, such as with anti-vascular endothelial growth factor (anti-VEGF) agents. These three strategies have been employed in isolation or in combination, some concurrently and others in stages. rtPA has demonstrable effect on the liquefaction of submacular clots but there are remaining uncertainties with regards to the dose, safety and the timing of initial and repeat treatments. Potential side effects of rtPA include retinal pigment epithelial toxicity, increased risk of breakthrough vitreous haemorrhage and systemic toxicity. In cases presenting early, pneumatic displacement alone with anti-VEGF may be sufficient. Anti-VEGF monotherapy is a viable treatment option particularly in patients with thinner SMH and those who are unable to posture post pneumatic displacement.

Editorial
Study Protocol

Ex vivo models of retinal neurovascular diseases

:-
 

Background: The ex vivo model represented by mouse retinal explants in culture is a useful experimental model to investigate the molecular mechanism involved in neurovascular diseases such as diabetic retinopathy (DR). It ensures an experimental overview with more complete respect to isolate cells and reduce problems in terms of accessibility and management with respect to in vivo model. In particular, it allows the evaluation of the relationship between retinal cells in response to the typical stressors involved in DR pathogenesis.

Methods: Ex vivo retinal fragments derived from 3- to 5-week-old C57BL/6J mice. In particular, after dissection, the retina is cut into 4 separate fragments and transferred onto inserts placed with ganglion cells up. Once in culture, the explants could be treated in stress conditions typical of DR. In particular, this study protocol describes the procedure for the preparation and the culture of retinal explants with specific metabolic stressors such as high glucose (HG), advanced glycation end product (AGE), and oxidative stress (OS). In the end, this paper provides the protocols to perform molecular analyses in order to evaluate the response of retinal explants to stress and/or neuroprotective treatments.

Discussion: The cultured retinal explants represent an ex vivo experimental model to investigate the molecular mechanisms involved in neurovascular diseases such as DR. Moreover, they could be useful to test the effect of neuroprotective compounds in response to metabolic stressors in a fewer time respect to an in vivo model. In conclusion, retinal explants in culture represent a valuable experimental model to conduct further studies to better understand the pathophysiology of DR.

Study Protocol

Experimental models of retinopathy of prematurity

:-
 

Background: Retinopathy of prematurity (ROP) is considered as the most common reason for blindness in children, particularly in preterm infants. The disease is characterized by the dysregulation of angiogenic mechanisms due to preterm birth, leading ultimately to vascular abnormalities and pathological neovascularization (NV). Retinal detachment and vision loss could represent a concrete risk connected to the most severe forms of ROP, also characterized by inflammation and retinal cell death.

Methods: During the last decades, many animal models of oxygen-induced retinopathy (OIR) have been recognized as useful tools to study the mechanisms of disease, since they reproduce the hallmarks typical of human ROP. Indeed, modulation of retinal vascular development by exposure to different oxygen protocols is possible in these animals, reproducing the main pathological phenotypes of the disease. The easy quantification of abnormal NV and the possibility to perform electrophysiologic, histological and molecular analyses on these models, make OIR animals a fundamental instrument in studying the pathophysiology of ROP and the effects of novel treatments against the disease.

Discussion: Here, the most commonly used OIR protocols in rodents, such as mice and rats, are described as well as the main pathological outcomes typical of these models. Despite their limitations and variables which should be considered whilst using these models, OIR models display several characteristics which have also been confirmed in human patients, validating the usefulness of such animals in the pre-clinical research of ROP.

Review Article

Subthreshold laser systems: a narrative review of the current status and advancements for retinal diseases

:-
 

Background and Objective: Subthreshold laser therapy has emerged as a therapeutic alternative to traditional laser photocoagulation for certain ophthalmic diseases including central serous chorioretinopathy (CSCR), diabetic macular edema (DME), macular edema secondary to branch retinal vein occlusion (BRVO), and age-related macular degeneration (AMD). The objective of this paper is to review and discuss the clinical applications of subthreshold laser and the mechanisms of different subthreshold laser techniques including subthreshold micropulse laser (SMPL), selective retina therapy (SRT), subthreshold nanosecond laser (SNL), endpoint management (EpM), and transpupillary thermotherapy (TTT).

Methods: A narrative review of English literature and publicly available information published before November 2021 from literature databases and computerized texts. We discuss the currently available subthreshold laser systems and the advancements made to perform different subthreshold laser techniques for various ophthalmic diseases. We highlight various clinical studies and therapeutic techniques that have been conducted to further understand the effectiveness of subthreshold laser in the clinical setting. We conclude the article by covering emerging subthreshold laser systems that are currently being developed for future clinical use. The PubMed database was utilized for peer-reviewed articles and pertinent information on subthreshold systems was cited from publicly available online websites covering specific systems.

Key Content and Findings: Various subthreshold laser systems have been developed to treat certain retinal diseases. Several systems are currently in development for future clinical applications.

Conclusions: While conventional laser photocoagulation has been effective in treating various retinal diseases, subthreshold laser systems aim to provide a therapeutic effect without visible signs of damage to the underlying tissue. This technology may be particularly effective in treating macular disorders. Further clinical studies are needed to evaluate their role in the management of retinal diseases.

Review Article
Review Article

Vitreoretinal surgical training—assessment of simulation, models, and rubrics—a narrative review

:-
 

Background and Objective: Vitreoretinal surgery requires fine micro-surgical training and handling of delicate tissue. To aid in the training of residents and fellows, unique educational modalities exist to help facilitate the development of these microsurgical skills. From virtual simulators to artificial eye models, simulation of the posterior segment has gained an increased focus in vitreoretinal surgical training programs. Development of surgical curricula for vitreoretinal training and attainment of surgical milestones has been a key component in integrating these educational training modalities. We will explore various simulators, eye models, and potential rubrics and discuss unique ways each may help and complement one another to train future vitreoretinal surgeons.

Methods: We conducted a systematic PubMed search of various review studies (from publications in English ranging from January 1978 to December 2020) discussing surgical simulators, eye models, and surgical rubrics for vitreoretinal surgery and their potential impacts upon training.

Key Contents and Findings: Our review assesses the benefits and applicability of various simulators, eye models, and surgical rubrics upon training.

Conclusions: Utilization of vitreoretinal surgical training tools may aid in complementing the hands-on surgical training experience for vitreoretinal surgical fellows. By using simulators and rubrics, we may better be able to standardize training for reaching vitreoretinal surgical milestones and providing adequate feedback to improve surgical competency and ultimately patient outcomes.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息