Abstract: This article reviews the history of the femtosecond laser in ophthalmology and its subsequent introduction into the field of cataract surgery. It discusses the innovations that this technology has brought to the field. The article also describes the current system of teaching cataract surgery to ophthalmology residents in the United States and then examines how femtosecond laser-assisted cataract surgery (FLACS) can be a beneficial part of residency education.
Background: In recent years posterior corneal astigmatism and its effect on total corneal astigmatism has been studied, with research showing that this can impact total astigmatism. This study aims to ascertain if there is significant change in the posterior corneal astigmatism after cataract surgery and its impact on the total astigmatism.
Methods: Analysis of 76 eyes that underwent cataract surgery with monofocal intraocular lens implantation. Corneal topography was performed with Pentacam (OCULUS?) pre- and post-operatively. Total corneal astigmatism was calculated with the algorithm of vergence tracing. We compared preoperative and postoperative changes in the magnitude and axis differences of anterior corneal curvature astigmatism, posterior corneal curvature astigmatism and the calculated total corneal astigmatism. We calculated the correlation between the total preoperative astigmatism and the difference between total corneal astigmatism and anterior corneal astigmatism.
Results: The mean preoperative and postoperative posterior astigmatism was 0.31±0.02 D, showing no significant differences before and after surgery (P=0.989). Statistically significant differences between the calculated total corneal astigmatism and anterior corneal astigmatism were registered preoperatively and postoperatively in the with-the-rule anterior (WTR) corneal astigmatism (P=0.004, P<0.0001); against-the-rule (ATR) anterior corneal astigmatism (P<0.0001, P<0.0001) and in the oblique (P=0.026, P=0.019) subgroups. The posterior corneal astigmatism and the total corneal astigmatism correlated positively with the differences between the total corneal and anterior corneal astigmatism (R=0.378, P=0.001).
Conclusions: There were statistically significant differences between the magnitude of the total astigmatism and anterior corneal astigmatism, underlining the impact of posterior corneal astigmatism. A positive correlation between the preoperative posterior astigmatism and the difference between the total corneal and the anterior corneal astigmatism suggests a specially relevant role of posterior corneal astigmatism when evaluating patients with higher degrees of astigmatism.
Background: The purpose of this infrastructure is to provide to the Network researchers a database and diverse related tools for the anatomical and functional analysis of the normal, pathological and surgical cornea.
Methods: This database is composed of normal and pathological individuals, totaling more than 36,000 patients. It includes anatomical and functional imaging data, physiological optics data, psychometric and clinical data (medical history, surgical parameters, acuteness, etc.). Various corneal topography tools were added, giving the database a unique character: tools for analyzing individual maps, average map tools for the study and comparison of populations, 3D modeling and visualization tools, statistical tools, etc. There are also screening tools for detecting various corneal conditions (LASIK, PRK, RK, keratoconus) and for secure data exchange between colleagues.
Results: Several studies were made in recent years thanks to this common infrastructure. For example, this database has provided important information regarding the evolution of the 3D shape of the normal cornea with age and ametropia and has confirmed the mirror symmetry of corneas for the right and the left eyes (enantiomorphism). The different stages of Fuchs’ dystrophy were also characterized to provide essential knowledge for surgery of the posterior layer of the cornea. Our database also allowed studying the anatomy of the wounds and the shape of the cornea before and after a transfixing transplant or an endothelial transplant (DSAEK and DSEK). The data on the characterization of experimentally transplanted corneas with corneal equivalents generated by tissue engineering and the recent addition of clinical data on the replacement of a diseased cornea with a synthetic corneal equivalent (keratoprosthesis) also resulted in several publications. More recently, the database has allowed to develop innovative algorithms to determine the optimal shape of an implant according to the clinical parameters of the recipient. On the other hand, we also demonstrated that the 3D shape of the cornea can be used as a biometric characteristic (such as fingerprints) for identification of individuals for various applications ranging from forensics to secure border crossings. Consequently, a new multimodal database (cornea + iris + eventually retina) was created for the purpose of biometric identifications. This database provides a unique set of anatomical and functional tools for the analysis of the cornea. It is characterized by the scientific quality and large quantity of accumulated information on the cornea and the high-level tools to exploit its content.
Conclusions: The common infrastructure is easily accessible to all VHRN members on request. The database will also be accessible online in 2018 (see http://cvl.concordia.ca for more information).
Abstract: Cataract surgery is one of the most commonly performed surgeries among the elderly today. The volume of cataract surgeries has dramatically increased in the past few decades due to technological advancements leading to decreased morbidity, better overall outcomes, and increased expectation for correction of refractive error and spectacle independence after cataract surgery. The number of cataract surgeries is expected to continue to rise with the increase of the elderly population. Thus, accurate predictions of intraocular lens (IOL) power and the ability to correct for any postoperative refractive errors are critical. Despite the improved ability of cataract surgeons to accurately calculate IOL power, postoperative refractive errors still do occur due to various reasons such as imperfect preoperative measurements, toric-lens misalignment, and existing or surgically-induced astigmatism. The aim of this article is to review the various surgical options, including intraocular and corneal refractive surgical approaches, to correct post-operative refractive errors after cataract surgery.
Background: To record the corneal, and anterior chamber depth changes after performing recession versus resection of horizontal recti muscles.
Methods: Consecutive patients who underwent isolated lateral rectus muscle recession or resection February 2014 to January 2015 were prospectively studied. Refractive error (spherical equivalent); K1, K2, and mean k reading, anterior and posterior corneal elevation; and anterior chamber depth were measured (Pentacam) before, 1 month, and 3 months after surgery. Patients who could not maintain reliable fixation and those with a history of eye surgery were excluded. Pre- and postoperative measurements were compared by analysis of variance.
Results: A total of 36 eyes of 23 patients (average age, 16 years) were included. Rectus muscle recession was performed in 24 eyes; and resection was performed in 12 eyes. Statistically significant changes in mean keratometry of recession group only. Central anterior elevation, and central anterior chamber depth were significant when both groups are compared at first month after surgery. Changes became regressive at the end of the third month. Although a significant change of central anterior elevation persisted.
Conclusions: In recession group, the mean K was the only statistically significant variable by the first postoperative month. Comparing the both groups, the anterior corneal elevation, and central anterior chamber depth revealed a significant difference by the end of the first postoperative month. After 3 months, all parameters showed a statistical insignificant difference between the recession and resection groups except the anterior corneal elevation.