Review Article

Collagen cross-linking for pediatric refractive correction

:-
 

Abstract: Corneal collagen-crosslinking (CXL) has been widely investigated in the adult population. There is still little available in the literature, however, on the effects of CXL in children. A review of the literature on CXL in the pediatric population is presented here, with a particular emphasis on the refractive effects. Although several studies demonstrate promising results, most studies have small sample sizes with relatively short follow-up periods. Further investigation on the effects of CXL in the pediatric population is required to better understand long-term effects.

Cornea and Anterior segment
Retina and Posterior Segment

AB007. Tissue engineering of a choroidal substitute with pseudo-vascularization

:-
 

Background: The goal of this study was to engineer an epithelialized and endothelialized pigmented choroidal substitute using the self-assembly approach of tissue engineering.

Methods: Cells from human choroids were isolated and cultured. Culture purity was assessed using immunostaining (CD31, HMB45, vimentin, keratins 8/18). To engineer the choroid, fibroblasts were cultured in the presence of serum and ascorbic acid to promote extracellular matrix (ECM) assembly. Endothelial cells, melanocytes or RPE cells were separately seeded on the stromal substitutes. Choroidal substitutes were further characterized by histology, mass spectrometry, immunostaining, and compared to native human choroids.

Results: The technique used to isolate choroidal cells yielded pure cultures of fibroblasts, melanocytes and vascular endothelial cells. The stromal substitutes engineered using the self-assembly approach were composed of collagen (types I, VI, XII and XIV), proteoglycans (decorin, lumican) and other ECM proteins. Protein expression was confirmed using immunostaining. Endothelial cells spontaneously assembled into capillary-like structures and vascular networks when cocultured with fibroblast-containing ECM sheets.

Conclusions: This study shows that the self-assembly approach of tissue engineering can be used to reconstruct a choroid using native cells. This model represents a unique tool to better understand the crosstalk between the different choroidal cell types and cell-ECM interactions.

Original Article

Structural analysis of processed corneas

:-
 

Background: Disruption of the microstructure in corneal stroma can lead to the loss of transparency. The lack of a characterization method for the microstructure prevents such scaffolds to be implemented in tissue transplantation. The non-invasive, three-dimensional (3D) rendering multiphoton microscopy (MPM) poses the potential to solve this problem.

Methods: MPM images and data analyses were performed with three kinds of samples with known and different quality. Isosurfaces (ISOs) were constructed for the evaluation of void volume and collagen distribution.

Results: The differences in the microstructures of these samples were revealed with clear indications and links to their behaviours in rehydration and possible transparency. According to this analysis, the scaffold with the highest void space ratio amongst the three presented the highest successful rates to be thoroughly rehydrated.

Conclusions: Such a method can be developed for assessing the quality of tissue engineered corneas, or donated corneas, and be useful as a powerful research tool in cornea related research.

Review Article

Pathologic myopia

:-
 

Abstract: Pathologic myopia is the major cause of the loss of the best-corrected visual acuity (BCVA) worldwide, especially in East Asian countries. The loss of BCVA is caused by the development of myopic macula patchy, myopic traction macula patchy, and myopic optic neuropathy (or glaucoma). The development of such vision-threatening complications is caused by eye deformity, characterized by a formation of posterior staphyloma. The recent advance in ocular imaging has greatly facilitated the clarification of pathologies and pathogenesis of pathological myopia and myopia-related complications. These technologies include ultra-wide field fundus imaging, swept-source optical coherence tomography, and 3D MRI. In addition, the new treatments such as anti-VEGF therapies for myopic choroid all neovascularization have improved the outcome of the patients. Swept-source OCT showed that some of the lesions of myopic maculopathy were not simply chorioretinal atrophy but were Bruch’s membrane holes. Features of myopic traction maculopathy have been analyzed extensively by using OCT. The understanding the pathophysiology of complications of pathologic myopia is considered useful for better management of this blinding eye disease.

