Brain and Perception

AB063. Contrasting effects of exogenous attention on saccades and reaches

:-
 

Background: The goal of the present study was to determine whether exogenous attentional mechanisms involved in motor planning for saccades and reaches are the same for both effectors or are independent for each effector. We compared how eye and arm movement parameters, notably reaction time and amplitude, are affected by modulating exogenous attentional visual cues at different locations relative to a target.

Methods: Thirteen participants (M =22.8, SD =1.5) were asked to perform a task involving exogenous attentional allocation and movement planning. The participants were asked to fixate and maintain their hand at an initial position on a screen in front of them (left or right of screen centre) and then, at the disappearance of the fixation cross, perform an eye or arm movement, or both, to a target square (mirror location of fixation cross). A distractor appeared momentarily just before the appearance of the target at one of seven equidistant locations on the horizontal meridian. Saccade reaction times (SRTs), reach reaction times (RRTs) and amplitudes were calculated.

Results: Compared to the neutral condition (where no distractor was presented), distractors overall did not result in a facilitation of SRTs at any location (shorter SRTs), rather only a strong inhibition (longer SRTs) as a function of distractor target distance. In contrast, RRTs showed strong facilitation at the target location and less inhibition at further distances. However, both SRTs and RRTs followed a similar pattern in that RTs were shortest closer to the target position and were increasingly longer as a function of distractor target distance. In terms of amplitude, there was no effect of the distractor on reach endpoints, whereas, for saccades, there was an averaging effect of distractor position on saccade endpoints, but only for saccades with short SRTs. These effects were similar when either effector movement was performed alone or together.

Conclusions: These findings suggest that attentional selection mechanisms have both similar and differential effects on motor planning depending on the effectors used, providing evidence for both effector independent and effector dependent attentional selection mechanisms. This study furthers understanding of the operating mechanisms of exogenous attention on eye and arm movements and the interaction between sensory and motor systems.

Brain and Perception
Brain and Perception

AB055. Eye movements in the dark: saccades to non-visual targets

:-
 

Background: Saccades are rapid and abrupt eye movements that allow us to change the point of fixation very quickly. Saccades are generally made to visual points of interest, but we can also saccade to non-visual objects that attract our attention. While there is a plethora of studies investigating saccadic eye movements to visual targets, there is very little evidence of how eye movement planning occurs when individuals are performing eye movements to non-visual targets across different sensory modalities.

Methods: Fifteen adults with normal, or corrected to normal, vision made saccades to either visual, auditory, tactile or proprioceptive targets. In the auditory condition a speaker was positioned at one of eight locations along a circle surrounding a central fixation point. In the proprioceptive condition the participant’s finger was placed at one of the eight locations. In the tactile condition participants were touched on their right forearm in one of four eccentric location, left and right of a central point. Eye movements were made in complete darkness.

Results: We compared the precision and accuracy of the eye movements to tactile, proprioceptive, and auditory targets in the dark. Overall, both precision and accuracy of movements to non-visual targets were significantly lower compared to visual targets.

Conclusions: These differences emphasize the central role of the visual system in saccade planning.

Brain and Perception

AB054. Audio—visual multiple object tracking

:-
 

Background: The ability to track objects as they move is critical for successful interaction with objects in the world. The multiple object tracking (MOT) paradigm has demonstrated that, within limits, our visual attention capacity allows us to track multiple moving objects among distracters. Very little is known about dynamic auditory attention and the role of multisensory binding in attentional tracking. Here, we examined whether dynamic sounds congruent with visual targets could facilitate tracking in a 3D-MOT task.

Methods: Participants tracked one or multiple target-spheres among identical distractor-spheres during 8 seconds of movement in a virtual cube. In the visual condition, targets were identified with a brief colour change, but were then indistinguishable from the distractors during the movement. In the audio-visual condition, the target-spheres were accompanied by a sound, which moved congruently with the change in the target’s position. Sound amplitude varied with distance from the observer and inter-aural amplitude difference varied with azimuth.

Results: Results with one target showed that performance was better in the audiovisual condition, which suggests that congruent sounds can facilitate attentional visual tracking. However, with multiple targets, the sounds did not facilitate tracking.

Conclusions: This suggests that audiovisual binding may not be possible when attention is divided between multiple targets.

