Review Article
Review Article

Novel mitochondrial therapies for the treatment of age-related macular degeneration

:-
 

Abstract: The purpose of this article is to review current literature and data regarding treatment options for age-related macular degeneration (AMD) related to mitochondrial therapy. This article considers the presence of flavoprotein fluorescence as a potential biomarker to test the effectiveness of the treatments. We focus primarily on two major mitochondrial targets, nuclear factor erythroid 2-related factor (NFE2L2) and PGC-1α, that function in controlling the production and effects of reactive oxidative species (ROS) directly in the mitochondria. PU-91 is an FDA approved drug that directly targets and upregulates PGC-1α in AMD cybrid cell lines. Although neither NFE2L2 nor PGC1-α have yet been tested in clinical trials, their effects have been studied in rodent models and offer promising results. MTP-131, or elamipretide?, and metformin are two drugs in phase II clinical trials that focus on the treatment of advanced, non-exudative AMD. MTP-131 functions by associating with cardiolipin (CL) whereas metformin targets adenosine-monophosphate protein kinase (AMPK) in the mitochondria. The current results of their clinical trials are elucidated in this article. The molecular targets and drugs reviewed in this article show promising results in the treatment of AMD. These targets can be further pursued to improve and refine treatment practices of this diagnosis.

Review Article

Choriocapillaris in non-neovascular age-related macular degeneration as evaluated by optical coherence tomography angiography

:-
 

Abstract: Dramatic advances in retinal imaging technology over the last two decades have significantly improved our understanding of the natural history and pathophysiology of non-neovascular age-related macular degeneration (AMD). Currently, aside from micronutrient supplements, there are no proven treatments for non-neovascular or dry AMD. Recently, a number of pharmacological agents have been evaluated or are under evaluation for treatment of patients with end-stage dry AMD manifesting as geographic atrophy (GA). It may preferable, however, to intervene earlier in the disease before the development of irreversible loss of visual function. Earlier intervention would require a more precise understanding of biomarkers which may increase the risk of progression from early and intermediate stages to the late stage of the disease. The development of optical coherence tomography angiography (OCTA) has allowed the layers of the retinal microcirculation and choriocapillaris (CC) to be visualized and quantified. Flow deficits in the CC have been observed to increase with age, particularly centrally, and these flow deficits appear to worsen with development and progression of AMD. As such, OCTA-based CC assessment appears to be a valuable new biomarker in our assessment and risk-stratification of AMD. Alterations in the CC may also provide new insights into the pathophysiology of the disease. Enhancement of choriocapillaris function may also prove to be a target of future therapeutic strategies or as a biomarker to monitor the effectiveness of therapy. As such, CC imaging may be anticipated to be an integral tool in the management of dry AMD.

Review Article
Editorial
Original Article

Hyperspectral autofluorescence characterization of drusen and sub-RPE deposits in age-related macular degeneration

:-
 

Background: Soft drusen and basal linear deposit (BLinD) are two forms of the same extracellular lipid rich material that together make up an Oil Spill on Bruch’s membrane (BrM). Drusen are focal and can be recognized clinically. In contrast BLinD is thin and diffusely distributed, and invisible clinically, even on highest resolution OCT, but has been detected on en face hyperspectral autofluorescence (AF) imaging ex vivo. We sought to optimize histologic hyperspectral AF imaging and image analysis for recognition of drusen and sub-RPE deposits (including BLinD and basal laminar deposit), for potential clinical application.

Methods: Twenty locations specifically with drusen and 12 additional locations specifically from fovea, perifovea and mid-periphery from RPE/BrM flatmounts from 4 AMD donors underwent hyperspectral AF imaging with 4 excitation wavelengths (λex 436, 450, 480 and 505 nm), and the resulting image cubes were simultaneously decomposed with our published non-negative matrix factorization (NMF). Rank 4 recovery of 4 emission spectra was chosen for each excitation wavelength.