Review Article

The present and the prospect of bioengineering cornea

:-
 

Abstract: Corneal blindness represents one of the world’s three major causes of blindness, and the fundamental problem of corneal transplantation is a severe shortage of donor tissues worldwide, resulting in approximately 1.5 million new cases of blindness annually. To address the growing need for corneal transplants two main approaches are being pursued: allogenic and bioengineering cornea. Bioengineering corneas are constructed by naturally generating an extracellular matrix (ECM) component as the scaffold structure with or without corneal cells. It is well established that the scaffold structure directs the fate of cells, therefore, the fabrication of the correct scaffold structure components could produce an ideal corneal substitute, able to mimic the native corneal function. Another key factor in the construction of tissue engineering cornea is seed cells. However, unlike the epithelium and stroma cells, human cornea endothelium cells (HCECs) are notorious for having a limited proliferative capacity in vivo because of the mitotic block at the G1 phase of the cell cycle due to “contact-inhibition”. This review will focus on the main concepts of recent progress towards the scaffold and seed cells, especially endothelial cells for bioengineering cornea, along with future perspectives.

Review Article

The development of tissue engineering corneal scaffold: which one the history will choose?

:-
 

Abstract: Since the 21st century, the development of corneal tissue engineering technology has been developing rapidly. With the progress of biomaterials, cell culture and tissue engineering technology, tissue engineering cornea has gained great development in both basic scientific research and clinical application. In particular, tissue engineered corneal scaffolds are the core components of tissue engineered corneas. It is the focus of current research on tissue engineering cornea to search for scaffolds with good biocompatibility, high safety and good biomechanical properties. In this paper, the recent research progress of tissue engineering corneal materials is reviewed.

Review Article

Scleral remodelling in myopia and its manipulation: a review of recent advances in scleral strengthening and myopia control

:-
 

Abstract: The biological mechanisms of eye growth and refractive development are increasingly well characterised, a result of many careful studies that have been carried out over many years. As the outer coat of the eye, the sclera has the ultimate impact on the restraint or facilitation of eye growth, thus any changes in its biochemistry, ultrastructure, gross morphology and/or biomechanical properties are critical in refractive error development and, in particular, the development of myopia. The current review briefly revisits our basic understanding of the structure and biomechanics of the sclera and how these are regulated and modified during eye growth and myopia development. The review then applies this knowledge in considering recent advances in our understanding of how the mechanisms of scleral remodelling may be manipulated or controlled, in order to constrain eye growth and limit the development of myopia, in particular the higher degrees of myopia that lead to vision loss and blindness. In doing so, the review specifically considers recent approaches to the strengthening of the sclera, through collagen cross-linking, scleral transplantation, implantation or injection of biomaterials, or the direct therapeutic targeting and manipulation of the biochemical mechanisms known to be involved in myopia development. These latest approaches to the control of scleral changes in myopia are, where possible, placed in the context of our understanding of scleral biology, in order to bring a more complete understanding of current and future therapeutic interventions in myopia, and their consequences.

Review Article

Limbal epithelial stem cells in corneal surface reconstruction

:-
 

Abstract: Cornea serves as the partial front barrier and major light reflection organ of the eye. The integrity of corneal surface is essential for ocular function. Injuries or congenital diseases could significantly destruct the homeostasis of the ocular surface, especially the microenvironment of limbal epithelial stem cells (LESCs), and will eventually cause dysfunction of corneal regeneration and diminish of LESCs. The loss of LESCs by different reasons are named limbal stem cell deficiency (LSCD), which is one of the leading cause of vision loss worldwide. To restore the corneal surface, LESC transplantation in the form of tissue or cell cultures is currently a viable and promising method to treat LSCD. In this review, we aim to introduce the characters and niche of LESCs, and discuss different aspects of its application in cornea surface reconstruction.

Review Article

Riboflavin-UVA collagen cross-linking for the treatment of acanthamoeba keratitis

:-
 

Abstract: In this review, recent studies regarding riboflavin-ultraviolet A (UVA) collagen cross-linking for the treatment of acanthamoeba keratitis (AK) were reviewed. English written studies about acanthamoeba, keratitis, riboflavin and collagen cross-linking were retrieved from PubMed search engine (www.ncbi.nlm.nih.gov/pubmed). Although there were significant numbers of cases reporting the effectiveness of riboflavin-UVA collagen cross-linking in AK, experimental studies (in vivo and in vitro) failed to verify amoebicidal or cysticidal effect of riboflavin-UVA collagen cross-linking. In conclusion, the efficacy of riboflavin-UVA collagen cross-linking for the treatment of AK is still debatable. It is necessary to conduct a prospective case-control study for clear guidance for clinicians.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息