Original Article
Review Article

Amniotic membrane as a novel treatment in age-related macular degeneration: a narrative review

:-
 

Abstract: Age-related macular degeneration (ARMD), one of the most common causes of blindness, should be considered more due to its exponential increase in the coming 20 years as a result of increasing the age of the population. Whereas more recent studies offered newer scaling systems for ARMD, traditionally it is classified as the early and late stages. The main injury in this disease occurred in retinal pigment epithelium (RPE) and the retina. RPE cells have a crucial role in hemostasis and supporting photoreceptors. In the early stages, damages to RPE are minimal and mainly no treatment is needed because most patients are asymptomatic. However, in the late stages, RPE impairment may lead to the invasion of choroidal vessels into the retina. Although anti-angiogenic agents can inhibit this abnormal growth of blood vessels, they cannot stop it completely, and finally, total loss of retinal cells may occur (geographical atrophy). Since this prevalent disease has not had any cure yet, the concept of substituting the RPE cells should be considered. Repairing the injury to central nervous system cells is almost impossible because the regenerative capacity of these cells is limited. Recently, the use of regenerative substitutes has been suggested to replace damaged tissues. Amniotic membrane (AM) has been raised as a suitable substitute for damaged RPE cells due to all of its unique properties: pluripotency, anti-angiogenic effect, and anti-inflammatory effect. Based on the few studies that have been published so far, it seems that the use of this membrane in the treatment of ARMD can be helpful, but more studies are needed.

Review Article

Bioengineered dermal substitutes for periocular defects

:-
 

Abstract: Bioengineered materials are used as a substitute in many fields of medicine, especially in plastic surgery and in burns. In ophthalmic plastic surgery they can be used for covering large tissue defects or as a tarsal plate substitute, in cases when it is not possible to use conventional surgical techniques. We have searched PubMed and Web of Science scientific databases. We can generally categorize skin substitutes by the type of tissue used—we distinguish autografts, allografts, and xenografts. There are also completely synthetic substitutes. The aim of our article was to summarize the current state of knowledge and to sum up all the clinical applications of bioengineered materials in the periocular region. There are only a few scientific articles about this topic and lack of prospective randomized studies aimed on use of bioengineered materials in periocular region. Nevertheless, there are many articles describing successful case reports or case reports series. According to literature, bioengineered materials are the most commonly used in big traumas or large surgical defects, especially in oculoplastic tumour surgery. Bioengineered dermal substitutes are not frequently used in the periocular region. Dermal substitutes are useful, when it is not possible to close the defect with any other conventional surgical technique.

Review Article

Narrative review of goniotomy with the Kahook Dual Blade for the treatment of glaucoma

:-
 

Abstract: Glaucoma is a group of eye diseases that seriously threaten human visual health. Increased intraocular pressure is the main clinical manifestation and diagnostic basis of glaucoma and is directly related to increased resistance to aqueous circulation channels. The trabecular meshwork (TM) is a multi-layer spongy tissue that filters aqueous humor. Its structure changes and the filtering capacity decreases, leading to an increase in intraocular pressure. Surgical methods for TM are constantly updated. Compared with traditional glaucoma surgical techniques, such as external trabeculectomy, the development of a new surgical technique—minimally invasive glaucoma surgery (MIGS)—enables the operation to reduce intraocular pressure efficiently while further reducing damage to the eye. MIGS achieves the purpose of surgery mainly by optimizing the TM outflow pathway, uveoscleral outflow pathway, and subconjunctival outflow pathway. A new surgical instrument, the Kahook Dual Blade, appears to optimize the TM outflow pathway in the surgical technique. The Kahook Dual Blade is a new type of angle incision instrument. Because of its unique double-edged design, in the process of goniotomy, it can effectively reduce the damage to the anterior chamber angle structure and accurately remove the appropriate amount of TM so that the aqueous humor can flow out smoothly. Kahook Dual Blade goniotomy has the advantages of avoiding complications and foreign body sensation caused by intraocular implants. The operation time is relatively short, the surgical technique is easy to master, and the TM resection scope can be determined based on the patient’s condition. It can be used to treat some clinically meaningful glaucoma. This article is organized as follows. We present the following article following the Narrative Review reporting checklist.