Results: A composite emission spectrum, sensitive and specific for drusen and presumed sub-RPE deposits (the SDr spectrum) was recovered with peak at 510–520 nm in all tissues with drusen, with greatest amplitudes at excitations λex 436, 450 and 480 nm. The RPE spectra of combined sources Lipofuscin (LF)/Melanolipofuscin (MLF) were of comparable amplitude and consistently recapitulated the spectra S1, S2 and S3 previously reported from all tissues: tissues with drusen, foveal and extra-foveal locations.

Conclusions: A clinical hyperspectral AF camera, with properly chosen excitation wavelengths in the blue range and a hyperspectral AF detector, should be capable of detecting and quantifying drusen and sub-RPE deposits, the earliest known lesions of AMD, before any other currently available imaging modality.

Review Article

Comparison between sodium iodate and lipid peroxide murine models of age-related macular degeneration for drug evaluation—a narrative review

:-
 

Objective: In this review, non-transgenic models of age-related macular degeneration (AMD) are discussed, with focuses on murine retinal degeneration induced by sodium iodate and lipid peroxide (HpODE) as preclinical study platforms.

Background: AMD is the most common cause of vision loss in a world with an increasingly aging population. The major phenotypes of early and intermediate AMD are increased drusen and autofluorescence, Müller glia activation, infiltrated subretinal microglia and inward moving retinal pigment epithelium (RPE) cells. Intermediate AMD may progress to advanced AMD, characterized by geography atrophy and/or choroidal neovascularization (CNV). Various transgenic and non-transgenic animal models related to retinal degeneration have been generated to investigate AMD pathogenesis and pathobiology, and have been widely used as potential therapeutic evaluation platforms.

Methods: Two retinal degeneration murine models induced by sodium iodate and HpODE are described. Distinct pathological features and procedures of these two models are compared. In addition, practical protocol and material preparation and assessment methods are elaborated.

Conclusions: Retina degeneration induced by sodium iodate and HpODE in mouse eye resembles many clinical aspects of human AMD and complimentary to the existent other animal models. However, standardization of procedure and assessment protocols is needed for preclinical studies. Further studies of HpODE on different routes, doses and species will be valuable for the future extensive use. Despite many merits of murine studies, differences between murine and human should be always considered.

Review Article

Subthreshold laser systems: a narrative review of the current status and advancements for retinal diseases

:-
 

Background and Objective: Subthreshold laser therapy has emerged as a therapeutic alternative to traditional laser photocoagulation for certain ophthalmic diseases including central serous chorioretinopathy (CSCR), diabetic macular edema (DME), macular edema secondary to branch retinal vein occlusion (BRVO), and age-related macular degeneration (AMD). The objective of this paper is to review and discuss the clinical applications of subthreshold laser and the mechanisms of different subthreshold laser techniques including subthreshold micropulse laser (SMPL), selective retina therapy (SRT), subthreshold nanosecond laser (SNL), endpoint management (EpM), and transpupillary thermotherapy (TTT).

Methods: A narrative review of English literature and publicly available information published before November 2021 from literature databases and computerized texts. We discuss the currently available subthreshold laser systems and the advancements made to perform different subthreshold laser techniques for various ophthalmic diseases. We highlight various clinical studies and therapeutic techniques that have been conducted to further understand the effectiveness of subthreshold laser in the clinical setting. We conclude the article by covering emerging subthreshold laser systems that are currently being developed for future clinical use. The PubMed database was utilized for peer-reviewed articles and pertinent information on subthreshold systems was cited from publicly available online websites covering specific systems.

Key Content and Findings: Various subthreshold laser systems have been developed to treat certain retinal diseases. Several systems are currently in development for future clinical applications.

Conclusions: While conventional laser photocoagulation has been effective in treating various retinal diseases, subthreshold laser systems aim to provide a therapeutic effect without visible signs of damage to the underlying tissue. This technology may be particularly effective in treating macular disorders. Further clinical studies are needed to evaluate their role in the management of retinal diseases.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息