Brain and Perception

AB053. Oscillatory activity specific to peripheral emotional treatment induced by a visual steady state

:-
 

Background: Research suggests that the analysis of facial expressions by a healthy brain would take place approximately 170 ms after the presentation of a facial expression in the superior temporal sulcus and the fusiform gyrus, mostly in the right hemisphere. Some researchers argue that a fast pathway through the amygdala would allow automatic and early emotional treatment around 90 ms after stimulation. This treatment would be done subconsciously, even before this stimulus is perceived and could be approximated by presenting the stimuli quickly on the periphery of the fovea. The present study aimed to identify the neural correlates of a peripheral and simultaneous presentation of emotional expressions through a frequency tagging paradigm.

Methods: The presentation of emotional facial expressions at a specific frequency induces in the visual cortex a stable and precise response to the presentation frequency [i.e., a steady-state visual evoked potential (ssVEP)] that can be used as a frequency tag (i.e., a frequency-tag to follow the cortical treatment of this stimulus. Here, the use of different specific stimulation frequencies allowed us to label the different facial expressions presented simultaneously and to obtain a reliable cortical response being associated with (I) each of the emotions and (II) the different times of presentations repeated (1/0.170 ms =~5.8 Hz, 1/0.090 ms =~10.8 Hz). To identify the regions involved in emotional discrimination, we subtracted the brain activity induced by the rapid presentation of six emotional expressions of the activity induced by the presentation of the same emotion (reduced by neural adaptation). The results were compared to the hemisphere in which attention was sought, emotion and frequency of stimulation.

Results: The signal-to-noise ratio of the cerebral oscillations referring to the treatment of the expression of fear was stronger in the regions specific to the emotional treatment when they were presented in the subjects peripheral vision, unbeknownst to them. In addition, the peripheral emotional treatment of fear at 10.8 Hz was associated with greater activation within the Gamma 1 and 2 frequency bands in the expected regions (frontotemporal and T6), as well as desynchronization in the Alpha frequency bands for the temporal regions. This modulation of the spectral power is independent of the attentional request.

Conclusions: These results suggest that the emotional stimulation of fear presented in the peripheral vision and outside the attentional framework elicit an increase in brain activity, especially in the temporal lobe. The localization of this activity as well as the optimal stimulation frequency found for this facial expression suggests that it is treated by the fast pathway of the magnocellular layers.

Brain and Perception
Review Article
Review Article

Pediatric neuro-ophthalmology: not simply neuro-ophthalmology for small adults

:-
 

Abstract: Pediatric neuro-ophthalmology is a subspecialty within neuro-ophthalmology. Pediatric neuro-ophthalmic diseases must be considered separate from their adult counterparts, due to the distinctive nature of the examination, clinical presentations, and management choices. This manuscript will highlight four common pediatric neuro-ophthalmic disorders by describing common clinical presentations, recommended management, and highlighting recent developments. Diseases discussed include pediatric idiopathic intracranial hypertension (IIH), pseudopapilledema, optic neuritis (ON) and optic pathway gliomas (OPG). The demographics, diagnosis and management of common pediatric neuro-ophthalmic disease require a working knowledge of the current research presented herein. Special attention should be placed on the differences between pediatric and adult entities such that children can be appropriately diagnosed and treated.

Review Article

Myopia prevention in Taiwan

:-
 

Abstract: Complications of myopia have become an important public health issue with serious socio-economic burdens. Prevention and treatment are both important. The Taiwan Student Vision Care Program (TSVCP) promoted by Ministry of Education (MOE) has been carried out for 3 decades in Taiwan. The myopia prevalence has increased rapidly to a high level and therefore myopia prevention has continued to be the most important item in the program. Therefore, TSVCP aims to decrease the prevalence of myopia, in order to decrease the high myopia related blindness in the future. Recently, outdoor activity has been found to be an important protective factor for myopia and was implemented in TSVCP since 2010. Afterwards, the nationwide vision impairment rate (uncorrected vision 20/25 or less) of elementary school students declined unprecedentedly and continuously in recent years. Evidence-based protective and risk factors for myopia are now clearer. Widespread acknowledgement of myopic disease, preventing the onset of myopia, prompt diagnosis, and early treatment to control progression are all important.

Review Article

The development of tissue engineering corneal scaffold: which one the history will choose?

:-
 

Abstract: Since the 21st century, the development of corneal tissue engineering technology has been developing rapidly. With the progress of biomaterials, cell culture and tissue engineering technology, tissue engineering cornea has gained great development in both basic scientific research and clinical application. In particular, tissue engineered corneal scaffolds are the core components of tissue engineered corneas. It is the focus of current research on tissue engineering cornea to search for scaffolds with good biocompatibility, high safety and good biomechanical properties. In this paper, the recent research progress of tissue engineering corneal materials is reviewed.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息