Original Article
Review Article

A revisit to staining reagents for neuronal tissues

:-
 

Abstract: In the early days of deciphering the injured neuronal tissues led to the realization that contrast is necessary to discern the parts of the recovering tissues from the damaged ones. Early attempts relied on available (and often naturally occurring) staining substances. Incidentally, the active ingredients of most of them were small molecules. With the advent of time, the knowledge of chemistry helped identify compounds and conditions for staining. The staining reagents were even found to enhance the visibility of the organelles. Silver impregnation identification of Golgi bodies was discovered in owl optic nerve. Staining reagents since the late 1800s were widely used across all disciplines and for nerve tissue and became a key contributor to advancement in nerve-related research. The use of these reagents provided insight into the organization of the neuronal tissues and helped distinguish nerve degeneration from regeneration. The neuronal staining reagents have played a fundamental role in the clinical research facilitating the identification of biological mechanisms underlying eye and neuropsychiatric diseases. We found a lack of systematic description of all staining reagents, whether they had been used historically or currently used. There is a lack of readily available information for optimal staining of different neuronal tissues for a given purpose. We present here a grouping of the reagents based on their target location: (I) the central nervous system (CNS), (II) the peripheral nervous system (PNS), or (III) both. The biochemical reactions of most of the staining reagents is based on acidic or basic pH and specific reaction partners such as organelle or biomolecules that exists within the given tissue type. We present here a summary of the chemical composition, optimal staining condition, use for given neuronal tissue and, where possible, historic usage. Several biomolecules such as lipids and metabolites lack specific antibodies. Despite being non-specific the reagents enhance contrast and provide corroboration about the microenvironment. In future, these reagents in combination with emerging techniques such as imaging mass spectrometry and kinetic histochemistry will validate or expand our understanding of localization of molecules within tissues or cells that are important for ophthalmology and vision science.

Review Article

Current systems and recent developments of subthreshold laser systems in glaucoma: a narrative review

:-
 

Background and Objective: Subthreshold laser technologies and their applications in ophthalmology have greatly expanded in the past few decades. Initially used for retinal diseases such as central serous chorioretinopathy and diabetic macular edema, subthreshold lasers have recently shown efficacy in the treatment of various types of glaucoma. Our primary objectives are to review the clinical applications of subthreshold laser in the context of glaucoma treatment and discuss the mechanisms of different subthreshold laser techniques, including subthreshold selective laser trabeculoplasty (SSLT), micropulse laser trabeculoplasty (MLT), pattern-scanning laser trabeculoplasty (PSLT), titanium laser trabeculoplasty (TLT), and micropulse transscleral cyclophotocoagulation (MP-TSCPC).

Methods: This was a narrative review compiled from literature of PubMed and Google Scholar. The review was performed from March 2021 to October 2021 and included publications in English. We also included information from web pages to cover details of relevant laser systems. We discuss the history of subthreshold laser, recent advancements in subthreshold techniques, and commercially available systems that provide subthreshold capabilities for glaucoma. We highlight basic science and clinical studies that deepen the understanding of treatment mechanisms and treatment effectiveness in the clinical setting respectively. We review commonly used parameters for each technique and provide comparisons to conventional treatments.

Key Content and Findings: We found five distinct types of subthreshold laser used in the management of glaucoma. Numerous subthreshold laser systems are commercially available and can provide this treatment. Therefore, understanding the differences between subthreshold techniques and laser systems will be critical in utilizing subthreshold laser in the clinical setting.

Conclusions: Traditional laser trabeculoplasty (LT) and cyclophotocoagulation (CPC) have shown effectiveness in the treatment of various types of glaucoma but are associated with visible damage to the underlying tissue and adverse effects. Subthreshold laser systems aim to provide the therapeutic effect found in traditional lasers, while minimizing unwanted treatment related effects. Further clinical studies are needed to evaluate the role of subthreshold lasers in the management of glaucoma.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息